{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
#if HAVE_QUANTIFIED_CONSTRAINTS
{-# LANGUAGE QuantifiedConstraints #-}
#endif
{-# OPTIONS_GHC -Wall #-}
module Test.QuickCheck.Classes.Alternative
(
#if HAVE_UNARY_LAWS
alternativeLaws
#endif
) where
import Control.Applicative (Alternative(..))
import Test.QuickCheck hiding ((.&.))
#if HAVE_UNARY_LAWS
import Test.QuickCheck.Arbitrary (Arbitrary1(..))
import Data.Functor.Classes (Eq1,Show1)
#endif
import Test.QuickCheck.Property (Property)
import Test.QuickCheck.Classes.Common
#if HAVE_UNARY_LAWS
import Test.QuickCheck.Classes.Compat (eq1)
#endif
#if HAVE_UNARY_LAWS
alternativeLaws ::
#if HAVE_QUANTIFIED_CONSTRAINTS
(Alternative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Alternative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Laws
alternativeLaws p = Laws "Alternative"
[ ("Left Identity", alternativeLeftIdentity p)
, ("Right Identity", alternativeRightIdentity p)
, ("Associativity", alternativeAssociativity p)
]
alternativeLeftIdentity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Alternative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Alternative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
alternativeLeftIdentity _ = property $ \(Apply (a :: f Integer)) -> (eq1 (empty <|> a) a)
alternativeRightIdentity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Alternative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Alternative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
alternativeRightIdentity _ = property $ \(Apply (a :: f Integer)) -> (eq1 a (empty <|> a))
alternativeAssociativity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Alternative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Alternative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
alternativeAssociativity _ = property $ \(Apply (a :: f Integer)) (Apply (b :: f Integer)) (Apply (c :: f Integer)) -> eq1 (a <|> (b <|> c)) ((a <|> b) <|> c)
#endif