{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
#if HAVE_QUANTIFIED_CONSTRAINTS
{-# LANGUAGE QuantifiedConstraints #-}
#endif
{-# OPTIONS_GHC -Wall #-}
module Test.QuickCheck.Classes.Monad
(
#if HAVE_UNARY_LAWS
monadLaws
#endif
) where
import Control.Applicative
import Test.QuickCheck hiding ((.&.))
import Control.Monad (ap)
#if HAVE_UNARY_LAWS
import Test.QuickCheck.Arbitrary (Arbitrary1(..))
import Data.Functor.Classes (Eq1,Show1)
#endif
import Test.QuickCheck.Property (Property)
import Test.QuickCheck.Classes.Common
#if HAVE_UNARY_LAWS
import Test.QuickCheck.Classes.Compat (eq1)
#endif
#if HAVE_UNARY_LAWS
monadLaws ::
#if HAVE_QUANTIFIED_CONSTRAINTS
(Monad f, Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Monad f, Applicative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Laws
monadLaws p = Laws "Monad"
[ ("Left Identity", monadLeftIdentity p)
, ("Right Identity", monadRightIdentity p)
, ("Associativity", monadAssociativity p)
, ("Return", monadReturn p)
, ("Ap", monadAp p)
]
monadLeftIdentity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Monad f, Functor f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Monad f, Functor f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadLeftIdentity _ = property $ \(k' :: LinearEquationM f) (a :: Integer) ->
let k = runLinearEquationM k'
in eq1 (return a >>= k) (k a)
monadRightIdentity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Monad f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Monad f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadRightIdentity _ = property $ \(Apply (m :: f Integer)) ->
eq1 (m >>= return) m
monadAssociativity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Monad f, Functor f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Monad f, Functor f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadAssociativity _ = property $ \(Apply (m :: f Integer)) (k' :: LinearEquationM f) (h' :: LinearEquationM f) ->
let k = runLinearEquationM k'
h = runLinearEquationM h'
in eq1 (m >>= (\x -> k x >>= h)) ((m >>= k) >>= h)
monadReturn :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Monad f, Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Monad f, Applicative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadReturn _ = property $ \(x :: Integer) ->
eq1 (return x) (pure x :: f Integer)
monadAp :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(Monad f, Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(Monad f, Applicative f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadAp _ = property $ \(Apply (f' :: f QuadraticEquation)) (Apply (x :: f Integer)) ->
let f = fmap runQuadraticEquation f'
in eq1 (ap f x) (f <*> x)
#endif