{-# LANGUAGE CPP #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
#if __GLASGOW_HASKELL__ >= 706
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeOperators #-}
#define USE_TYPE_LITS 1
#endif
#ifdef MIN_VERSION_template_haskell
# if __GLASGOW_HASKELL__ >= 800
{-# LANGUAGE TemplateHaskellQuotes #-}
# else
{-# LANGUAGE TemplateHaskell #-}
# endif
#endif
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -fno-cse #-}
{-# OPTIONS_GHC -fno-full-laziness #-}
{-# OPTIONS_GHC -fno-float-in #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
#ifndef MIN_VERSION_base
#define MIN_VERSION_base(x,y,z) 1
#endif
module Data.Reflection
(
Reifies(..)
, reify
#if __GLASGOW_HASKELL__ >= 708
, reifyNat
, reifySymbol
#endif
, reifyTypeable
, Given(..)
, give
#ifdef MIN_VERSION_template_haskell
, int, nat
#endif
, Z, D, SD, PD
, ReifiedMonoid(..)
, ReflectedMonoid(..)
, reifyMonoid
, foldMapBy
, foldBy
, ReifiedApplicative(..)
, ReflectedApplicative(..)
, reifyApplicative
, traverseBy
, sequenceBy
) where
import Control.Applicative
#ifdef MIN_VERSION_template_haskell
import Control.Monad
#endif
import Data.Bits
#if __GLASGOW_HASKELL__ < 710
import Data.Foldable
#endif
import Data.Semigroup as Sem
import Data.Proxy
#if __GLASGOW_HASKELL__ < 710
import Data.Traversable
#endif
import Data.Typeable
import Data.Word
import Foreign.Ptr
import Foreign.StablePtr
#if (__GLASGOW_HASKELL__ >= 707) || (defined(MIN_VERSION_template_haskell) && USE_TYPE_LITS)
import GHC.TypeLits
# if MIN_VERSION_base(4,10,0)
import qualified Numeric.Natural as Numeric (Natural)
# elif __GLASGOW_HASKELL__ >= 707
import Control.Exception (ArithException(..), throw)
# endif
#endif
#ifdef __HUGS__
import Hugs.IOExts
#endif
#ifdef MIN_VERSION_template_haskell
import Language.Haskell.TH hiding (reify)
#endif
import System.IO.Unsafe
#ifndef __HUGS__
import Unsafe.Coerce
#endif
#if MIN_VERSION_base(4,7,0)
import Data.Coerce (Coercible, coerce)
#endif
#if MIN_VERSION_base(4,18,0)
import qualified GHC.TypeNats as TN
#endif
#if __GLASGOW_HASKELL__ >= 811
# define INLINE_UNSAFE_COERCE INLINE
#else
# define INLINE_UNSAFE_COERCE NOINLINE
#endif
class Reifies s a | s -> a where
reflect :: proxy s -> a
newtype Magic a r = Magic (forall (s :: *). Reifies s a => Proxy s -> r)
reify :: forall a r. a -> (forall (s :: *). Reifies s a => Proxy s -> r) -> r
reify :: forall a r. a -> (forall s. Reifies s a => Proxy s -> r) -> r
reify a
a forall s. Reifies s a => Proxy s -> r
k = forall a b. a -> b
unsafeCoerce (forall a r. (forall s. Reifies s a => Proxy s -> r) -> Magic a r
Magic forall s. Reifies s a => Proxy s -> r
k :: Magic a r) (forall a b. a -> b -> a
const a
a) forall {k} (t :: k). Proxy t
Proxy
{-# INLINE_UNSAFE_COERCE reify #-}
#if __GLASGOW_HASKELL__ >= 707
instance KnownNat n => Reifies n Integer where
reflect :: forall (proxy :: Nat -> *). proxy n -> Integer
reflect = forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal
instance KnownSymbol n => Reifies n String where
reflect :: forall (proxy :: Symbol -> *). proxy n -> String
reflect = forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
symbolVal
#endif
#if __GLASGOW_HASKELL__ >= 708
reifyNat :: forall r. Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
# if MIN_VERSION_base(4,18,0)
reifyNat n k = TN.withSomeSNat (fromInteger n :: Numeric.Natural) $
\(sn :: (SNat n)) -> TN.withKnownNat sn $ k (Proxy :: Proxy n)
{-# INLINE reifyNat #-}
# else
reifyNat :: forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
n forall (n :: Nat). KnownNat n => Proxy n -> r
k = forall a b. a -> b
unsafeCoerce (forall r.
(forall (n :: Nat). KnownNat n => Proxy n -> r) -> MagicNat r
MagicNat forall (n :: Nat). KnownNat n => Proxy n -> r
k :: MagicNat r)
# if MIN_VERSION_base(4,10,0)
(forall a. Num a => Integer -> a
fromInteger Integer
n :: Numeric.Natural)
# else
(if n < 0 then throw Underflow else n)
# endif
forall {k} (t :: k). Proxy t
Proxy
{-# INLINE_UNSAFE_COERCE reifyNat #-}
newtype MagicNat r = MagicNat (forall (n :: Nat). KnownNat n => Proxy n -> r)
# endif
reifySymbol :: forall r. String -> (forall (n :: Symbol). KnownSymbol n => Proxy n -> r) -> r
# if MIN_VERSION_base(4,18,0)
reifySymbol s k = withSomeSSymbol s $ \(ss :: SSymbol s) -> withKnownSymbol ss (k (Proxy :: Proxy s))
{-# INLINE reifySymbol #-}
# else
reifySymbol :: forall r.
String
-> (forall (n :: Symbol). KnownSymbol n => Proxy n -> r) -> r
reifySymbol String
n forall (n :: Symbol). KnownSymbol n => Proxy n -> r
k = forall a b. a -> b
unsafeCoerce (forall r.
(forall (n :: Symbol). KnownSymbol n => Proxy n -> r)
-> MagicSymbol r
MagicSymbol forall (n :: Symbol). KnownSymbol n => Proxy n -> r
k :: MagicSymbol r) String
n forall {k} (t :: k). Proxy t
Proxy
{-# INLINE_UNSAFE_COERCE reifySymbol #-}
# endif
newtype MagicSymbol r = MagicSymbol (forall (n :: Symbol). KnownSymbol n => Proxy n -> r)
#endif
class Given a where
given :: a
newtype Gift a r = Gift (Given a => r)
give :: forall a r. a -> (Given a => r) -> r
give :: forall a r. a -> (Given a => r) -> r
give a
a Given a => r
k = forall a b. a -> b
unsafeCoerce (forall a r. (Given a => r) -> Gift a r
Gift Given a => r
k :: Gift a r) a
a
{-# INLINE_UNSAFE_COERCE give #-}
data Z
data D (n :: *)
data SD (n :: *)
data PD (n :: *)
instance Reifies Z Int where
reflect :: forall (proxy :: * -> *). proxy Z -> Int
reflect proxy Z
_ = Int
0
{-# INLINE reflect #-}
retagD :: (Proxy n -> a) -> proxy (D n) -> a
retagD :: forall n a (proxy :: * -> *). (Proxy n -> a) -> proxy (D n) -> a
retagD Proxy n -> a
f proxy (D n)
_ = Proxy n -> a
f forall {k} (t :: k). Proxy t
Proxy
{-# INLINE retagD #-}
retagSD :: (Proxy n -> a) -> proxy (SD n) -> a
retagSD :: forall n a (proxy :: * -> *). (Proxy n -> a) -> proxy (SD n) -> a
retagSD Proxy n -> a
f proxy (SD n)
_ = Proxy n -> a
f forall {k} (t :: k). Proxy t
Proxy
{-# INLINE retagSD #-}
retagPD :: (Proxy n -> a) -> proxy (PD n) -> a
retagPD :: forall n a (proxy :: * -> *). (Proxy n -> a) -> proxy (PD n) -> a
retagPD Proxy n -> a
f proxy (PD n)
_ = Proxy n -> a
f forall {k} (t :: k). Proxy t
Proxy
{-# INLINE retagPD #-}
instance Reifies n Int => Reifies (D n) Int where
reflect :: forall (proxy :: * -> *). proxy (D n) -> Int
reflect = (\Int
n -> Int
n forall a. Num a => a -> a -> a
+ Int
n) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` forall n a (proxy :: * -> *). (Proxy n -> a) -> proxy (D n) -> a
retagD forall {k} (s :: k) a (proxy :: k -> *).
Reifies s a =>
proxy s -> a
reflect
{-# INLINE reflect #-}
instance Reifies n Int => Reifies (SD n) Int where
reflect :: forall (proxy :: * -> *). proxy (SD n) -> Int
reflect = (\Int
n -> Int
n forall a. Num a => a -> a -> a
+ Int
n forall a. Num a => a -> a -> a
+ Int
1) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` forall n a (proxy :: * -> *). (Proxy n -> a) -> proxy (SD n) -> a
retagSD forall {k} (s :: k) a (proxy :: k -> *).
Reifies s a =>
proxy s -> a
reflect
{-# INLINE reflect #-}
instance Reifies n Int => Reifies (PD n) Int where
reflect :: forall (proxy :: * -> *). proxy (PD n) -> Int
reflect = (\Int
n -> Int
n forall a. Num a => a -> a -> a
+ Int
n forall a. Num a => a -> a -> a
- Int
1) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` forall n a (proxy :: * -> *). (Proxy n -> a) -> proxy (PD n) -> a
retagPD forall {k} (s :: k) a (proxy :: k -> *).
Reifies s a =>
proxy s -> a
reflect
{-# INLINE reflect #-}
#ifdef MIN_VERSION_template_haskell
int :: Int -> TypeQ
int :: Int -> TypeQ
int Int
n = case forall a. Integral a => a -> a -> (a, a)
quotRem Int
n Int
2 of
(Int
0, Int
0) -> forall (m :: * -> *). Quote m => Name -> m Type
conT ''Z
(Int
q,-1) -> forall (m :: * -> *). Quote m => Name -> m Type
conT ''PD forall (m :: * -> *). Quote m => m Type -> m Type -> m Type
`appT` Int -> TypeQ
int Int
q
(Int
q, Int
0) -> forall (m :: * -> *). Quote m => Name -> m Type
conT ''D forall (m :: * -> *). Quote m => m Type -> m Type -> m Type
`appT` Int -> TypeQ
int Int
q
(Int
q, Int
1) -> forall (m :: * -> *). Quote m => Name -> m Type
conT ''SD forall (m :: * -> *). Quote m => m Type -> m Type -> m Type
`appT` Int -> TypeQ
int Int
q
(Int, Int)
_ -> forall a. HasCallStack => String -> a
error String
"ghc is bad at math"
nat :: Int -> TypeQ
nat :: Int -> TypeQ
nat Int
n
| Int
n forall a. Ord a => a -> a -> Bool
>= Int
0 = Int -> TypeQ
int Int
n
| Bool
otherwise = forall a. HasCallStack => String -> a
error String
"nat: negative"
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ < 704
instance Show (Q a) where
show _ = "Q"
instance Eq (Q a) where
_ == _ = False
#endif
instance Num a => Num (Q a) where
+ :: Q a -> Q a -> Q a
(+) = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 forall a. Num a => a -> a -> a
(+)
* :: Q a -> Q a -> Q a
(*) = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 forall a. Num a => a -> a -> a
(*)
(-) = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 (-)
negate :: Q a -> Q a
negate = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
negate
abs :: Q a -> Q a
abs = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
abs
signum :: Q a -> Q a
signum = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
signum
fromInteger :: Integer -> Q a
fromInteger = forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Num a => Integer -> a
fromInteger
instance Fractional a => Fractional (Q a) where
/ :: Q a -> Q a -> Q a
(/) = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 forall a. Fractional a => a -> a -> a
(/)
recip :: Q a -> Q a
recip = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Fractional a => a -> a
recip
fromRational :: Rational -> Q a
fromRational = forall (m :: * -> *) a. Monad m => a -> m a
return forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Fractional a => Rational -> a
fromRational
instance Num Type where
#ifdef USE_TYPE_LITS
LitT (NumTyLit Integer
a) + :: Type -> Type -> Type
+ LitT (NumTyLit Integer
b) = TyLit -> Type
LitT (Integer -> TyLit
NumTyLit (Integer
aforall a. Num a => a -> a -> a
+Integer
b))
Type
a + Type
b = Type -> Type -> Type
AppT (Type -> Type -> Type
AppT (Name -> Type
VarT ''(+)) Type
a) Type
b
LitT (NumTyLit Integer
a) * :: Type -> Type -> Type
* LitT (NumTyLit Integer
b) = TyLit -> Type
LitT (Integer -> TyLit
NumTyLit (Integer
aforall a. Num a => a -> a -> a
*Integer
b))
(*) Type
a Type
b = Type -> Type -> Type
AppT (Type -> Type -> Type
AppT (Name -> Type
VarT ''(GHC.TypeLits.*)) Type
a) Type
b
#if MIN_VERSION_base(4,8,0)
Type
a - :: Type -> Type -> Type
- Type
b = Type -> Type -> Type
AppT (Type -> Type -> Type
AppT (Name -> Type
VarT ''(-)) Type
a) Type
b
#else
(-) = error "Type.(-): undefined"
#endif
fromInteger :: Integer -> Type
fromInteger = TyLit -> Type
LitT forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> TyLit
NumTyLit
#else
(+) = error "Type.(+): undefined"
(*) = error "Type.(*): undefined"
(-) = error "Type.(-): undefined"
fromInteger n = case quotRem n 2 of
(0, 0) -> ConT ''Z
(q,-1) -> ConT ''PD `AppT` fromInteger q
(q, 0) -> ConT ''D `AppT` fromInteger q
(q, 1) -> ConT ''SD `AppT` fromInteger q
_ -> error "ghc is bad at math"
#endif
abs :: Type -> Type
abs = forall a. HasCallStack => String -> a
error String
"Type.abs"
signum :: Type -> Type
signum = forall a. HasCallStack => String -> a
error String
"Type.signum"
onProxyType1 :: (Type -> Type) -> (Exp -> Exp)
onProxyType1 :: (Type -> Type) -> Exp -> Exp
onProxyType1 Type -> Type
f
(SigE Exp
_ ta :: Type
ta@(AppT (ConT Name
proxyName) (VarT Name
_)))
| Name
proxyName forall a. Eq a => a -> a -> Bool
== ''Proxy = Name -> Exp
ConE 'Proxy Exp -> Type -> Exp
`SigE` (Name -> Type
ConT ''Proxy Type -> Type -> Type
`AppT` Type -> Type
f Type
ta)
onProxyType1 Type -> Type
f Exp
a =
[Pat] -> Exp -> Exp
LamE [Pat -> Type -> Pat
SigP Pat
WildP Type
na] Exp
body Exp -> Exp -> Exp
`AppE` Exp
a
where
body :: Exp
body = Name -> Exp
ConE 'Proxy Exp -> Type -> Exp
`SigE` (Name -> Type
ConT ''Proxy Type -> Type -> Type
`AppT` Type -> Type
f Type
na)
na :: Type
na = Name -> Type
VarT (String -> Name
mkName String
"na")
onProxyType2 :: Name -> (Type -> Type -> Type) -> (Exp -> Exp -> Exp)
onProxyType2 :: Name -> (Type -> Type -> Type) -> Exp -> Exp -> Exp
onProxyType2 Name
_fName Type -> Type -> Type
f
(SigE Exp
_ (AppT (ConT Name
proxyName) Type
ta))
(SigE Exp
_ (AppT (ConT Name
proxyName') Type
tb))
| Name
proxyName forall a. Eq a => a -> a -> Bool
== ''Proxy,
Name
proxyName' forall a. Eq a => a -> a -> Bool
== ''Proxy = Name -> Exp
ConE 'Proxy Exp -> Type -> Exp
`SigE`
(Name -> Type
ConT ''Proxy Type -> Type -> Type
`AppT` Type -> Type -> Type
f Type
ta Type
tb)
onProxyType2 Name
fName Type -> Type -> Type
_f Exp
a Exp
b = Name -> Exp
VarE Name
fName Exp -> Exp -> Exp
`AppE` Exp
a Exp -> Exp -> Exp
`AppE` Exp
b
instance Num Exp where
+ :: Exp -> Exp -> Exp
(+) = Name -> (Type -> Type -> Type) -> Exp -> Exp -> Exp
onProxyType2 'addProxy forall a. Num a => a -> a -> a
(+)
* :: Exp -> Exp -> Exp
(*) = Name -> (Type -> Type -> Type) -> Exp -> Exp -> Exp
onProxyType2 'mulProxy forall a. Num a => a -> a -> a
(*)
(-) = Name -> (Type -> Type -> Type) -> Exp -> Exp -> Exp
onProxyType2 'subProxy (-)
negate :: Exp -> Exp
negate = (Type -> Type) -> Exp -> Exp
onProxyType1 forall a. Num a => a -> a
negate
abs :: Exp -> Exp
abs = (Type -> Type) -> Exp -> Exp
onProxyType1 forall a. Num a => a -> a
abs
signum :: Exp -> Exp
signum = (Type -> Type) -> Exp -> Exp
onProxyType1 forall a. Num a => a -> a
signum
fromInteger :: Integer -> Exp
fromInteger Integer
n = Name -> Exp
ConE 'Proxy Exp -> Type -> Exp
`SigE` (Name -> Type
ConT ''Proxy Type -> Type -> Type
`AppT` forall a. Num a => Integer -> a
fromInteger Integer
n)
#ifdef USE_TYPE_LITS
addProxy :: Proxy a -> Proxy b -> Proxy (a + b)
addProxy :: forall (a :: Nat) (b :: Nat). Proxy a -> Proxy b -> Proxy (a + b)
addProxy Proxy a
_ Proxy b
_ = forall {k} (t :: k). Proxy t
Proxy
mulProxy :: Proxy a -> Proxy b -> Proxy (a * b)
mulProxy :: forall {k} {k} (a :: * -> k -> k) (b :: k).
Proxy a -> Proxy b -> Proxy (a (*) b)
mulProxy Proxy a
_ Proxy b
_ = forall {k} (t :: k). Proxy t
Proxy
#if MIN_VERSION_base(4,8,0)
subProxy :: Proxy a -> Proxy b -> Proxy (a - b)
subProxy :: forall (a :: Nat) (b :: Nat). Proxy a -> Proxy b -> Proxy (a - b)
subProxy Proxy a
_ Proxy b
_ = forall {k} (t :: k). Proxy t
Proxy
#else
subProxy :: Proxy a -> Proxy b -> Proxy c
subProxy _ _ = error "Exp.(-): undefined"
#endif
#else
addProxy :: Proxy a -> Proxy b -> Proxy c
addProxy _ _ = error "Exp.(+): undefined"
mulProxy :: Proxy a -> Proxy b -> Proxy c
mulProxy _ _ = error "Exp.(*): undefined"
subProxy :: Proxy a -> Proxy b -> Proxy c
subProxy _ _ = error "Exp.(-): undefined"
#endif
#endif
class Typeable s => B s where
reflectByte :: proxy s -> IntPtr
#define BYTES(GO) \
GO(T0,0) GO(T1,1) GO(T2,2) GO(T3,3) GO(T4,4) GO(T5,5) GO(T6,6) GO(T7,7) GO(T8,8) GO(T9,9) GO(T10,10) GO(T11,11) \
GO(T12,12) GO(T13,13) GO(T14,14) GO(T15,15) GO(T16,16) GO(T17,17) GO(T18,18) GO(T19,19) GO(T20,20) GO(T21,21) GO(T22,22) \
GO(T23,23) GO(T24,24) GO(T25,25) GO(T26,26) GO(T27,27) GO(T28,28) GO(T29,29) GO(T30,30) GO(T31,31) GO(T32,32) GO(T33,33) \
GO(T34,34) GO(T35,35) GO(T36,36) GO(T37,37) GO(T38,38) GO(T39,39) GO(T40,40) GO(T41,41) GO(T42,42) GO(T43,43) GO(T44,44) \
GO(T45,45) GO(T46,46) GO(T47,47) GO(T48,48) GO(T49,49) GO(T50,50) GO(T51,51) GO(T52,52) GO(T53,53) GO(T54,54) GO(T55,55) \
GO(T56,56) GO(T57,57) GO(T58,58) GO(T59,59) GO(T60,60) GO(T61,61) GO(T62,62) GO(T63,63) GO(T64,64) GO(T65,65) GO(T66,66) \
GO(T67,67) GO(T68,68) GO(T69,69) GO(T70,70) GO(T71,71) GO(T72,72) GO(T73,73) GO(T74,74) GO(T75,75) GO(T76,76) GO(T77,77) \
GO(T78,78) GO(T79,79) GO(T80,80) GO(T81,81) GO(T82,82) GO(T83,83) GO(T84,84) GO(T85,85) GO(T86,86) GO(T87,87) GO(T88,88) \
GO(T89,89) GO(T90,90) GO(T91,91) GO(T92,92) GO(T93,93) GO(T94,94) GO(T95,95) GO(T96,96) GO(T97,97) GO(T98,98) GO(T99,99) \
GO(T100,100) GO(T101,101) GO(T102,102) GO(T103,103) GO(T104,104) GO(T105,105) GO(T106,106) GO(T107,107) GO(T108,108) \
GO(T109,109) GO(T110,110) GO(T111,111) GO(T112,112) GO(T113,113) GO(T114,114) GO(T115,115) GO(T116,116) GO(T117,117) \
GO(T118,118) GO(T119,119) GO(T120,120) GO(T121,121) GO(T122,122) GO(T123,123) GO(T124,124) GO(T125,125) GO(T126,126) \
GO(T127,127) GO(T128,128) GO(T129,129) GO(T130,130) GO(T131,131) GO(T132,132) GO(T133,133) GO(T134,134) GO(T135,135) \
GO(T136,136) GO(T137,137) GO(T138,138) GO(T139,139) GO(T140,140) GO(T141,141) GO(T142,142) GO(T143,143) GO(T144,144) \
GO(T145,145) GO(T146,146) GO(T147,147) GO(T148,148) GO(T149,149) GO(T150,150) GO(T151,151) GO(T152,152) GO(T153,153) \
GO(T154,154) GO(T155,155) GO(T156,156) GO(T157,157) GO(T158,158) GO(T159,159) GO(T160,160) GO(T161,161) GO(T162,162) \
GO(T163,163) GO(T164,164) GO(T165,165) GO(T166,166) GO(T167,167) GO(T168,168) GO(T169,169) GO(T170,170) GO(T171,171) \
GO(T172,172) GO(T173,173) GO(T174,174) GO(T175,175) GO(T176,176) GO(T177,177) GO(T178,178) GO(T179,179) GO(T180,180) \
GO(T181,181) GO(T182,182) GO(T183,183) GO(T184,184) GO(T185,185) GO(T186,186) GO(T187,187) GO(T188,188) GO(T189,189) \
GO(T190,190) GO(T191,191) GO(T192,192) GO(T193,193) GO(T194,194) GO(T195,195) GO(T196,196) GO(T197,197) GO(T198,198) \
GO(T199,199) GO(T200,200) GO(T201,201) GO(T202,202) GO(T203,203) GO(T204,204) GO(T205,205) GO(T206,206) GO(T207,207) \
GO(T208,208) GO(T209,209) GO(T210,210) GO(T211,211) GO(T212,212) GO(T213,213) GO(T214,214) GO(T215,215) GO(T216,216) \
GO(T217,217) GO(T218,218) GO(T219,219) GO(T220,220) GO(T221,221) GO(T222,222) GO(T223,223) GO(T224,224) GO(T225,225) \
GO(T226,226) GO(T227,227) GO(T228,228) GO(T229,229) GO(T230,230) GO(T231,231) GO(T232,232) GO(T233,233) GO(T234,234) \
GO(T235,235) GO(T236,236) GO(T237,237) GO(T238,238) GO(T239,239) GO(T240,240) GO(T241,241) GO(T242,242) GO(T243,243) \
GO(T244,244) GO(T245,245) GO(T246,246) GO(T247,247) GO(T248,248) GO(T249,249) GO(T250,250) GO(T251,251) GO(T252,252) \
GO(T253,253) GO(T254,254) GO(T255,255)
#define GO(Tn,n) \
newtype Tn = Tn Tn deriving Typeable; \
instance B Tn where { \
reflectByte _ = n \
};
BYTES(GO)
#undef GO
impossible :: a
impossible :: forall a. a
impossible = forall a. HasCallStack => String -> a
error String
"Data.Reflection.reifyByte: impossible"
reifyByte :: Word8 -> (forall (s :: *). B s => Proxy s -> r) -> r
reifyByte :: forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte Word8
w forall s. B s => Proxy s -> r
k = case Word8
w of {
#define GO(Tn,n) n -> k (Proxy :: Proxy Tn);
BYTES(GO)
#undef GO
Word8
_ -> forall a. a
impossible
}
newtype W (b0 :: *) (b1 :: *) (b2 :: *) (b3 :: *) = W (W b0 b1 b2 b3) deriving Typeable
newtype Stable (w0 :: *) (w1 :: *) (a :: *) = Stable (Stable w0 w1 a) deriving Typeable
stable :: p b0 -> p b1 -> p b2 -> p b3 -> p b4 -> p b5 -> p b6 -> p b7
-> Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
stable :: forall (p :: * -> *) b0 b1 b2 b3 b4 b5 b6 b7 a.
p b0
-> p b1
-> p b2
-> p b3
-> p b4
-> p b5
-> p b6
-> p b7
-> Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
stable p b0
_ p b1
_ p b2
_ p b3
_ p b4
_ p b5
_ p b6
_ p b7
_ = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE stable #-}
stablePtrToIntPtr :: StablePtr a -> IntPtr
stablePtrToIntPtr :: forall a. StablePtr a -> IntPtr
stablePtrToIntPtr = forall a. Ptr a -> IntPtr
ptrToIntPtr forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. StablePtr a -> Ptr ()
castStablePtrToPtr
{-# INLINE stablePtrToIntPtr #-}
intPtrToStablePtr :: IntPtr -> StablePtr a
intPtrToStablePtr :: forall a. IntPtr -> StablePtr a
intPtrToStablePtr = forall a. Ptr () -> StablePtr a
castPtrToStablePtr forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. IntPtr -> Ptr a
intPtrToPtr
{-# INLINE intPtrToStablePtr #-}
byte0 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b0
byte0 :: forall (p :: * -> *) b0 b1 b2 b3 w1 a.
p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b0
byte0 p (Stable (W b0 b1 b2 b3) w1 a)
_ = forall {k} (t :: k). Proxy t
Proxy
byte1 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b1
byte1 :: forall (p :: * -> *) b0 b1 b2 b3 w1 a.
p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b1
byte1 p (Stable (W b0 b1 b2 b3) w1 a)
_ = forall {k} (t :: k). Proxy t
Proxy
byte2 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b2
byte2 :: forall (p :: * -> *) b0 b1 b2 b3 w1 a.
p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b2
byte2 p (Stable (W b0 b1 b2 b3) w1 a)
_ = forall {k} (t :: k). Proxy t
Proxy
byte3 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b3
byte3 :: forall (p :: * -> *) b0 b1 b2 b3 w1 a.
p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b3
byte3 p (Stable (W b0 b1 b2 b3) w1 a)
_ = forall {k} (t :: k). Proxy t
Proxy
byte4 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b4
byte4 :: forall (p :: * -> *) w0 b4 b5 b6 b7 a.
p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b4
byte4 p (Stable w0 (W b4 b5 b6 b7) a)
_ = forall {k} (t :: k). Proxy t
Proxy
byte5 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b5
byte5 :: forall (p :: * -> *) w0 b4 b5 b6 b7 a.
p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b5
byte5 p (Stable w0 (W b4 b5 b6 b7) a)
_ = forall {k} (t :: k). Proxy t
Proxy
byte6 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b6
byte6 :: forall (p :: * -> *) w0 b4 b5 b6 b7 a.
p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b6
byte6 p (Stable w0 (W b4 b5 b6 b7) a)
_ = forall {k} (t :: k). Proxy t
Proxy
byte7 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b7
byte7 :: forall (p :: * -> *) w0 b4 b5 b6 b7 a.
p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b7
byte7 p (Stable w0 (W b4 b5 b6 b7) a)
_ = forall {k} (t :: k). Proxy t
Proxy
argument :: (p s -> r) -> Proxy s
argument :: forall {k} (p :: k -> *) (s :: k) r. (p s -> r) -> Proxy s
argument p s -> r
_ = forall {k} (t :: k). Proxy t
Proxy
instance (B b0, B b1, B b2, B b3, B b4, B b5, B b6, B b7, w0 ~ W b0 b1 b2 b3, w1 ~ W b4 b5 b6 b7)
=> Reifies (Stable w0 w1 a) a where
reflect :: forall (proxy :: * -> *). proxy (Stable w0 w1 a) -> a
reflect = forall {p :: * -> *} {a} {r}.
p (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a) -> r
r where
r :: p (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a) -> r
r = forall a. IO a -> a
unsafePerformIO forall a b. (a -> b) -> a -> b
$ forall a b. a -> b -> a
const forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. StablePtr a -> IO a
deRefStablePtr StablePtr r
p forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* forall a. StablePtr a -> IO ()
freeStablePtr StablePtr r
p
s :: Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s = forall {k} (p :: k -> *) (s :: k) r. (p s -> r) -> Proxy s
argument p (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a) -> r
r
p :: StablePtr r
p = forall a. IntPtr -> StablePtr a
intPtrToStablePtr forall a b. (a -> b) -> a -> b
$
forall {k} (s :: k) (proxy :: k -> *). B s => proxy s -> IntPtr
reflectByte (forall (p :: * -> *) b0 b1 b2 b3 w1 a.
p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b0
byte0 Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s) forall a. Bits a => a -> a -> a
.|.
(forall {k} (s :: k) (proxy :: k -> *). B s => proxy s -> IntPtr
reflectByte (forall (p :: * -> *) b0 b1 b2 b3 w1 a.
p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b1
byte1 Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s) forall a. Bits a => a -> Int -> a
`shiftL` Int
8) forall a. Bits a => a -> a -> a
.|.
(forall {k} (s :: k) (proxy :: k -> *). B s => proxy s -> IntPtr
reflectByte (forall (p :: * -> *) b0 b1 b2 b3 w1 a.
p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b2
byte2 Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s) forall a. Bits a => a -> Int -> a
`shiftL` Int
16) forall a. Bits a => a -> a -> a
.|.
(forall {k} (s :: k) (proxy :: k -> *). B s => proxy s -> IntPtr
reflectByte (forall (p :: * -> *) b0 b1 b2 b3 w1 a.
p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b3
byte3 Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s) forall a. Bits a => a -> Int -> a
`shiftL` Int
24) forall a. Bits a => a -> a -> a
.|.
(forall {k} (s :: k) (proxy :: k -> *). B s => proxy s -> IntPtr
reflectByte (forall (p :: * -> *) w0 b4 b5 b6 b7 a.
p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b4
byte4 Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s) forall a. Bits a => a -> Int -> a
`shiftL` Int
32) forall a. Bits a => a -> a -> a
.|.
(forall {k} (s :: k) (proxy :: k -> *). B s => proxy s -> IntPtr
reflectByte (forall (p :: * -> *) w0 b4 b5 b6 b7 a.
p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b5
byte5 Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s) forall a. Bits a => a -> Int -> a
`shiftL` Int
40) forall a. Bits a => a -> a -> a
.|.
(forall {k} (s :: k) (proxy :: k -> *). B s => proxy s -> IntPtr
reflectByte (forall (p :: * -> *) w0 b4 b5 b6 b7 a.
p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b6
byte6 Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s) forall a. Bits a => a -> Int -> a
`shiftL` Int
48) forall a. Bits a => a -> a -> a
.|.
(forall {k} (s :: k) (proxy :: k -> *). B s => proxy s -> IntPtr
reflectByte (forall (p :: * -> *) w0 b4 b5 b6 b7 a.
p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b7
byte7 Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
s) forall a. Bits a => a -> Int -> a
`shiftL` Int
56)
{-# NOINLINE reflect #-}
reflectBefore :: forall (proxy :: * -> *) s b. (Proxy s -> b) -> proxy s -> b
reflectBefore :: forall (proxy :: * -> *) s b. (Proxy s -> b) -> proxy s -> b
reflectBefore Proxy s -> b
f = forall a b. a -> b -> a
const forall a b. (a -> b) -> a -> b
$! Proxy s -> b
f forall {k} (t :: k). Proxy t
Proxy
{-# NOINLINE reflectBefore #-}
reifyTypeable :: Typeable a => a -> (forall (s :: *). (Typeable s, Reifies s a) => Proxy s -> r) -> r
#if MIN_VERSION_base(4,4,0)
reifyTypeable :: forall a r.
Typeable a =>
a -> (forall s. (Typeable s, Reifies s a) => Proxy s -> r) -> r
reifyTypeable a
a forall s. (Typeable s, Reifies s a) => Proxy s -> r
k = forall a. IO a -> a
unsafeDupablePerformIO forall a b. (a -> b) -> a -> b
$ do
#else
reifyTypeable a k = unsafePerformIO $ do
#endif
StablePtr a
p <- forall a. a -> IO (StablePtr a)
newStablePtr a
a
let n :: IntPtr
n = forall a. StablePtr a -> IntPtr
stablePtrToIntPtr StablePtr a
p
forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte (forall a b. (Integral a, Num b) => a -> b
fromIntegral IntPtr
n) (\Proxy s
s0 ->
forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte (forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntPtr
n forall a. Bits a => a -> Int -> a
`shiftR` Int
8)) (\Proxy s
s1 ->
forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte (forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntPtr
n forall a. Bits a => a -> Int -> a
`shiftR` Int
16)) (\Proxy s
s2 ->
forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte (forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntPtr
n forall a. Bits a => a -> Int -> a
`shiftR` Int
24)) (\Proxy s
s3 ->
forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte (forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntPtr
n forall a. Bits a => a -> Int -> a
`shiftR` Int
32)) (\Proxy s
s4 ->
forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte (forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntPtr
n forall a. Bits a => a -> Int -> a
`shiftR` Int
40)) (\Proxy s
s5 ->
forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte (forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntPtr
n forall a. Bits a => a -> Int -> a
`shiftR` Int
48)) (\Proxy s
s6 ->
forall r. Word8 -> (forall s. B s => Proxy s -> r) -> r
reifyByte (forall a b. (Integral a, Num b) => a -> b
fromIntegral (IntPtr
n forall a. Bits a => a -> Int -> a
`shiftR` Int
56)) (\Proxy s
s7 ->
forall (proxy :: * -> *) s b. (Proxy s -> b) -> proxy s -> b
reflectBefore (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (m :: * -> *) a. Monad m => a -> m a
return forall s. (Typeable s, Reifies s a) => Proxy s -> r
k) forall a b. (a -> b) -> a -> b
$
forall (p :: * -> *) b0 b1 b2 b3 b4 b5 b6 b7 a.
p b0
-> p b1
-> p b2
-> p b3
-> p b4
-> p b5
-> p b6
-> p b7
-> Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a)
stable Proxy s
s0 Proxy s
s1 Proxy s
s2 Proxy s
s3 Proxy s
s4 Proxy s
s5 Proxy s
s6 Proxy s
s7))))))))
data ReifiedMonoid a = ReifiedMonoid { forall a. ReifiedMonoid a -> a -> a -> a
reifiedMappend :: a -> a -> a, forall a. ReifiedMonoid a -> a
reifiedMempty :: a }
instance Reifies s (ReifiedMonoid a) => Sem.Semigroup (ReflectedMonoid a s) where
ReflectedMonoid a
x <> :: ReflectedMonoid a s -> ReflectedMonoid a s -> ReflectedMonoid a s
<> ReflectedMonoid a
y = forall {k} (f :: k -> *) (s :: k) a.
Reifies s a =>
(a -> f s) -> f s
reflectResult (\ReifiedMonoid a
m -> forall {k} a (s :: k). a -> ReflectedMonoid a s
ReflectedMonoid (forall a. ReifiedMonoid a -> a -> a -> a
reifiedMappend ReifiedMonoid a
m a
x a
y))
instance Reifies s (ReifiedMonoid a) => Monoid (ReflectedMonoid a s) where
#if !(MIN_VERSION_base(4,11,0))
mappend = (<>)
#endif
mempty :: ReflectedMonoid a s
mempty = forall {k} (f :: k -> *) (s :: k) a.
Reifies s a =>
(a -> f s) -> f s
reflectResult (\ReifiedMonoid a
m -> forall {k} a (s :: k). a -> ReflectedMonoid a s
ReflectedMonoid (forall a. ReifiedMonoid a -> a
reifiedMempty ReifiedMonoid a
m ))
reflectResult :: forall f s a. Reifies s a => (a -> f s) -> f s
reflectResult :: forall {k} (f :: k -> *) (s :: k) a.
Reifies s a =>
(a -> f s) -> f s
reflectResult a -> f s
f = a -> f s
f (forall {k} (s :: k) a (proxy :: k -> *).
Reifies s a =>
proxy s -> a
reflect (forall {k} (t :: k). Proxy t
Proxy :: Proxy s))
newtype ReflectedMonoid a s = ReflectedMonoid a
unreflectedMonoid :: ReflectedMonoid a s -> proxy s -> a
unreflectedMonoid :: forall {k} a (s :: k) (proxy :: k -> *).
ReflectedMonoid a s -> proxy s -> a
unreflectedMonoid (ReflectedMonoid a
a) proxy s
_ = a
a
reifyMonoid :: (a -> a -> a) -> a -> (forall (s :: *). Reifies s (ReifiedMonoid a) => t -> ReflectedMonoid a s) -> t -> a
reifyMonoid :: forall a t.
(a -> a -> a)
-> a
-> (forall s.
Reifies s (ReifiedMonoid a) =>
t -> ReflectedMonoid a s)
-> t
-> a
reifyMonoid a -> a -> a
f a
z forall s. Reifies s (ReifiedMonoid a) => t -> ReflectedMonoid a s
m t
xs = forall a r. a -> (forall s. Reifies s a => Proxy s -> r) -> r
reify (forall a. (a -> a -> a) -> a -> ReifiedMonoid a
ReifiedMonoid a -> a -> a
f a
z) (forall {k} a (s :: k) (proxy :: k -> *).
ReflectedMonoid a s -> proxy s -> a
unreflectedMonoid (forall s. Reifies s (ReifiedMonoid a) => t -> ReflectedMonoid a s
m t
xs))
foldBy :: Foldable t => (a -> a -> a) -> a -> t a -> a
foldBy :: forall (t :: * -> *) a.
Foldable t =>
(a -> a -> a) -> a -> t a -> a
foldBy a -> a -> a
f a
z = forall a t.
(a -> a -> a)
-> a
-> (forall s.
Reifies s (ReifiedMonoid a) =>
t -> ReflectedMonoid a s)
-> t
-> a
reifyMonoid a -> a -> a
f a
z (forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap forall {k} a (s :: k). a -> ReflectedMonoid a s
ReflectedMonoid)
foldMapBy :: Foldable t => (r -> r -> r) -> r -> (a -> r) -> t a -> r
foldMapBy :: forall (t :: * -> *) r a.
Foldable t =>
(r -> r -> r) -> r -> (a -> r) -> t a -> r
foldMapBy r -> r -> r
f r
z a -> r
g = forall a t.
(a -> a -> a)
-> a
-> (forall s.
Reifies s (ReifiedMonoid a) =>
t -> ReflectedMonoid a s)
-> t
-> a
reifyMonoid r -> r -> r
f r
z (forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (forall {k} a (s :: k). a -> ReflectedMonoid a s
ReflectedMonoid forall c b a. Coercible c b => (b -> c) -> (a -> b) -> a -> c
#. a -> r
g))
data ReifiedApplicative f = ReifiedApplicative { forall (f :: * -> *). ReifiedApplicative f -> forall a. a -> f a
reifiedPure :: forall a. a -> f a, forall (f :: * -> *).
ReifiedApplicative f -> forall a b. f (a -> b) -> f a -> f b
reifiedAp :: forall a b. f (a -> b) -> f a -> f b }
newtype ReflectedApplicative f s a = ReflectedApplicative (f a)
instance Reifies s (ReifiedApplicative f) => Functor (ReflectedApplicative f s) where
fmap :: forall a b.
(a -> b)
-> ReflectedApplicative f s a -> ReflectedApplicative f s b
fmap = forall (f :: * -> *) a b. Applicative f => (a -> b) -> f a -> f b
liftA
instance Reifies s (ReifiedApplicative f) => Applicative (ReflectedApplicative f s) where
pure :: forall a. a -> ReflectedApplicative f s a
pure a
a = forall {k} {k} (f :: k -> k -> *) (s :: k) a (b :: k).
Reifies s a =>
(a -> f s b) -> f s b
reflectResult1 (\ReifiedApplicative f
m -> forall {k} {k} (f :: k -> *) (s :: k) (a :: k).
f a -> ReflectedApplicative f s a
ReflectedApplicative (forall (f :: * -> *). ReifiedApplicative f -> forall a. a -> f a
reifiedPure ReifiedApplicative f
m a
a))
ReflectedApplicative f (a -> b)
x <*> :: forall a b.
ReflectedApplicative f s (a -> b)
-> ReflectedApplicative f s a -> ReflectedApplicative f s b
<*> ReflectedApplicative f a
y = forall {k} {k} (f :: k -> k -> *) (s :: k) a (b :: k).
Reifies s a =>
(a -> f s b) -> f s b
reflectResult1 (\ReifiedApplicative f
m -> forall {k} {k} (f :: k -> *) (s :: k) (a :: k).
f a -> ReflectedApplicative f s a
ReflectedApplicative (forall (f :: * -> *).
ReifiedApplicative f -> forall a b. f (a -> b) -> f a -> f b
reifiedAp ReifiedApplicative f
m f (a -> b)
x f a
y))
reflectResult1 :: forall f s a b. Reifies s a => (a -> f s b) -> f s b
reflectResult1 :: forall {k} {k} (f :: k -> k -> *) (s :: k) a (b :: k).
Reifies s a =>
(a -> f s b) -> f s b
reflectResult1 a -> f s b
f = a -> f s b
f (forall {k} (s :: k) a (proxy :: k -> *).
Reifies s a =>
proxy s -> a
reflect (forall {k} (t :: k). Proxy t
Proxy :: Proxy s))
unreflectedApplicative :: ReflectedApplicative f s a -> proxy s -> f a
unreflectedApplicative :: forall {k} {k} (f :: k -> *) (s :: k) (a :: k) (proxy :: k -> *).
ReflectedApplicative f s a -> proxy s -> f a
unreflectedApplicative (ReflectedApplicative f a
a) proxy s
_ = f a
a
reifyApplicative :: (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (forall (s :: *). Reifies s (ReifiedApplicative f) => t -> ReflectedApplicative f s a) -> t -> f a
reifyApplicative :: forall (f :: * -> *) t a.
(forall x. x -> f x)
-> (forall x y. f (x -> y) -> f x -> f y)
-> (forall s.
Reifies s (ReifiedApplicative f) =>
t -> ReflectedApplicative f s a)
-> t
-> f a
reifyApplicative forall x. x -> f x
f forall x y. f (x -> y) -> f x -> f y
g forall s.
Reifies s (ReifiedApplicative f) =>
t -> ReflectedApplicative f s a
m t
xs = forall a r. a -> (forall s. Reifies s a => Proxy s -> r) -> r
reify (forall (f :: * -> *).
(forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b) -> ReifiedApplicative f
ReifiedApplicative forall x. x -> f x
f forall x y. f (x -> y) -> f x -> f y
g) (forall {k} {k} (f :: k -> *) (s :: k) (a :: k) (proxy :: k -> *).
ReflectedApplicative f s a -> proxy s -> f a
unreflectedApplicative (forall s.
Reifies s (ReifiedApplicative f) =>
t -> ReflectedApplicative f s a
m t
xs))
traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b)
traverseBy :: forall (t :: * -> *) (f :: * -> *) a b.
Traversable t =>
(forall x. x -> f x)
-> (forall x y. f (x -> y) -> f x -> f y)
-> (a -> f b)
-> t a
-> f (t b)
traverseBy forall x. x -> f x
pur forall x y. f (x -> y) -> f x -> f y
app a -> f b
f = forall (f :: * -> *) t a.
(forall x. x -> f x)
-> (forall x y. f (x -> y) -> f x -> f y)
-> (forall s.
Reifies s (ReifiedApplicative f) =>
t -> ReflectedApplicative f s a)
-> t
-> f a
reifyApplicative forall x. x -> f x
pur forall x y. f (x -> y) -> f x -> f y
app (forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall {k} {k} (f :: k -> *) (s :: k) (a :: k).
f a -> ReflectedApplicative f s a
ReflectedApplicative forall c b a. Coercible c b => (b -> c) -> (a -> b) -> a -> c
#. a -> f b
f))
sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a)
sequenceBy :: forall (t :: * -> *) (f :: * -> *) a.
Traversable t =>
(forall x. x -> f x)
-> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a)
sequenceBy forall x. x -> f x
pur forall x y. f (x -> y) -> f x -> f y
app = forall (f :: * -> *) t a.
(forall x. x -> f x)
-> (forall x y. f (x -> y) -> f x -> f y)
-> (forall s.
Reifies s (ReifiedApplicative f) =>
t -> ReflectedApplicative f s a)
-> t
-> f a
reifyApplicative forall x. x -> f x
pur forall x y. f (x -> y) -> f x -> f y
app (forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse forall {k} {k} (f :: k -> *) (s :: k) (a :: k).
f a -> ReflectedApplicative f s a
ReflectedApplicative)
#if MIN_VERSION_base(4,7,0)
(#.) :: Coercible c b => (b -> c) -> (a -> b) -> (a -> c)
#. :: forall c b a. Coercible c b => (b -> c) -> (a -> b) -> a -> c
(#.) b -> c
_ = coerce :: forall a b. Coercible a b => a -> b
coerce (\b
x -> b
x :: b) :: forall a b. Coercible b a => a -> b
#else
(#.) :: (b -> c) -> (a -> b) -> a -> c
(#.) _ = unsafeCoerce
#endif