{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE Safe #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Data.OrdPSQ.Internal
(
OrdPSQ (..)
, LTree (..)
, Elem (..)
, null
, size
, member
, lookup
, findMin
, empty
, singleton
, insert
, delete
, deleteMin
, alter
, alterMin
, fromList
, toList
, toAscList
, keys
, insertView
, deleteView
, minView
, atMostView
, map
, unsafeMapMonotonic
, fold'
, TourView (..)
, tourView
, play
, left
, right
, maxKey
, lsingleLeft
, rsingleLeft
, lsingleRight
, rsingleRight
, ldoubleLeft
, rdoubleLeft
, ldoubleRight
, rdoubleRight
, valid
) where
import Control.DeepSeq (NFData (rnf))
import Data.Foldable (Foldable (foldr))
import qualified Data.List as List
import Data.Maybe (isJust)
import Data.Traversable
#if MIN_VERSION_base(4,11,0)
import Prelude hiding (foldr, lookup, map, null, (<>))
#else
import Prelude hiding (foldr, lookup, map, null)
#endif
data Elem k p v = E !k !p !v
deriving (Foldable, Functor, Show, Traversable)
instance (NFData k, NFData p, NFData v) => NFData (Elem k p v) where
rnf (E k p v) = rnf k `seq` rnf p `seq` rnf v
data OrdPSQ k p v
= Void
| Winner !(Elem k p v)
!(LTree k p v)
!k
deriving (Foldable, Functor, Show, Traversable)
instance (NFData k, NFData p, NFData v) => NFData (OrdPSQ k p v) where
rnf Void = ()
rnf (Winner e t m) = rnf e `seq` rnf m `seq` rnf t
instance (Ord k, Ord p, Eq v) => Eq (OrdPSQ k p v) where
x == y = case (minView x, minView y) of
(Nothing , Nothing ) -> True
(Just (xk, xp, xv, x'), (Just (yk, yp, yv, y'))) ->
xk == yk && xp == yp && xv == yv && x' == y'
(Just _ , Nothing ) -> False
(Nothing , Just _ ) -> False
type Size = Int
data LTree k p v
= Start
| LLoser {-# UNPACK #-} !Size
{-# UNPACK #-} !(Elem k p v)
!(LTree k p v)
!k
!(LTree k p v)
| RLoser {-# UNPACK #-} !Size
{-# UNPACK #-} !(Elem k p v)
!(LTree k p v)
!k
!(LTree k p v)
deriving (Foldable, Functor, Show, Traversable)
instance (NFData k, NFData p, NFData v) => NFData (LTree k p v) where
rnf Start = ()
rnf (LLoser _ e l k r) = rnf e `seq` rnf l `seq` rnf k `seq` rnf r
rnf (RLoser _ e l k r) = rnf e `seq` rnf l `seq` rnf k `seq` rnf r
null :: OrdPSQ k p v -> Bool
null Void = True
null (Winner _ _ _) = False
size :: OrdPSQ k p v -> Int
size Void = 0
size (Winner _ lt _) = 1 + size' lt
member :: Ord k => k -> OrdPSQ k p v -> Bool
member k = isJust . lookup k
lookup :: (Ord k) => k -> OrdPSQ k p v -> Maybe (p, v)
lookup k = go
where
go t = case tourView t of
Null -> Nothing
Single (E k' p v)
| k == k' -> Just (p, v)
| otherwise -> Nothing
Play tl tr
| k <= maxKey tl -> go tl
| otherwise -> go tr
findMin :: OrdPSQ k p v -> Maybe (k, p, v)
findMin Void = Nothing
findMin (Winner (E k p v) _ _) = Just (k, p, v)
empty :: OrdPSQ k p v
empty = Void
singleton :: k -> p -> v -> OrdPSQ k p v
singleton k p v = Winner (E k p v) Start k
{-# INLINABLE insert #-}
insert :: (Ord k, Ord p) => k -> p -> v -> OrdPSQ k p v -> OrdPSQ k p v
insert k p v = go
where
go t = case t of
Void -> singleton k p v
Winner (E k' p' v') Start _ -> case compare k k' of
LT -> singleton k p v `play` singleton k' p' v'
EQ -> singleton k p v
GT -> singleton k' p' v' `play` singleton k p v
Winner e (RLoser _ e' tl m tr) m'
| k <= m -> go (Winner e tl m) `play` (Winner e' tr m')
| otherwise -> (Winner e tl m) `play` go (Winner e' tr m')
Winner e (LLoser _ e' tl m tr) m'
| k <= m -> go (Winner e' tl m) `play` (Winner e tr m')
| otherwise -> (Winner e' tl m) `play` go (Winner e tr m')
{-# INLINABLE delete #-}
delete :: (Ord k, Ord p) => k -> OrdPSQ k p v -> OrdPSQ k p v
delete k = go
where
go t = case t of
Void -> empty
Winner (E k' p v) Start _
| k == k' -> empty
| otherwise -> singleton k' p v
Winner e (RLoser _ e' tl m tr) m'
| k <= m -> go (Winner e tl m) `play` (Winner e' tr m')
| otherwise -> (Winner e tl m) `play` go (Winner e' tr m')
Winner e (LLoser _ e' tl m tr) m'
| k <= m -> go (Winner e' tl m) `play` (Winner e tr m')
| otherwise -> (Winner e' tl m) `play` go (Winner e tr m')
{-# INLINE deleteMin #-}
deleteMin
:: (Ord k, Ord p) => OrdPSQ k p v -> OrdPSQ k p v
deleteMin t = case minView t of
Nothing -> t
Just (_, _, _, t') -> t'
{-# INLINE alter #-}
alter
:: (Ord k, Ord p)
=> (Maybe (p, v) -> (b, Maybe (p, v)))
-> k
-> OrdPSQ k p v
-> (b, OrdPSQ k p v)
alter f k psq0 =
let (psq1, mbPV) = case deleteView k psq0 of
Nothing -> (psq0, Nothing)
Just (p, v, psq) -> (psq, Just (p, v))
(!b, mbPV') = f mbPV
in case mbPV' of
Nothing -> (b, psq1)
Just (p, v) -> (b, insert k p v psq1)
{-# INLINE alterMin #-}
alterMin :: (Ord k, Ord p)
=> (Maybe (k, p, v) -> (b, Maybe (k, p, v)))
-> OrdPSQ k p v
-> (b, OrdPSQ k p v)
alterMin f psq0 =
case minView psq0 of
Nothing -> let (!b, mbKPV) = f Nothing
in (b, insertMay mbKPV psq0)
Just (k,p,v, psq1) -> let (!b, mbKPV) = f $ Just (k, p, v)
in (b, insertMay mbKPV psq1)
where
insertMay Nothing psq = psq
insertMay (Just (k, p, v)) psq = insert k p v psq
{-# INLINABLE fromList #-}
fromList :: (Ord k, Ord p) => [(k, p, v)] -> OrdPSQ k p v
fromList = foldr (\(k, p, v) q -> insert k p v q) empty
toList :: OrdPSQ k p v -> [(k, p, v)]
toList = toAscList
keys :: OrdPSQ k p v -> [k]
keys t = [k | (k, _, _) <- toList t]
toAscList :: OrdPSQ k p v -> [(k, p, v)]
toAscList q = seqToList (toAscLists q)
where
toAscLists :: OrdPSQ k p v -> Sequ (k, p, v)
toAscLists t = case tourView t of
Null -> emptySequ
Single (E k p v) -> singleSequ (k, p, v)
Play tl tr -> toAscLists tl `appendSequ` toAscLists tr
{-# INLINABLE insertView #-}
insertView
:: (Ord k, Ord p)
=> k -> p -> v -> OrdPSQ k p v -> (Maybe (p, v), OrdPSQ k p v)
insertView k p x t = case deleteView k t of
Nothing -> (Nothing, insert k p x t)
Just (p', x', _) -> (Just (p', x'), insert k p x t)
{-# INLINABLE deleteView #-}
deleteView :: (Ord k, Ord p) => k -> OrdPSQ k p v -> Maybe (p, v, OrdPSQ k p v)
deleteView k psq = case psq of
Void -> Nothing
Winner (E k' p v) Start _
| k == k' -> Just (p, v, empty)
| otherwise -> Nothing
Winner e (RLoser _ e' tl m tr) m'
| k <= m -> fmap (\(p,v,q) -> (p, v, q `play` (Winner e' tr m'))) (deleteView k (Winner e tl m))
| otherwise -> fmap (\(p,v,q) -> (p, v, (Winner e tl m) `play` q )) (deleteView k (Winner e' tr m'))
Winner e (LLoser _ e' tl m tr) m'
| k <= m -> fmap (\(p,v,q) -> (p, v, q `play` (Winner e tr m'))) (deleteView k (Winner e' tl m))
| otherwise -> fmap (\(p,v,q) -> (p, v, (Winner e' tl m) `play` q )) (deleteView k (Winner e tr m'))
{-# INLINABLE minView #-}
minView :: (Ord k, Ord p) => OrdPSQ k p v -> Maybe (k, p, v, OrdPSQ k p v)
minView Void = Nothing
minView (Winner (E k p v) t m) = Just (k, p, v, secondBest t m)
secondBest :: (Ord k, Ord p) => LTree k p v -> k -> OrdPSQ k p v
secondBest Start _ = Void
secondBest (LLoser _ e tl m tr) m' = Winner e tl m `play` secondBest tr m'
secondBest (RLoser _ e tl m tr) m' = secondBest tl m `play` Winner e tr m'
atMostView :: (Ord k, Ord p) => p -> OrdPSQ k p v -> ([(k, p, v)], OrdPSQ k p v)
atMostView pt = go []
where
go acc t@(Winner (E _ p _) _ _)
| p > pt = (acc, t)
go acc Void = (acc, Void)
go acc (Winner (E k p v) Start _) = ((k, p, v) : acc, Void)
go acc (Winner e (RLoser _ e' tl m tr) m') =
let (acc', t') = go acc (Winner e tl m)
(acc'', t'') = go acc' (Winner e' tr m') in
(acc'', t' `play` t'')
go acc (Winner e (LLoser _ e' tl m tr) m') =
let (acc', t') = go acc (Winner e' tl m)
(acc'', t'') = go acc' (Winner e tr m') in
(acc'', t' `play` t'')
{-# INLINABLE map #-}
map :: forall k p v w. (k -> p -> v -> w) -> OrdPSQ k p v -> OrdPSQ k p w
map f =
goPSQ
where
goPSQ :: OrdPSQ k p v -> OrdPSQ k p w
goPSQ Void = Void
goPSQ (Winner e l k) = Winner (goElem e) (goLTree l) k
goElem :: Elem k p v -> Elem k p w
goElem (E k p x) = E k p (f k p x)
goLTree :: LTree k p v -> LTree k p w
goLTree Start = Start
goLTree (LLoser s e l k r) = LLoser s (goElem e) (goLTree l) k (goLTree r)
goLTree (RLoser s e l k r) = RLoser s (goElem e) (goLTree l) k (goLTree r)
{-# INLINABLE unsafeMapMonotonic #-}
unsafeMapMonotonic
:: forall k p q v w.
(k -> p -> v -> (q, w))
-> OrdPSQ k p v
-> OrdPSQ k q w
unsafeMapMonotonic f = goPSQ
where
goPSQ :: OrdPSQ k p v -> OrdPSQ k q w
goPSQ Void = Void
goPSQ (Winner e l k) = Winner (goElem e) (goLTree l) k
goElem :: Elem k p v -> Elem k q w
goElem (E k p x) = let (p', x') = f k p x
in E k p' x'
goLTree :: LTree k p v -> LTree k q w
goLTree Start = Start
goLTree (LLoser s e l k r) = LLoser s (goElem e) (goLTree l) k (goLTree r)
goLTree (RLoser s e l k r) = RLoser s (goElem e) (goLTree l) k (goLTree r)
{-# INLINE fold' #-}
fold' :: (k -> p -> v -> a -> a) -> a -> OrdPSQ k p v -> a
fold' f =
\acc0 psq -> case psq of
Void -> acc0
(Winner (E k p v) t _) ->
let !acc1 = f k p v acc0
in go acc1 t
where
go !acc Start = acc
go !acc (LLoser _ (E k p v) lt _ rt) = go (f k p v (go acc lt)) rt
go !acc (RLoser _ (E k p v) lt _ rt) = go (f k p v (go acc lt)) rt
data TourView k p v
= Null
| Single {-# UNPACK #-} !(Elem k p v)
| Play (OrdPSQ k p v) (OrdPSQ k p v)
tourView :: OrdPSQ k p v -> TourView k p v
tourView Void = Null
tourView (Winner e Start _) = Single e
tourView (Winner e (RLoser _ e' tl m tr) m') =
Winner e tl m `Play` Winner e' tr m'
tourView (Winner e (LLoser _ e' tl m tr) m') =
Winner e' tl m `Play` Winner e tr m'
{-# INLINABLE play #-}
play :: (Ord p, Ord k) => OrdPSQ k p v -> OrdPSQ k p v -> OrdPSQ k p v
Void `play` t' = t'
t `play` Void = t
Winner e@(E k p v) t m `play` Winner e'@(E k' p' v') t' m'
| (p, k) `beats` (p', k') = Winner e (rbalance k' p' v' t m t') m'
| otherwise = Winner e' (lbalance k p v t m t') m'
beats :: (Ord p, Ord k) => (p, k) -> (p, k) -> Bool
beats (p, !k) (p', !k') = p < p' || (p == p' && k < k')
{-# INLINE beats #-}
omega :: Int
omega = 4
size' :: LTree k p v -> Size
size' Start = 0
size' (LLoser s _ _ _ _) = s
size' (RLoser s _ _ _ _) = s
left, right :: LTree k p v -> LTree k p v
left Start = moduleError "left" "empty loser tree"
left (LLoser _ _ tl _ _ ) = tl
left (RLoser _ _ tl _ _ ) = tl
right Start = moduleError "right" "empty loser tree"
right (LLoser _ _ _ _ tr) = tr
right (RLoser _ _ _ _ tr) = tr
maxKey :: OrdPSQ k p v -> k
maxKey Void = moduleError "maxKey" "empty queue"
maxKey (Winner _ _ m) = m
lloser, rloser :: k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
lloser k p v tl m tr = LLoser (1 + size' tl + size' tr) (E k p v) tl m tr
rloser k p v tl m tr = RLoser (1 + size' tl + size' tr) (E k p v) tl m tr
lbalance, rbalance
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
lbalance k p v l m r
| size' l + size' r < 2 = lloser k p v l m r
| size' r > omega * size' l = lbalanceLeft k p v l m r
| size' l > omega * size' r = lbalanceRight k p v l m r
| otherwise = lloser k p v l m r
rbalance k p v l m r
| size' l + size' r < 2 = rloser k p v l m r
| size' r > omega * size' l = rbalanceLeft k p v l m r
| size' l > omega * size' r = rbalanceRight k p v l m r
| otherwise = rloser k p v l m r
lbalanceLeft
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
lbalanceLeft k p v l m r
| size' (left r) < size' (right r) = lsingleLeft k p v l m r
| otherwise = ldoubleLeft k p v l m r
lbalanceRight
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
lbalanceRight k p v l m r
| size' (left l) > size' (right l) = lsingleRight k p v l m r
| otherwise = ldoubleRight k p v l m r
rbalanceLeft
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
rbalanceLeft k p v l m r
| size' (left r) < size' (right r) = rsingleLeft k p v l m r
| otherwise = rdoubleLeft k p v l m r
rbalanceRight
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
rbalanceRight k p v l m r
| size' (left l) > size' (right l) = rsingleRight k p v l m r
| otherwise = rdoubleRight k p v l m r
lsingleLeft
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
lsingleLeft k1 p1 v1 t1 m1 (LLoser _ (E k2 p2 v2) t2 m2 t3)
| (p1, k1) `beats` (p2, k2) =
lloser k1 p1 v1 (rloser k2 p2 v2 t1 m1 t2) m2 t3
| otherwise =
lloser k2 p2 v2 (lloser k1 p1 v1 t1 m1 t2) m2 t3
lsingleLeft k1 p1 v1 t1 m1 (RLoser _ (E k2 p2 v2) t2 m2 t3) =
rloser k2 p2 v2 (lloser k1 p1 v1 t1 m1 t2) m2 t3
lsingleLeft _ _ _ _ _ _ = moduleError "lsingleLeft" "malformed tree"
rsingleLeft :: k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
rsingleLeft k1 p1 v1 t1 m1 (LLoser _ (E k2 p2 v2) t2 m2 t3) =
rloser k1 p1 v1 (rloser k2 p2 v2 t1 m1 t2) m2 t3
rsingleLeft k1 p1 v1 t1 m1 (RLoser _ (E k2 p2 v2) t2 m2 t3) =
rloser k2 p2 v2 (rloser k1 p1 v1 t1 m1 t2) m2 t3
rsingleLeft _ _ _ _ _ _ = moduleError "rsingleLeft" "malformed tree"
lsingleRight :: k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
lsingleRight k1 p1 v1 (LLoser _ (E k2 p2 v2) t1 m1 t2) m2 t3 =
lloser k2 p2 v2 t1 m1 (lloser k1 p1 v1 t2 m2 t3)
lsingleRight k1 p1 v1 (RLoser _ (E k2 p2 v2) t1 m1 t2) m2 t3 =
lloser k1 p1 v1 t1 m1 (lloser k2 p2 v2 t2 m2 t3)
lsingleRight _ _ _ _ _ _ = moduleError "lsingleRight" "malformed tree"
rsingleRight
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
rsingleRight k1 p1 v1 (LLoser _ (E k2 p2 v2) t1 m1 t2) m2 t3 =
lloser k2 p2 v2 t1 m1 (rloser k1 p1 v1 t2 m2 t3)
rsingleRight k1 p1 v1 (RLoser _ (E k2 p2 v2) t1 m1 t2) m2 t3
| (p1, k1) `beats` (p2, k2) =
rloser k1 p1 v1 t1 m1 (lloser k2 p2 v2 t2 m2 t3)
| otherwise =
rloser k2 p2 v2 t1 m1 (rloser k1 p1 v1 t2 m2 t3)
rsingleRight _ _ _ _ _ _ = moduleError "rsingleRight" "malformed tree"
ldoubleLeft
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
ldoubleLeft k1 p1 v1 t1 m1 (LLoser _ (E k2 p2 v2) t2 m2 t3) =
lsingleLeft k1 p1 v1 t1 m1 (lsingleRight k2 p2 v2 t2 m2 t3)
ldoubleLeft k1 p1 v1 t1 m1 (RLoser _ (E k2 p2 v2) t2 m2 t3) =
lsingleLeft k1 p1 v1 t1 m1 (rsingleRight k2 p2 v2 t2 m2 t3)
ldoubleLeft _ _ _ _ _ _ = moduleError "ldoubleLeft" "malformed tree"
ldoubleRight
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
ldoubleRight k1 p1 v1 (LLoser _ (E k2 p2 v2) t1 m1 t2) m2 t3 =
lsingleRight k1 p1 v1 (lsingleLeft k2 p2 v2 t1 m1 t2) m2 t3
ldoubleRight k1 p1 v1 (RLoser _ (E k2 p2 v2) t1 m1 t2) m2 t3 =
lsingleRight k1 p1 v1 (rsingleLeft k2 p2 v2 t1 m1 t2) m2 t3
ldoubleRight _ _ _ _ _ _ = moduleError "ldoubleRight" "malformed tree"
rdoubleLeft
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
rdoubleLeft k1 p1 v1 t1 m1 (LLoser _ (E k2 p2 v2) t2 m2 t3) =
rsingleLeft k1 p1 v1 t1 m1 (lsingleRight k2 p2 v2 t2 m2 t3)
rdoubleLeft k1 p1 v1 t1 m1 (RLoser _ (E k2 p2 v2) t2 m2 t3) =
rsingleLeft k1 p1 v1 t1 m1 (rsingleRight k2 p2 v2 t2 m2 t3)
rdoubleLeft _ _ _ _ _ _ = moduleError "rdoubleLeft" "malformed tree"
rdoubleRight
:: (Ord k, Ord p)
=> k -> p -> v -> LTree k p v -> k -> LTree k p v -> LTree k p v
rdoubleRight k1 p1 v1 (LLoser _ (E k2 p2 v2) t1 m1 t2) m2 t3 =
rsingleRight k1 p1 v1 (lsingleLeft k2 p2 v2 t1 m1 t2) m2 t3
rdoubleRight k1 p1 v1 (RLoser _ (E k2 p2 v2) t1 m1 t2) m2 t3 =
rsingleRight k1 p1 v1 (rsingleLeft k2 p2 v2 t1 m1 t2) m2 t3
rdoubleRight _ _ _ _ _ _ = moduleError "rdoubleRight" "malformed tree"
valid :: (Ord k, Ord p) => OrdPSQ k p v -> Bool
valid t =
not (hasDuplicateKeys t) &&
hasMinHeapProperty t &&
hasBinarySearchTreeProperty t &&
hasCorrectSizeAnnotations t
hasDuplicateKeys :: Ord k => OrdPSQ k p v -> Bool
hasDuplicateKeys = any (> 1) . List.map length . List.group . List.sort . keys
hasMinHeapProperty :: forall k p v. (Ord k, Ord p) => OrdPSQ k p v -> Bool
hasMinHeapProperty Void = True
hasMinHeapProperty (Winner (E k0 p0 _) t0 _) = go k0 p0 t0
where
go :: k -> p -> LTree k p v -> Bool
go _ _ Start = True
go k p (LLoser _ (E k' p' _) l _ r) =
(p, k) < (p', k') && go k' p' l && go k p r
go k p (RLoser _ (E k' p' _) l _ r) =
(p, k) < (p', k') && go k p l && go k' p' r
hasBinarySearchTreeProperty
:: forall k p v. (Ord k, Ord p) => OrdPSQ k p v -> Bool
hasBinarySearchTreeProperty t = case tourView t of
Null -> True
Single _ -> True
Play l r ->
all (<= k) (keys l) &&
all (>= k) (keys r) &&
hasBinarySearchTreeProperty l &&
hasBinarySearchTreeProperty r
where
k = maxKey l
hasCorrectSizeAnnotations :: OrdPSQ k p v -> Bool
hasCorrectSizeAnnotations Void = True
hasCorrectSizeAnnotations (Winner _ t0 _) = go t0
where
go :: LTree k p v -> Bool
go t@Start = calculateSize t == 0
go t@(LLoser s _ l _ r) = calculateSize t == s && go l && go r
go t@(RLoser s _ l _ r) = calculateSize t == s && go l && go r
calculateSize :: LTree k p v -> Int
calculateSize Start = 0
calculateSize (LLoser _ _ l _ r) = 1 + calculateSize l + calculateSize r
calculateSize (RLoser _ _ l _ r) = 1 + calculateSize l + calculateSize r
moduleError :: String -> String -> a
moduleError fun msg = error ("Data.OrdPSQ.Internal." ++ fun ++ ':' : ' ' : msg)
{-# NOINLINE moduleError #-}
newtype Sequ a = Sequ ([a] -> [a])
emptySequ :: Sequ a
emptySequ = Sequ (\as -> as)
singleSequ :: a -> Sequ a
singleSequ a = Sequ (\as -> a : as)
appendSequ :: Sequ a -> Sequ a -> Sequ a
appendSequ (Sequ x1) (Sequ x2) = Sequ (\as -> x1 (x2 as))
seqToList :: Sequ a -> [a]
seqToList (Sequ x) = x []