{-# LANGUAGE CPP #-}
{-# LANGUAGE ScopedTypeVariables #-}
#if HAVE_QUANTIFIED_CONSTRAINTS
{-# LANGUAGE QuantifiedConstraints #-}
#endif
{-# OPTIONS_GHC -Wall #-}
module Test.QuickCheck.Classes.MonadPlus
(
#if HAVE_UNARY_LAWS
monadPlusLaws
#endif
) where
import Test.QuickCheck hiding ((.&.))
import Test.QuickCheck.Property (Property)
import Test.QuickCheck.Classes.Common
#if HAVE_UNARY_LAWS
import Test.QuickCheck.Classes.Compat (eq1)
#endif
import Control.Monad (MonadPlus(mzero,mplus))
#if HAVE_UNARY_LAWS
import Test.QuickCheck.Arbitrary (Arbitrary1(..))
import Data.Functor.Classes (Eq1,Show1)
#endif
#if HAVE_UNARY_LAWS
monadPlusLaws ::
#if HAVE_QUANTIFIED_CONSTRAINTS
(MonadPlus f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(MonadPlus f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Laws
monadPlusLaws p = Laws "MonadPlus"
[ ("Left Identity", monadPlusLeftIdentity p)
, ("Right Identity", monadPlusRightIdentity p)
, ("Associativity", monadPlusAssociativity p)
, ("Left Zero", monadPlusLeftZero p)
, ("Right Zero", monadPlusRightZero p)
]
monadPlusLeftIdentity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(MonadPlus f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(MonadPlus f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadPlusLeftIdentity _ = property $ \(Apply (a :: f Integer)) -> eq1 (mplus mzero a) a
monadPlusRightIdentity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(MonadPlus f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(MonadPlus f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadPlusRightIdentity _ = property $ \(Apply (a :: f Integer)) -> eq1 (mplus a mzero) a
monadPlusAssociativity :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(MonadPlus f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(MonadPlus f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadPlusAssociativity _ = property $ \(Apply (a :: f Integer)) (Apply (b :: f Integer)) (Apply (c :: f Integer)) -> eq1 (mplus a (mplus b c)) (mplus (mplus a b) c)
monadPlusLeftZero :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(MonadPlus f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(MonadPlus f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadPlusLeftZero _ = property $ \(k' :: LinearEquationM f) -> eq1 (mzero >>= runLinearEquationM k') mzero
monadPlusRightZero :: forall proxy f.
#if HAVE_QUANTIFIED_CONSTRAINTS
(MonadPlus f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a))
#else
(MonadPlus f, Eq1 f, Show1 f, Arbitrary1 f)
#endif
=> proxy f -> Property
monadPlusRightZero _ = property $ \(Apply (a :: f Integer)) -> eq1 (a >> (mzero :: f Integer)) mzero
#endif