reduce-equations-0.1.1.0: Simplify a set of equations by removing redundancies

Safe HaskellNone
LanguageHaskell2010

Algebra.Equation.Internal.Eval

Contents

Documentation

extendSig :: (Show a, Num a, Eq a) => Type -> a -> Sig -> Sig Source #

extendOrd :: (Show a, Num a, Eq a) => Type -> a -> Sig -> Sig Source #

addArrowTypes :: (Num a, Eq a) => Sig -> Type -> a -> Sig Source #

data HasType Source #

Constructors

(Ord a, Typeable a) => MkHT a 

Instances

type QSSig = Sig Source #

type Eqs = [Equation] Source #

combine :: Eq a => [[a]] -> [[a]] -> [[a]] Source #

mkCxt :: Typeable a => [[Expr a]] -> Sig -> Context Source #

mkUniv2N :: Typeable a => [[Expr a]] -> [Tagged Term] Source #

stripN :: Expr a -> a Source #

mkEqs2N :: Foldable t => t [Expr a] -> [Equation] Source #

newtype Z Source #

Constructors

Z () 

Instances

Eq Z Source # 

Methods

(==) :: Z -> Z -> Bool #

(/=) :: Z -> Z -> Bool #

Ord Z Source # 

Methods

compare :: Z -> Z -> Ordering #

(<) :: Z -> Z -> Bool #

(<=) :: Z -> Z -> Bool #

(>) :: Z -> Z -> Bool #

(>=) :: Z -> Z -> Bool #

max :: Z -> Z -> Z #

min :: Z -> Z -> Z #

Show Z Source # 

Methods

showsPrec :: Int -> Z -> ShowS #

show :: Z -> String #

showList :: [Z] -> ShowS #

newtype S a Source #

Constructors

S a 

Instances

Eq a => Eq (S a) Source # 

Methods

(==) :: S a -> S a -> Bool #

(/=) :: S a -> S a -> Bool #

Ord a => Ord (S a) Source # 

Methods

compare :: S a -> S a -> Ordering #

(<) :: S a -> S a -> Bool #

(<=) :: S a -> S a -> Bool #

(>) :: S a -> S a -> Bool #

(>=) :: S a -> S a -> Bool #

max :: S a -> S a -> S a #

min :: S a -> S a -> S a #

Show a => Show (S a) Source # 

Methods

showsPrec :: Int -> S a -> ShowS #

show :: S a -> String #

showList :: [S a] -> ShowS #

Orphan instances

Show (Tagged Term) Source # 
Eq (a -> b) Source # 

Methods

(==) :: (a -> b) -> (a -> b) -> Bool #

(/=) :: (a -> b) -> (a -> b) -> Bool #

Ord (a -> b) Source # 

Methods

compare :: (a -> b) -> (a -> b) -> Ordering #

(<) :: (a -> b) -> (a -> b) -> Bool #

(<=) :: (a -> b) -> (a -> b) -> Bool #

(>) :: (a -> b) -> (a -> b) -> Bool #

(>=) :: (a -> b) -> (a -> b) -> Bool #

max :: (a -> b) -> (a -> b) -> a -> b #

min :: (a -> b) -> (a -> b) -> a -> b #