module Text.Regex.TDFA.NewDFA.Engine_NC(execMatch) where
import Control.Monad(when,join,filterM)
import Data.Array.Base(unsafeRead,unsafeWrite)
import Prelude hiding ((!!))
import Data.Array.MArray(MArray(..))
import Data.Array.Unsafe(unsafeFreeze)
import Data.Array.IArray(Ix)
import Data.Array.ST(STArray,STUArray)
import qualified Data.IntMap.CharMap2 as CMap(findWithDefault)
import qualified Data.IntMap as IMap(null,toList,keys,member)
import qualified Data.IntSet as ISet(toAscList)
import Data.STRef(STRef,newSTRef,readSTRef,writeSTRef)
import qualified Control.Monad.ST.Lazy as L(runST,strictToLazyST)
import qualified Control.Monad.ST.Strict as S(ST)
import Data.Sequence(Seq)
import qualified Data.ByteString.Char8 as SBS(ByteString)
import qualified Data.ByteString.Lazy.Char8 as LBS(ByteString)
import Text.Regex.Base(MatchArray,MatchOffset,MatchLength)
import qualified Text.Regex.TDFA.IntArrTrieSet as Trie(lookupAsc)
import Text.Regex.TDFA.Common hiding (indent)
import Text.Regex.TDFA.NewDFA.Uncons(Uncons(uncons))
import Text.Regex.TDFA.NewDFA.MakeTest(test_singleline,test_multiline)
err :: String -> a
err s = common_error "Text.Regex.TDFA.NewDFA.Engine_NC" s
{-# INLINE (!!) #-}
(!!) :: (MArray a e (S.ST s),Ix i) => a i e -> Int -> S.ST s e
(!!) = unsafeRead
{-# INLINE set #-}
set :: (MArray a e (S.ST s),Ix i) => a i e -> Int -> e -> S.ST s ()
set = unsafeWrite
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> ([] Char) -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> (Seq Char) -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> SBS.ByteString -> [MatchArray] #-}
{-# SPECIALIZE execMatch :: Regex -> Position -> Char -> LBS.ByteString -> [MatchArray] #-}
execMatch :: Uncons text => Regex -> Position -> Char -> text -> [MatchArray]
execMatch (Regex { regex_dfa = (DFA {d_id=didIn,d_dt=dtIn})
, regex_init = startState
, regex_b_index = b_index
, regex_trie = trie
, regex_compOptions = CompOption { multiline = newline } } )
offsetIn prevIn inputIn = L.runST runCaptureGroup where
!test = mkTest newline
runCaptureGroup = {-# SCC "runCaptureGroup" #-} do
obtainNext <- L.strictToLazyST constructNewEngine
let loop = do vals <- L.strictToLazyST obtainNext
if null vals
then return []
else do valsRest <- loop
return (vals ++ valsRest)
loop
constructNewEngine :: S.ST s (S.ST s [MatchArray])
constructNewEngine = {-# SCC "constructNewEngine" #-} do
storeNext <- newSTRef undefined
writeSTRef storeNext (goNext storeNext)
let obtainNext = join (readSTRef storeNext)
return obtainNext
goNext storeNext = {-# SCC "goNext" #-} do
(SScratch s1In s2In winQ) <- newScratch b_index
set s1In startState offsetIn
writeSTRef storeNext (err "obtainNext called while goNext is running!")
eliminatedStateFlag <- newSTRef False
let next s1 s2 did dt offset prev input = {-# SCC "goNext.next" #-}
case dt of
Testing' {dt_test=wt,dt_a=a,dt_b=b} ->
if test wt offset prev input
then next s1 s2 did a offset prev input
else next s1 s2 did b offset prev input
Simple' {dt_win=w,dt_trans=t, dt_other=o}
| IMap.null w ->
case uncons input of
Nothing -> finalizeWinners
Just (c,input') -> do
case CMap.findWithDefault o c t of
Transition {trans_many=DFA {d_id=did',d_dt=dt'},trans_how=dtrans} ->
findTrans s1 s2 did' dt' dtrans offset c input'
| otherwise -> do
(did',dt') <- processWinner s1 did dt w offset
next' s1 s2 did' dt' offset prev input
next' s1 s2 did dt offset prev input = {-# SCC "goNext'.next" #-}
case dt of
Testing' {dt_test=wt,dt_a=a,dt_b=b} ->
if test wt offset prev input
then next' s1 s2 did a offset prev input
else next' s1 s2 did b offset prev input
Simple' {dt_trans=t, dt_other=o} ->
case uncons input of
Nothing -> finalizeWinners
Just (c,input') -> do
case CMap.findWithDefault o c t of
Transition {trans_many=DFA {d_id=did',d_dt=dt'},trans_how=dtrans} ->
findTrans s1 s2 did' dt' dtrans offset c input'
findTrans s1 s2 did' dt' dtrans offset prev' input' = {-# SCC "goNext.findTrans" #-} do
let findTransTo (destIndex,sources) = do
val <- if IMap.null sources then return (succ offset)
else return . minimum =<< mapM (s1 !!) (IMap.keys sources)
set s2 destIndex val
return val
earlyStart <- fmap minimum $ mapM findTransTo (IMap.toList dtrans)
earlyWin <- readSTRef (mq_earliest winQ)
if earlyWin < earlyStart
then do
winnersR <- getMQ earlyStart winQ
writeSTRef storeNext (next s2 s1 did' dt' (succ offset) prev' input')
mapM wsToGroup (reverse winnersR)
else do
let offset' = succ offset in seq offset' $ next s2 s1 did' dt' offset' prev' input'
processWinner s1 did dt w offset = {-# SCC "goNext.newWinnerThenProceed" #-} do
let getStart (sourceIndex,_) = s1 !! sourceIndex
vals <- mapM getStart (IMap.toList w)
let low = minimum vals
high = maximum vals
if low < offset
then do
putMQ (WScratch low offset) winQ
when (high==offset || IMap.member startState w) $
putMQ (WScratch offset offset) winQ
let keepState i1 = do
startsAt <- s1 !! i1
let keep = (startsAt <= low) || (offset <= startsAt)
if keep
then return True
else if i1 == startState
then
set s1 i1 (succ offset) >> return True
else writeSTRef eliminatedStateFlag True >> return False
states' <- filterM keepState (ISet.toAscList did)
flag <- readSTRef eliminatedStateFlag
if flag
then do
writeSTRef eliminatedStateFlag False
let DFA {d_id=did',d_dt=dt'} = Trie.lookupAsc trie states'
return (did',dt')
else do
return (did,dt)
else do
putMQ (WScratch offset offset) winQ
return (did,dt)
finalizeWinners = do
winnersR <- readSTRef (mq_list winQ)
resetMQ winQ
writeSTRef storeNext (return [])
mapM wsToGroup (reverse winnersR)
next s1In s2In didIn dtIn offsetIn prevIn inputIn
{-# INLINE mkTest #-}
mkTest :: Uncons text => Bool -> WhichTest -> Index -> Char -> text -> Bool
mkTest isMultiline = if isMultiline then test_multiline else test_singleline
data MQ s = MQ { mq_earliest :: !(STRef s Position)
, mq_list :: !(STRef s [WScratch])
}
newMQ :: S.ST s (MQ s)
newMQ = do
earliest <- newSTRef maxBound
list <- newSTRef []
return (MQ earliest list)
resetMQ :: MQ s -> S.ST s ()
resetMQ (MQ {mq_earliest=earliest,mq_list=list}) = do
writeSTRef earliest maxBound
writeSTRef list []
putMQ :: WScratch -> MQ s -> S.ST s ()
putMQ ws@(WScratch {ws_start=start}) (MQ {mq_earliest=earliest,mq_list=list}) = do
startE <- readSTRef earliest
if start <= startE
then writeSTRef earliest start >> writeSTRef list [ws]
else do
old <- readSTRef list
let !rest = dropWhile (\ w -> start <= ws_start w) old
!new = ws : rest
writeSTRef list new
getMQ :: Position -> MQ s -> S.ST s [WScratch]
getMQ pos (MQ {mq_earliest=earliest,mq_list=list}) = do
old <- readSTRef list
case span (\ w -> pos <= ws_start w) old of
([],ans) -> do
writeSTRef earliest maxBound
writeSTRef list []
return ans
(new,ans) -> do
writeSTRef earliest (ws_start (last new))
writeSTRef list new
return ans
data SScratch s = SScratch { _s_1 :: !(MScratch s)
, _s_2 :: !(MScratch s)
, _s_mq :: !(MQ s)
}
type MScratch s = STUArray s Index Position
data WScratch = WScratch {ws_start,_ws_stop :: !Position}
deriving Show
{-# INLINE newA #-}
newA :: (MArray (STUArray s) e (S.ST s)) => (Tag,Tag) -> e -> S.ST s (STUArray s Tag e)
newA b_tags initial = newArray b_tags initial
newScratch :: (Index,Index) -> S.ST s (SScratch s)
newScratch b_index = do
s1 <- newMScratch b_index
s2 <- newMScratch b_index
winQ <- newMQ
return (SScratch s1 s2 winQ)
newMScratch :: (Index,Index) -> S.ST s (MScratch s)
newMScratch b_index = newA b_index (-1)
wsToGroup :: WScratch -> S.ST s MatchArray
wsToGroup (WScratch start stop) = do
ma <- newArray (0,0) (start,stop-start) :: S.ST s (STArray s Int (MatchOffset,MatchLength))
unsafeFreeze ma