{-# LANGUAGE
MultiParamTypeClasses,
FlexibleInstances, FlexibleContexts,
UndecidableInstances, TemplateHaskell,
BangPatterns
#-}
{-# OPTIONS_GHC -fno-warn-simplifiable-class-constraints #-}
module Data.Random.Distribution.Binomial where
import Data.Random.Internal.TH
import Data.Random.RVar
import Data.Random.Distribution
import Data.Random.Distribution.Beta
import Data.Random.Distribution.Uniform
import Numeric.SpecFunctions ( stirlingError )
import Numeric.SpecFunctions.Extra ( bd0 )
import Numeric ( log1p )
integralBinomial :: (Integral a, Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => a -> b -> RVarT m a
integralBinomial = bin 0
where
bin :: (Integral a, Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => a -> a -> b -> RVarT m a
bin !k !t !p
| t > 10 = do
let a = 1 + t `div` 2
b = 1 + t - a
x <- betaT (fromIntegral a) (fromIntegral b)
if x >= p
then bin k (a - 1) (p / x)
else bin (k + a) (b - 1) ((p - x) / (1 - x))
| otherwise = count k t
where
count !k' 0 = return k'
count !k' n | n > 0 = do
x <- stdUniformT
count (if x < p then k' + 1 else k') (n-1)
count _ _ = error "integralBinomial: negative number of trials specified"
integralBinomialCDF :: (Integral a, Real b) => a -> b -> a -> Double
integralBinomialCDF t p x = sum $ map (integralBinomialPDF t p) $ [0 .. x]
integralBinomialPDF :: (Integral a, Real b) => a -> b -> a -> Double
integralBinomialPDF t p x =
exp $ integralBinomialLogPdf t p x
integralBinomialLogPdf :: (Integral a, Real b) => a -> b -> a -> Double
integralBinomialLogPdf nI pR xI
| p == 0.0 && xI == 0 = 1.0
| p == 0.0 = 0.0
| p == 1.0 && xI == nI = 1.0
| p == 1.0 = 0.0
| xI == 0 = n * log (1-p)
| xI == nI = n * log p
| otherwise = lc - 0.5 * lf
where
n = fromIntegral nI
x = fromIntegral xI
p = realToFrac pR
lc = stirlingError n -
stirlingError x -
stirlingError (n - x) -
bd0 x (n * p) -
bd0 (n - x) (n * (1 - p))
lf = log (2 * pi) + log x + log1p (- x / n)
{-# SPECIALIZE floatingBinomial :: Float -> Float -> RVar Float #-}
{-# SPECIALIZE floatingBinomial :: Float -> Double -> RVar Float #-}
{-# SPECIALIZE floatingBinomial :: Double -> Float -> RVar Double #-}
{-# SPECIALIZE floatingBinomial :: Double -> Double -> RVar Double #-}
floatingBinomial :: (RealFrac a, Distribution (Binomial b) Integer) => a -> b -> RVar a
floatingBinomial t p = fmap fromInteger (rvar (Binomial (truncate t) p))
floatingBinomialCDF :: (CDF (Binomial b) Integer, RealFrac a) => a -> b -> a -> Double
floatingBinomialCDF t p x = cdf (Binomial (truncate t :: Integer) p) (floor x)
floatingBinomialPDF :: (PDF (Binomial b) Integer, RealFrac a) => a -> b -> a -> Double
floatingBinomialPDF t p x = pdf (Binomial (truncate t :: Integer) p) (floor x)
floatingBinomialLogPDF :: (PDF (Binomial b) Integer, RealFrac a) => a -> b -> a -> Double
floatingBinomialLogPDF t p x = logPdf (Binomial (truncate t :: Integer) p) (floor x)
{-# SPECIALIZE binomial :: Int -> Float -> RVar Int #-}
{-# SPECIALIZE binomial :: Int -> Double -> RVar Int #-}
{-# SPECIALIZE binomial :: Integer -> Float -> RVar Integer #-}
{-# SPECIALIZE binomial :: Integer -> Double -> RVar Integer #-}
{-# SPECIALIZE binomial :: Float -> Float -> RVar Float #-}
{-# SPECIALIZE binomial :: Float -> Double -> RVar Float #-}
{-# SPECIALIZE binomial :: Double -> Float -> RVar Double #-}
{-# SPECIALIZE binomial :: Double -> Double -> RVar Double #-}
binomial :: Distribution (Binomial b) a => a -> b -> RVar a
binomial t p = rvar (Binomial t p)
{-# SPECIALIZE binomialT :: Int -> Float -> RVarT m Int #-}
{-# SPECIALIZE binomialT :: Int -> Double -> RVarT m Int #-}
{-# SPECIALIZE binomialT :: Integer -> Float -> RVarT m Integer #-}
{-# SPECIALIZE binomialT :: Integer -> Double -> RVarT m Integer #-}
{-# SPECIALIZE binomialT :: Float -> Float -> RVarT m Float #-}
{-# SPECIALIZE binomialT :: Float -> Double -> RVarT m Float #-}
{-# SPECIALIZE binomialT :: Double -> Float -> RVarT m Double #-}
{-# SPECIALIZE binomialT :: Double -> Double -> RVarT m Double #-}
binomialT :: Distribution (Binomial b) a => a -> b -> RVarT m a
binomialT t p = rvarT (Binomial t p)
data Binomial b a = Binomial a b
$( replicateInstances ''Int integralTypes [d|
instance ( Floating b, Ord b
, Distribution Beta b
, Distribution StdUniform b
) => Distribution (Binomial b) Int
where
rvarT (Binomial t p) = integralBinomial t p
instance ( Real b , Distribution (Binomial b) Int
) => CDF (Binomial b) Int
where cdf (Binomial t p) = integralBinomialCDF t p
instance ( Real b , Distribution (Binomial b) Int
) => PDF (Binomial b) Int
where pdf (Binomial t p) = integralBinomialPDF t p
logPdf (Binomial t p) = integralBinomialLogPdf t p
|])
$( replicateInstances ''Float realFloatTypes [d|
instance Distribution (Binomial b) Integer
=> Distribution (Binomial b) Float
where rvar (Binomial t p) = floatingBinomial t p
instance CDF (Binomial b) Integer
=> CDF (Binomial b) Float
where cdf (Binomial t p) = floatingBinomialCDF t p
instance PDF (Binomial b) Integer
=> PDF (Binomial b) Float
where pdf (Binomial t p) = floatingBinomialPDF t p
logPdf (Binomial t p) = floatingBinomialLogPDF t p
|])