{-# LANGUAGE CPP #-} {-# LANGUAGE ScopedTypeVariables #-} {- | Copyright: (c) 2018 Kowainik License: MIT Maintainer: Kowainik <xrom.xkov@gmail.com> Functions to ease work with newtypes. -} module Relude.Extra.Newtype ( un , wrap , under , under2 #if ( __GLASGOW_HASKELL__ != 802 ) , underF2 #endif , (#.) ) where import Relude -- $setup -- >>> :set -XTypeApplications -- >>> import Data.Semigroup (Max (..)) {- | Unwraps value from @newtype@. >>> newtype Size = Size Int deriving Show >>> un @Int (Size 5) 5 >>> un (Size 5) == length ['a', 'x', 'b'] False -} un :: forall a n . Coercible a n => n -> a un = coerce {-# INLINE un #-} {- | Wraps value to @newtype@. Behaves exactly as 'un' but has more meaningnful name in case you need to convert some value to @newtype@. >>> newtype Flag = Flag Bool deriving (Show, Eq) >>> wrap False == Flag True False -} wrap :: forall n a . Coercible a n => a -> n wrap = coerce {-# INLINE wrap #-} {- | Applies function to the content of @newtype@. This function is not supposed to be used on @newtype@s that are created with the help of smart constructors. >>> newtype Foo = Foo Bool deriving Show >>> under not (Foo True) Foo False >>> newtype Bar = Bar String deriving Show >>> under (filter (== 'a')) (Bar "abacaba") Bar "aaaa" -} under :: forall n a . Coercible a n => (n -> n) -> (a -> a) under = coerce {-# INLINE under #-} {- | Lift binary function for @newtype@s to work over underlying @newtype@ representation. >>> under2 @(Sum Int) (<>) (3 :: Int) 4 7 >>> under2 @All (<>) True False False -} under2 :: forall n a . Coercible a n => (n -> n -> n) -> (a -> a -> a) under2 = coerce {-# INLINE under2 #-} #if ( __GLASGOW_HASKELL__ != 802 ) {- | Version of 'under2' that works on @newtype@s parametrized by their representation. Provided for convenience. >>> underF2 @Sum (<>) (3 :: Int) 4 7 >>> underF2 @Max (<>) 'p' 't' 't' -} underF2 :: forall n a . Coercible a (n a) => (n a -> n a -> n a) -> (a -> a -> a) underF2 = coerce {-# INLINE underF2 #-} #endif {- | Coercible composition -} (#.) :: Coercible b c => (b -> c) -> (a -> b) -> (a -> c) (#.) _f = coerce {-# INLINE (#.) #-}