{-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} module Data.RAList.NonEmpty.Optics.Internal where import Control.Applicative ((<$>)) import Prelude (Functor (..), Int, Num (..), Ord (..), div, otherwise) import qualified Data.RAList.Tree as Tr import Data.RAList.NonEmpty type LensLikeVL f s t a b = (a -> f b) -> s -> f t type LensLikeVL' f s a = LensLikeVL f s s a a ixVL :: forall f a. Functor f => Int -> (forall x. x -> f x) -> LensLikeVL' f (NERAList a) a ixVL :: Int -> (forall x. x -> f x) -> LensLikeVL' f (NERAList a) a ixVL Int i0 forall x. x -> f x point a -> f a f (NE NERAList' Leaf a xs) = NERAList' Leaf a -> NERAList a forall a. NERAList' Leaf a -> NERAList a NE (NERAList' Leaf a -> NERAList a) -> f (NERAList' Leaf a) -> f (NERAList a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Int -> Int -> NERAList' Leaf a -> f (NERAList' Leaf a) forall (t :: * -> *). TreeIx t => Int -> Int -> NERAList' t a -> f (NERAList' t a) go Int 1 Int i0 NERAList' Leaf a xs where go :: forall t. TreeIx t => Int -> Int -> NERAList' t a -> f (NERAList' t a) go :: Int -> Int -> NERAList' t a -> f (NERAList' t a) go Int s Int i (Last t a t) = t a -> NERAList' t a forall (f :: * -> *) a. f a -> NERAList' f a Last (t a -> NERAList' t a) -> f (t a) -> f (NERAList' t a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) forall (t :: * -> *) (f :: * -> *) a. (TreeIx t, Functor f) => Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) treeIx Int s Int i forall x. x -> f x point a -> f a f t a t go Int s Int i (Cons0 NERAList' (Node t) a r) = NERAList' (Node t) a -> NERAList' t a forall (f :: * -> *) a. NERAList' (Node f) a -> NERAList' f a Cons0 (NERAList' (Node t) a -> NERAList' t a) -> f (NERAList' (Node t) a) -> f (NERAList' t a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Int -> Int -> NERAList' (Node t) a -> f (NERAList' (Node t) a) forall (t :: * -> *). TreeIx t => Int -> Int -> NERAList' t a -> f (NERAList' t a) go (Int s Int -> Int -> Int forall a. Num a => a -> a -> a + Int s) Int i NERAList' (Node t) a r go Int s Int i (Cons1 t a t NERAList' (Node t) a r) | Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool < Int s = (t a -> NERAList' (Node t) a -> NERAList' t a forall (f :: * -> *) a. f a -> NERAList' (Node f) a -> NERAList' f a `Cons1` NERAList' (Node t) a r) (t a -> NERAList' t a) -> f (t a) -> f (NERAList' t a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) forall (t :: * -> *) (f :: * -> *) a. (TreeIx t, Functor f) => Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) treeIx Int s Int i forall x. x -> f x point a -> f a f t a t | Bool otherwise = (t a t t a -> NERAList' (Node t) a -> NERAList' t a forall (f :: * -> *) a. f a -> NERAList' (Node f) a -> NERAList' f a `Cons1`) (NERAList' (Node t) a -> NERAList' t a) -> f (NERAList' (Node t) a) -> f (NERAList' t a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Int -> Int -> NERAList' (Node t) a -> f (NERAList' (Node t) a) forall (t :: * -> *). TreeIx t => Int -> Int -> NERAList' t a -> f (NERAList' t a) go (Int s Int -> Int -> Int forall a. Num a => a -> a -> a + Int s) (Int i Int -> Int -> Int forall a. Num a => a -> a -> a - Int s) NERAList' (Node t) a r class TreeIx t where treeIx :: Functor f => Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) instance TreeIx Tr.Leaf where treeIx :: Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> Leaf a -> f (Leaf a) treeIx Int _ Int 0 forall x. x -> f x _ a -> f a f (Tr.Lf a x) = a -> Leaf a forall a. a -> Leaf a Tr.Lf (a -> Leaf a) -> f a -> f (Leaf a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> a -> f a f a x treeIx Int _ Int _ forall x. x -> f x point a -> f a _ Leaf a leaf = Leaf a -> f (Leaf a) forall x. x -> f x point Leaf a leaf instance TreeIx t => TreeIx (Tr.Node t) where treeIx :: Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> Node t a -> f (Node t a) treeIx Int s Int i forall x. x -> f x point a -> f a f node :: Node t a node@(Tr.Nd t a x t a y) | Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool < Int s2 = (t a -> t a -> Node t a forall (f :: * -> *) a. f a -> f a -> Node f a `Tr.Nd` t a y) (t a -> Node t a) -> f (t a) -> f (Node t a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) forall (t :: * -> *) (f :: * -> *) a. (TreeIx t, Functor f) => Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) treeIx Int s2 Int i forall x. x -> f x point a -> f a f t a x | Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool < Int s = (t a x t a -> t a -> Node t a forall (f :: * -> *) a. f a -> f a -> Node f a `Tr.Nd`) (t a -> Node t a) -> f (t a) -> f (Node t a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) forall (t :: * -> *) (f :: * -> *) a. (TreeIx t, Functor f) => Int -> Int -> (forall x. x -> f x) -> (a -> f a) -> t a -> f (t a) treeIx Int s2 (Int i Int -> Int -> Int forall a. Num a => a -> a -> a - Int s2) forall x. x -> f x point a -> f a f t a x | Bool otherwise = Node t a -> f (Node t a) forall x. x -> f x point Node t a node where s2 :: Int s2 = Int s Int -> Int -> Int forall a. Integral a => a -> a -> a `div` Int 2