{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE Trustworthy #-}
module Data.Profunctor.Yoneda
( Yoneda(..), extractYoneda, duplicateYoneda
, Coyoneda(..), returnCoyoneda, joinCoyoneda
) where
import Control.Category
import Data.Coerce (Coercible, coerce)
import Data.Profunctor
import Data.Profunctor.Monad
import Data.Profunctor.Traversing
import Data.Profunctor.Unsafe
import Prelude hiding (id,(.))
newtype Yoneda p a b = Yoneda { Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda :: forall x y. (x -> a) -> (b -> y) -> p x y }
extractYoneda :: Yoneda p a b -> p a b
Yoneda p a b
p = Yoneda p a b -> (a -> a) -> (b -> b) -> p a b
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p a b
p a -> a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id b -> b
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
duplicateYoneda :: Yoneda p a b -> Yoneda (Yoneda p) a b
duplicateYoneda :: Yoneda p a b -> Yoneda (Yoneda p) a b
duplicateYoneda Yoneda p a b
p = (forall x y. (x -> a) -> (b -> y) -> Yoneda p x y)
-> Yoneda (Yoneda p) a b
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (b -> y) -> Yoneda p x y)
-> Yoneda (Yoneda p) a b)
-> (forall x y. (x -> a) -> (b -> y) -> Yoneda p x y)
-> Yoneda (Yoneda p) a b
forall a b. (a -> b) -> a -> b
$ \x -> a
l b -> y
r -> (x -> a) -> (b -> y) -> Yoneda p a b -> Yoneda p x y
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap x -> a
l b -> y
r Yoneda p a b
p
instance Profunctor (Yoneda p) where
dimap :: (a -> b) -> (c -> d) -> Yoneda p b c -> Yoneda p a d
dimap a -> b
l c -> d
r Yoneda p b c
p = (forall x y. (x -> a) -> (d -> y) -> p x y) -> Yoneda p a d
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (d -> y) -> p x y) -> Yoneda p a d)
-> (forall x y. (x -> a) -> (d -> y) -> p x y) -> Yoneda p a d
forall a b. (a -> b) -> a -> b
$ \x -> a
l' d -> y
r' -> Yoneda p b c -> (x -> b) -> (c -> y) -> p x y
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p b c
p (a -> b
l (a -> b) -> (x -> a) -> x -> b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. x -> a
l') (d -> y
r' (d -> y) -> (c -> d) -> c -> y
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. c -> d
r)
{-# INLINE dimap #-}
lmap :: (a -> b) -> Yoneda p b c -> Yoneda p a c
lmap a -> b
l Yoneda p b c
p = (forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c)
-> (forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c
forall a b. (a -> b) -> a -> b
$ \x -> a
l' c -> y
r -> Yoneda p b c -> (x -> b) -> (c -> y) -> p x y
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p b c
p (a -> b
l (a -> b) -> (x -> a) -> x -> b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. x -> a
l') c -> y
r
{-# INLINE lmap #-}
rmap :: (b -> c) -> Yoneda p a b -> Yoneda p a c
rmap b -> c
r Yoneda p a b
p = (forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c)
-> (forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c
forall a b. (a -> b) -> a -> b
$ \x -> a
l c -> y
r' -> Yoneda p a b -> (x -> a) -> (b -> y) -> p x y
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p a b
p x -> a
l (c -> y
r' (c -> y) -> (b -> c) -> b -> y
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> c
r)
{-# INLINE rmap #-}
.# :: Yoneda p b c -> q a b -> Yoneda p a c
(.#) Yoneda p b c
p q a b
_ = Yoneda p b c -> Yoneda p a c
coerce Yoneda p b c
p
{-# INLINE (.#) #-}
#. :: q b c -> Yoneda p a b -> Yoneda p a c
(#.) q b c
_ = (b -> b) -> a -> b
coerce (\b
x -> b
x :: b) :: forall a b. Coercible b a => a -> b
{-# INLINE (#.) #-}
instance Functor (Yoneda p a) where
fmap :: (a -> b) -> Yoneda p a a -> Yoneda p a b
fmap a -> b
f Yoneda p a a
p = (forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b)
-> (forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
forall a b. (a -> b) -> a -> b
$ \x -> a
l b -> y
r -> Yoneda p a a -> (x -> a) -> (a -> y) -> p x y
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p a a
p x -> a
l (b -> y
r (b -> y) -> (a -> b) -> a -> y
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> b
f)
{-# INLINE fmap #-}
instance ProfunctorFunctor Yoneda where
promap :: (p :-> q) -> Yoneda p :-> Yoneda q
promap p :-> q
f Yoneda p a b
p = (forall x y. (x -> a) -> (b -> y) -> q x y) -> Yoneda q a b
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (b -> y) -> q x y) -> Yoneda q a b)
-> (forall x y. (x -> a) -> (b -> y) -> q x y) -> Yoneda q a b
forall a b. (a -> b) -> a -> b
$ \x -> a
l b -> y
r -> p x y -> q x y
p :-> q
f (Yoneda p a b -> (x -> a) -> (b -> y) -> p x y
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p a b
p x -> a
l b -> y
r)
{-# INLINE promap #-}
instance ProfunctorComonad Yoneda where
proextract :: Yoneda p :-> p
proextract Yoneda p a b
p = Yoneda p a b -> (a -> a) -> (b -> b) -> p a b
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p a b
p a -> a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id b -> b
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
{-# INLINE proextract #-}
produplicate :: Yoneda p :-> Yoneda (Yoneda p)
produplicate Yoneda p a b
p = (forall x y. (x -> a) -> (b -> y) -> Yoneda p x y)
-> Yoneda (Yoneda p) a b
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (b -> y) -> Yoneda p x y)
-> Yoneda (Yoneda p) a b)
-> (forall x y. (x -> a) -> (b -> y) -> Yoneda p x y)
-> Yoneda (Yoneda p) a b
forall a b. (a -> b) -> a -> b
$ \x -> a
l b -> y
r -> (x -> a) -> (b -> y) -> Yoneda p a b -> Yoneda p x y
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap x -> a
l b -> y
r Yoneda p a b
p
{-# INLINE produplicate #-}
instance ProfunctorMonad Yoneda where
proreturn :: p :-> Yoneda p
proreturn p a b
p = (forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b)
-> (forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
forall a b. (a -> b) -> a -> b
$ \x -> a
l b -> y
r -> (x -> a) -> (b -> y) -> p a b -> p x y
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap x -> a
l b -> y
r p a b
p
{-# INLINE proreturn #-}
projoin :: Yoneda (Yoneda p) :-> Yoneda p
projoin Yoneda (Yoneda p) a b
p = Yoneda (Yoneda p) a b -> (a -> a) -> (b -> b) -> Yoneda p a b
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda (Yoneda p) a b
p a -> a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id b -> b
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
{-# INLINE projoin #-}
instance (Category p, Profunctor p) => Category (Yoneda p) where
id :: Yoneda p a a
id = (forall x y. (x -> a) -> (a -> y) -> p x y) -> Yoneda p a a
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (a -> y) -> p x y) -> Yoneda p a a)
-> (forall x y. (x -> a) -> (a -> y) -> p x y) -> Yoneda p a a
forall a b. (a -> b) -> a -> b
$ \x -> a
l a -> y
r -> (x -> a) -> (a -> y) -> p a a -> p x y
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap x -> a
l a -> y
r p a a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
{-# INLINE id #-}
Yoneda p b c
p . :: Yoneda p b c -> Yoneda p a b -> Yoneda p a c
. Yoneda p a b
q = (forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c
forall (p :: * -> * -> *) a b.
(forall x y. (x -> a) -> (b -> y) -> p x y) -> Yoneda p a b
Yoneda ((forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c)
-> (forall x y. (x -> a) -> (c -> y) -> p x y) -> Yoneda p a c
forall a b. (a -> b) -> a -> b
$ \ x -> a
l c -> y
r -> Yoneda p b c -> (b -> b) -> (c -> y) -> p b y
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p b c
p b -> b
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id c -> y
r p b y -> p x b -> p x y
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> (x -> a) -> (b -> b) -> p x b
forall (p :: * -> * -> *) a b.
Yoneda p a b -> forall x y. (x -> a) -> (b -> y) -> p x y
runYoneda Yoneda p a b
q x -> a
l b -> b
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
{-# INLINE (.) #-}
instance Strong p => Strong (Yoneda p) where
first' :: Yoneda p a b -> Yoneda p (a, c) (b, c)
first' = p (a, c) (b, c) -> Yoneda p (a, c) (b, c)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p (a, c) (b, c) -> Yoneda p (a, c) (b, c))
-> (Yoneda p a b -> p (a, c) (b, c))
-> Yoneda p a b
-> Yoneda p (a, c) (b, c)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (a, c) (b, c)
forall (p :: * -> * -> *) a b c.
Strong p =>
p a b -> p (a, c) (b, c)
first' (p a b -> p (a, c) (b, c))
-> (Yoneda p a b -> p a b) -> Yoneda p a b -> p (a, c) (b, c)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> p a b
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE first' #-}
second' :: Yoneda p a b -> Yoneda p (c, a) (c, b)
second' = p (c, a) (c, b) -> Yoneda p (c, a) (c, b)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p (c, a) (c, b) -> Yoneda p (c, a) (c, b))
-> (Yoneda p a b -> p (c, a) (c, b))
-> Yoneda p a b
-> Yoneda p (c, a) (c, b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (c, a) (c, b)
forall (p :: * -> * -> *) a b c.
Strong p =>
p a b -> p (c, a) (c, b)
second' (p a b -> p (c, a) (c, b))
-> (Yoneda p a b -> p a b) -> Yoneda p a b -> p (c, a) (c, b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> p a b
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE second' #-}
instance Choice p => Choice (Yoneda p) where
left' :: Yoneda p a b -> Yoneda p (Either a c) (Either b c)
left' = p (Either a c) (Either b c) -> Yoneda p (Either a c) (Either b c)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p (Either a c) (Either b c) -> Yoneda p (Either a c) (Either b c))
-> (Yoneda p a b -> p (Either a c) (Either b c))
-> Yoneda p a b
-> Yoneda p (Either a c) (Either b c)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (Either a c) (Either b c)
forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either a c) (Either b c)
left' (p a b -> p (Either a c) (Either b c))
-> (Yoneda p a b -> p a b)
-> Yoneda p a b
-> p (Either a c) (Either b c)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> p a b
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE left' #-}
right' :: Yoneda p a b -> Yoneda p (Either c a) (Either c b)
right' = p (Either c a) (Either c b) -> Yoneda p (Either c a) (Either c b)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p (Either c a) (Either c b) -> Yoneda p (Either c a) (Either c b))
-> (Yoneda p a b -> p (Either c a) (Either c b))
-> Yoneda p a b
-> Yoneda p (Either c a) (Either c b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (Either c a) (Either c b)
forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right' (p a b -> p (Either c a) (Either c b))
-> (Yoneda p a b -> p a b)
-> Yoneda p a b
-> p (Either c a) (Either c b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> p a b
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE right' #-}
instance Costrong p => Costrong (Yoneda p) where
unfirst :: Yoneda p (a, d) (b, d) -> Yoneda p a b
unfirst = p a b -> Yoneda p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p a b -> Yoneda p a b)
-> (Yoneda p (a, d) (b, d) -> p a b)
-> Yoneda p (a, d) (b, d)
-> Yoneda p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p (a, d) (b, d) -> p a b
forall (p :: * -> * -> *) a d b.
Costrong p =>
p (a, d) (b, d) -> p a b
unfirst (p (a, d) (b, d) -> p a b)
-> (Yoneda p (a, d) (b, d) -> p (a, d) (b, d))
-> Yoneda p (a, d) (b, d)
-> p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p (a, d) (b, d) -> p (a, d) (b, d)
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE unfirst #-}
unsecond :: Yoneda p (d, a) (d, b) -> Yoneda p a b
unsecond = p a b -> Yoneda p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p a b -> Yoneda p a b)
-> (Yoneda p (d, a) (d, b) -> p a b)
-> Yoneda p (d, a) (d, b)
-> Yoneda p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p (d, a) (d, b) -> p a b
forall (p :: * -> * -> *) d a b.
Costrong p =>
p (d, a) (d, b) -> p a b
unsecond (p (d, a) (d, b) -> p a b)
-> (Yoneda p (d, a) (d, b) -> p (d, a) (d, b))
-> Yoneda p (d, a) (d, b)
-> p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p (d, a) (d, b) -> p (d, a) (d, b)
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE unsecond #-}
instance Cochoice p => Cochoice (Yoneda p) where
unleft :: Yoneda p (Either a d) (Either b d) -> Yoneda p a b
unleft = p a b -> Yoneda p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p a b -> Yoneda p a b)
-> (Yoneda p (Either a d) (Either b d) -> p a b)
-> Yoneda p (Either a d) (Either b d)
-> Yoneda p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p (Either a d) (Either b d) -> p a b
forall (p :: * -> * -> *) a d b.
Cochoice p =>
p (Either a d) (Either b d) -> p a b
unleft (p (Either a d) (Either b d) -> p a b)
-> (Yoneda p (Either a d) (Either b d)
-> p (Either a d) (Either b d))
-> Yoneda p (Either a d) (Either b d)
-> p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p (Either a d) (Either b d) -> p (Either a d) (Either b d)
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE unleft #-}
unright :: Yoneda p (Either d a) (Either d b) -> Yoneda p a b
unright = p a b -> Yoneda p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p a b -> Yoneda p a b)
-> (Yoneda p (Either d a) (Either d b) -> p a b)
-> Yoneda p (Either d a) (Either d b)
-> Yoneda p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p (Either d a) (Either d b) -> p a b
forall (p :: * -> * -> *) d a b.
Cochoice p =>
p (Either d a) (Either d b) -> p a b
unright (p (Either d a) (Either d b) -> p a b)
-> (Yoneda p (Either d a) (Either d b)
-> p (Either d a) (Either d b))
-> Yoneda p (Either d a) (Either d b)
-> p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p (Either d a) (Either d b) -> p (Either d a) (Either d b)
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE unright #-}
instance Closed p => Closed (Yoneda p) where
closed :: Yoneda p a b -> Yoneda p (x -> a) (x -> b)
closed = p (x -> a) (x -> b) -> Yoneda p (x -> a) (x -> b)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p (x -> a) (x -> b) -> Yoneda p (x -> a) (x -> b))
-> (Yoneda p a b -> p (x -> a) (x -> b))
-> Yoneda p a b
-> Yoneda p (x -> a) (x -> b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (x -> a) (x -> b)
forall (p :: * -> * -> *) a b x.
Closed p =>
p a b -> p (x -> a) (x -> b)
closed (p a b -> p (x -> a) (x -> b))
-> (Yoneda p a b -> p a b) -> Yoneda p a b -> p (x -> a) (x -> b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> p a b
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE closed #-}
instance Mapping p => Mapping (Yoneda p) where
map' :: Yoneda p a b -> Yoneda p (f a) (f b)
map' = p (f a) (f b) -> Yoneda p (f a) (f b)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p (f a) (f b) -> Yoneda p (f a) (f b))
-> (Yoneda p a b -> p (f a) (f b))
-> Yoneda p a b
-> Yoneda p (f a) (f b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (f a) (f b)
forall (p :: * -> * -> *) (f :: * -> *) a b.
(Mapping p, Functor f) =>
p a b -> p (f a) (f b)
map' (p a b -> p (f a) (f b))
-> (Yoneda p a b -> p a b) -> Yoneda p a b -> p (f a) (f b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> p a b
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE map' #-}
instance Traversing p => Traversing (Yoneda p) where
traverse' :: Yoneda p a b -> Yoneda p (f a) (f b)
traverse' = p (f a) (f b) -> Yoneda p (f a) (f b)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p (f a) (f b) -> Yoneda p (f a) (f b))
-> (Yoneda p a b -> p (f a) (f b))
-> Yoneda p a b
-> Yoneda p (f a) (f b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (f a) (f b)
forall (p :: * -> * -> *) (f :: * -> *) a b.
(Traversing p, Traversable f) =>
p a b -> p (f a) (f b)
traverse' (p a b -> p (f a) (f b))
-> (Yoneda p a b -> p a b) -> Yoneda p a b -> p (f a) (f b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> p a b
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE traverse' #-}
wander :: (forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> Yoneda p a b -> Yoneda p s t
wander forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t
f = p s t -> Yoneda p s t
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorMonad t, Profunctor p) =>
p :-> t p
proreturn (p s t -> Yoneda p s t)
-> (Yoneda p a b -> p s t) -> Yoneda p a b -> Yoneda p s t
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. (forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p a b -> p s t
forall (p :: * -> * -> *) a b s t.
Traversing p =>
(forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p a b -> p s t
wander forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t
f (p a b -> p s t)
-> (Yoneda p a b -> p a b) -> Yoneda p a b -> p s t
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Yoneda p a b -> p a b
forall (p :: * -> * -> *) a b. Yoneda p a b -> p a b
extractYoneda
{-# INLINE wander #-}
data Coyoneda p a b where
Coyoneda :: (a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
returnCoyoneda :: p a b -> Coyoneda p a b
returnCoyoneda :: p a b -> Coyoneda p a b
returnCoyoneda = (a -> a) -> (b -> b) -> p a b -> Coyoneda p a b
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda a -> a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id b -> b
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
joinCoyoneda :: Coyoneda (Coyoneda p) a b -> Coyoneda p a b
joinCoyoneda :: Coyoneda (Coyoneda p) a b -> Coyoneda p a b
joinCoyoneda (Coyoneda a -> x
l y -> b
r Coyoneda p x y
p) = (a -> x) -> (y -> b) -> Coyoneda p x y -> Coyoneda p a b
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap a -> x
l y -> b
r Coyoneda p x y
p
instance Functor (Coyoneda p a) where
fmap :: (a -> b) -> Coyoneda p a a -> Coyoneda p a b
fmap a -> b
f (Coyoneda a -> x
l y -> a
r' p x y
p) = (a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda a -> x
l (a -> b
f (a -> b) -> (y -> a) -> y -> b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. y -> a
r') p x y
p
instance Profunctor (Coyoneda p) where
dimap :: (a -> b) -> (c -> d) -> Coyoneda p b c -> Coyoneda p a d
dimap a -> b
l c -> d
r (Coyoneda b -> x
l' y -> c
r' p x y
p) = (a -> x) -> (y -> d) -> p x y -> Coyoneda p a d
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda (b -> x
l' (b -> x) -> (a -> b) -> a -> x
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> b
l) (c -> d
r (c -> d) -> (y -> c) -> y -> d
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. y -> c
r') p x y
p
{-# INLINE dimap #-}
lmap :: (a -> b) -> Coyoneda p b c -> Coyoneda p a c
lmap a -> b
l (Coyoneda b -> x
l' y -> c
r p x y
p) = (a -> x) -> (y -> c) -> p x y -> Coyoneda p a c
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda (b -> x
l' (b -> x) -> (a -> b) -> a -> x
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> b
l) y -> c
r p x y
p
{-# INLINE lmap #-}
rmap :: (b -> c) -> Coyoneda p a b -> Coyoneda p a c
rmap b -> c
r (Coyoneda a -> x
l y -> b
r' p x y
p) = (a -> x) -> (y -> c) -> p x y -> Coyoneda p a c
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda a -> x
l (b -> c
r (b -> c) -> (y -> b) -> y -> c
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. y -> b
r') p x y
p
{-# INLINE rmap #-}
.# :: Coyoneda p b c -> q a b -> Coyoneda p a c
(.#) Coyoneda p b c
p q a b
_ = Coyoneda p b c -> Coyoneda p a c
coerce Coyoneda p b c
p
{-# INLINE (.#) #-}
#. :: q b c -> Coyoneda p a b -> Coyoneda p a c
(#.) q b c
_ = (b -> b) -> a -> b
coerce (\b
x -> b
x :: b) :: forall a b. Coercible b a => a -> b
{-# INLINE (#.) #-}
instance ProfunctorFunctor Coyoneda where
promap :: (p :-> q) -> Coyoneda p :-> Coyoneda q
promap p :-> q
f (Coyoneda a -> x
l y -> b
r p x y
p) = (a -> x) -> (y -> b) -> q x y -> Coyoneda q a b
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda a -> x
l y -> b
r (p x y -> q x y
p :-> q
f p x y
p)
{-# INLINE promap #-}
instance ProfunctorComonad Coyoneda where
proextract :: Coyoneda p :-> p
proextract (Coyoneda a -> x
l y -> b
r p x y
p) = (a -> x) -> (y -> b) -> p x y -> p a b
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap a -> x
l y -> b
r p x y
p
{-# INLINE proextract #-}
produplicate :: Coyoneda p :-> Coyoneda (Coyoneda p)
produplicate = (a -> a) -> (b -> b) -> Coyoneda p a b -> Coyoneda (Coyoneda p) a b
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda a -> a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id b -> b
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
{-# INLINE produplicate #-}
instance ProfunctorMonad Coyoneda where
proreturn :: p :-> Coyoneda p
proreturn = p a b -> Coyoneda p a b
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda
{-# INLINE proreturn #-}
projoin :: Coyoneda (Coyoneda p) :-> Coyoneda p
projoin = Coyoneda (Coyoneda p) a b -> Coyoneda p a b
forall (p :: * -> * -> *) a b.
Coyoneda (Coyoneda p) a b -> Coyoneda p a b
joinCoyoneda
{-# INLINE projoin #-}
instance (Category p, Profunctor p) => Category (Coyoneda p) where
id :: Coyoneda p a a
id = (a -> a) -> (a -> a) -> p a a -> Coyoneda p a a
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda a -> a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id a -> a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id p a a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
{-# INLINE id #-}
Coyoneda b -> x
lp y -> c
rp p x y
p . :: Coyoneda p b c -> Coyoneda p a b -> Coyoneda p a c
. Coyoneda a -> x
lq y -> b
rq p x y
q = (a -> x) -> (y -> c) -> p x y -> Coyoneda p a c
forall a x y b (p :: * -> * -> *).
(a -> x) -> (y -> b) -> p x y -> Coyoneda p a b
Coyoneda a -> x
lq y -> c
rp (p x y
p p x y -> p x x -> p x y
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. (y -> x) -> p x y -> p x x
forall (p :: * -> * -> *) b c a.
Profunctor p =>
(b -> c) -> p a b -> p a c
rmap (b -> x
lp (b -> x) -> (y -> b) -> y -> x
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. y -> b
rq) p x y
q)
{-# INLINE (.) #-}
instance Strong p => Strong (Coyoneda p) where
first' :: Coyoneda p a b -> Coyoneda p (a, c) (b, c)
first' = p (a, c) (b, c) -> Coyoneda p (a, c) (b, c)
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p (a, c) (b, c) -> Coyoneda p (a, c) (b, c))
-> (Coyoneda p a b -> p (a, c) (b, c))
-> Coyoneda p a b
-> Coyoneda p (a, c) (b, c)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (a, c) (b, c)
forall (p :: * -> * -> *) a b c.
Strong p =>
p a b -> p (a, c) (b, c)
first' (p a b -> p (a, c) (b, c))
-> (Coyoneda p a b -> p a b) -> Coyoneda p a b -> p (a, c) (b, c)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p a b -> p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE first' #-}
second' :: Coyoneda p a b -> Coyoneda p (c, a) (c, b)
second' = p (c, a) (c, b) -> Coyoneda p (c, a) (c, b)
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p (c, a) (c, b) -> Coyoneda p (c, a) (c, b))
-> (Coyoneda p a b -> p (c, a) (c, b))
-> Coyoneda p a b
-> Coyoneda p (c, a) (c, b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (c, a) (c, b)
forall (p :: * -> * -> *) a b c.
Strong p =>
p a b -> p (c, a) (c, b)
second' (p a b -> p (c, a) (c, b))
-> (Coyoneda p a b -> p a b) -> Coyoneda p a b -> p (c, a) (c, b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p a b -> p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE second' #-}
instance Choice p => Choice (Coyoneda p) where
left' :: Coyoneda p a b -> Coyoneda p (Either a c) (Either b c)
left' = p (Either a c) (Either b c) -> Coyoneda p (Either a c) (Either b c)
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p (Either a c) (Either b c)
-> Coyoneda p (Either a c) (Either b c))
-> (Coyoneda p a b -> p (Either a c) (Either b c))
-> Coyoneda p a b
-> Coyoneda p (Either a c) (Either b c)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (Either a c) (Either b c)
forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either a c) (Either b c)
left' (p a b -> p (Either a c) (Either b c))
-> (Coyoneda p a b -> p a b)
-> Coyoneda p a b
-> p (Either a c) (Either b c)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p a b -> p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE left' #-}
right' :: Coyoneda p a b -> Coyoneda p (Either c a) (Either c b)
right' = p (Either c a) (Either c b) -> Coyoneda p (Either c a) (Either c b)
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p (Either c a) (Either c b)
-> Coyoneda p (Either c a) (Either c b))
-> (Coyoneda p a b -> p (Either c a) (Either c b))
-> Coyoneda p a b
-> Coyoneda p (Either c a) (Either c b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (Either c a) (Either c b)
forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right' (p a b -> p (Either c a) (Either c b))
-> (Coyoneda p a b -> p a b)
-> Coyoneda p a b
-> p (Either c a) (Either c b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p a b -> p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE right' #-}
instance Costrong p => Costrong (Coyoneda p) where
unfirst :: Coyoneda p (a, d) (b, d) -> Coyoneda p a b
unfirst = p a b -> Coyoneda p a b
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p a b -> Coyoneda p a b)
-> (Coyoneda p (a, d) (b, d) -> p a b)
-> Coyoneda p (a, d) (b, d)
-> Coyoneda p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p (a, d) (b, d) -> p a b
forall (p :: * -> * -> *) a d b.
Costrong p =>
p (a, d) (b, d) -> p a b
unfirst (p (a, d) (b, d) -> p a b)
-> (Coyoneda p (a, d) (b, d) -> p (a, d) (b, d))
-> Coyoneda p (a, d) (b, d)
-> p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p (a, d) (b, d) -> p (a, d) (b, d)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE unfirst #-}
unsecond :: Coyoneda p (d, a) (d, b) -> Coyoneda p a b
unsecond = p a b -> Coyoneda p a b
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p a b -> Coyoneda p a b)
-> (Coyoneda p (d, a) (d, b) -> p a b)
-> Coyoneda p (d, a) (d, b)
-> Coyoneda p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p (d, a) (d, b) -> p a b
forall (p :: * -> * -> *) d a b.
Costrong p =>
p (d, a) (d, b) -> p a b
unsecond (p (d, a) (d, b) -> p a b)
-> (Coyoneda p (d, a) (d, b) -> p (d, a) (d, b))
-> Coyoneda p (d, a) (d, b)
-> p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p (d, a) (d, b) -> p (d, a) (d, b)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE unsecond #-}
instance Cochoice p => Cochoice (Coyoneda p) where
unleft :: Coyoneda p (Either a d) (Either b d) -> Coyoneda p a b
unleft = p a b -> Coyoneda p a b
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p a b -> Coyoneda p a b)
-> (Coyoneda p (Either a d) (Either b d) -> p a b)
-> Coyoneda p (Either a d) (Either b d)
-> Coyoneda p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p (Either a d) (Either b d) -> p a b
forall (p :: * -> * -> *) a d b.
Cochoice p =>
p (Either a d) (Either b d) -> p a b
unleft (p (Either a d) (Either b d) -> p a b)
-> (Coyoneda p (Either a d) (Either b d)
-> p (Either a d) (Either b d))
-> Coyoneda p (Either a d) (Either b d)
-> p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p (Either a d) (Either b d) -> p (Either a d) (Either b d)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE unleft #-}
unright :: Coyoneda p (Either d a) (Either d b) -> Coyoneda p a b
unright = p a b -> Coyoneda p a b
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p a b -> Coyoneda p a b)
-> (Coyoneda p (Either d a) (Either d b) -> p a b)
-> Coyoneda p (Either d a) (Either d b)
-> Coyoneda p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p (Either d a) (Either d b) -> p a b
forall (p :: * -> * -> *) d a b.
Cochoice p =>
p (Either d a) (Either d b) -> p a b
unright (p (Either d a) (Either d b) -> p a b)
-> (Coyoneda p (Either d a) (Either d b)
-> p (Either d a) (Either d b))
-> Coyoneda p (Either d a) (Either d b)
-> p a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p (Either d a) (Either d b) -> p (Either d a) (Either d b)
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE unright #-}
instance Closed p => Closed (Coyoneda p) where
closed :: Coyoneda p a b -> Coyoneda p (x -> a) (x -> b)
closed = p (x -> a) (x -> b) -> Coyoneda p (x -> a) (x -> b)
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p (x -> a) (x -> b) -> Coyoneda p (x -> a) (x -> b))
-> (Coyoneda p a b -> p (x -> a) (x -> b))
-> Coyoneda p a b
-> Coyoneda p (x -> a) (x -> b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (x -> a) (x -> b)
forall (p :: * -> * -> *) a b x.
Closed p =>
p a b -> p (x -> a) (x -> b)
closed (p a b -> p (x -> a) (x -> b))
-> (Coyoneda p a b -> p a b)
-> Coyoneda p a b
-> p (x -> a) (x -> b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p a b -> p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE closed #-}
instance Mapping p => Mapping (Coyoneda p) where
map' :: Coyoneda p a b -> Coyoneda p (f a) (f b)
map' = p (f a) (f b) -> Coyoneda p (f a) (f b)
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p (f a) (f b) -> Coyoneda p (f a) (f b))
-> (Coyoneda p a b -> p (f a) (f b))
-> Coyoneda p a b
-> Coyoneda p (f a) (f b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (f a) (f b)
forall (p :: * -> * -> *) (f :: * -> *) a b.
(Mapping p, Functor f) =>
p a b -> p (f a) (f b)
map' (p a b -> p (f a) (f b))
-> (Coyoneda p a b -> p a b) -> Coyoneda p a b -> p (f a) (f b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p a b -> p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE map' #-}
instance Traversing p => Traversing (Coyoneda p) where
traverse' :: Coyoneda p a b -> Coyoneda p (f a) (f b)
traverse' = p (f a) (f b) -> Coyoneda p (f a) (f b)
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p (f a) (f b) -> Coyoneda p (f a) (f b))
-> (Coyoneda p a b -> p (f a) (f b))
-> Coyoneda p a b
-> Coyoneda p (f a) (f b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. p a b -> p (f a) (f b)
forall (p :: * -> * -> *) (f :: * -> *) a b.
(Traversing p, Traversable f) =>
p a b -> p (f a) (f b)
traverse' (p a b -> p (f a) (f b))
-> (Coyoneda p a b -> p a b) -> Coyoneda p a b -> p (f a) (f b)
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p a b -> p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE traverse' #-}
wander :: (forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> Coyoneda p a b -> Coyoneda p s t
wander forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t
f = p s t -> Coyoneda p s t
forall (p :: * -> * -> *) a b. p a b -> Coyoneda p a b
returnCoyoneda (p s t -> Coyoneda p s t)
-> (Coyoneda p a b -> p s t) -> Coyoneda p a b -> Coyoneda p s t
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. (forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p a b -> p s t
forall (p :: * -> * -> *) a b s t.
Traversing p =>
(forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t)
-> p a b -> p s t
wander forall (f :: * -> *). Applicative f => (a -> f b) -> s -> f t
f (p a b -> p s t)
-> (Coyoneda p a b -> p a b) -> Coyoneda p a b -> p s t
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Coyoneda p a b -> p a b
forall (t :: (* -> * -> *) -> * -> * -> *) (p :: * -> * -> *).
(ProfunctorComonad t, Profunctor p) =>
t p :-> p
proextract
{-# INLINE wander #-}