relude-1.0.0.1: Safe, performant, user-friendly and lightweight Haskell Standard Library
Copyright(c) 2016 Stephen Diehl
(c) 2016-2018 Serokell
(c) 2018-2021 Kowainik
LicenseMIT
MaintainerKowainik <xrom.xkov@gmail.com>
StabilityStable
PortabilityPortable
Safe HaskellSafe
LanguageHaskell2010

Relude.Monoid

Description

Reexports functions to work with monoids plus adds extra useful functions.

Synopsis

Reexports

class Semigroup a => Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:

Right identity
x <> mempty = x
Left identity
mempty <> x = x
Associativity
x <> (y <> z) = (x <> y) <> z (Semigroup law)
Concatenation
mconcat = foldr (<>) mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

Minimal complete definition

mempty

Methods

mempty :: a #

Identity of mappend

>>> "Hello world" <> mempty
"Hello world"

mappend :: a -> a -> a #

An associative operation

NOTE: This method is redundant and has the default implementation mappend = (<>) since base-4.11.0.0. Should it be implemented manually, since mappend is a synonym for (<>), it is expected that the two functions are defined the same way. In a future GHC release mappend will be removed from Monoid.

mconcat :: [a] -> a #

Fold a list using the monoid.

For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

>>> mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"

Instances

Instances details
Monoid Ordering

Since: base-2.1

Instance details

Defined in GHC.Base

Monoid ()

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid ShortByteString 
Instance details

Defined in Data.ByteString.Short.Internal

Monoid ByteString 
Instance details

Defined in Data.ByteString.Lazy.Internal

Monoid ByteString 
Instance details

Defined in Data.ByteString.Internal

Monoid Builder 
Instance details

Defined in Data.ByteString.Builder.Internal

Monoid IntSet 
Instance details

Defined in Data.IntSet.Internal

Monoid [a]

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Semigroup a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S."

Since 4.11.0: constraint on inner a value generalised from Monoid to Semigroup.

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (IO a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

Monoid p => Monoid (Par1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: Par1 p #

mappend :: Par1 p -> Par1 p -> Par1 p #

mconcat :: [Par1 p] -> Par1 p #

Monoid a => Monoid (Q a)

Since: template-haskell-2.17.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

mempty :: Q a #

mappend :: Q a -> Q a -> Q a #

mconcat :: [Q a] -> Q a #

Monoid a => Monoid (a)

Since: base-4.15

Instance details

Defined in GHC.Base

Methods

mempty :: (a) #

mappend :: (a) -> (a) -> (a) #

mconcat :: [(a)] -> (a) #

Monoid (Predicate a)

mempty on predicates always returns True. Without newtypes this equals pure True.

mempty :: Predicate a
mempty = _ -> True
Instance details

Defined in Data.Functor.Contravariant

Monoid (Comparison a)

mempty on comparisons always returns EQ. Without newtypes this equals pure (pure EQ).

mempty :: Comparison a
mempty = Comparison _ _ -> EQ
Instance details

Defined in Data.Functor.Contravariant

Monoid (Equivalence a)

mempty on equivalences always returns True. Without newtypes this equals pure (pure True).

mempty :: Equivalence a
mempty = Equivalence _ _ -> True
Instance details

Defined in Data.Functor.Contravariant

(Ord a, Bounded a) => Monoid (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

(Ord a, Bounded a) => Monoid (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Monoid m => Monoid (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Semigroup a => Monoid (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

Monoid a => Monoid (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

Monoid (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Monoid a => Monoid (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Endo a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Num a => Monoid (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Num a => Monoid (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Monoid a => Monoid (Down a)

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

mempty :: Down a #

mappend :: Down a -> Down a -> Down a #

mconcat :: [Down a] -> Down a #

Monoid (IntMap a) 
Instance details

Defined in Data.IntMap.Internal

Methods

mempty :: IntMap a #

mappend :: IntMap a -> IntMap a -> IntMap a #

mconcat :: [IntMap a] -> IntMap a #

Monoid (Seq a) 
Instance details

Defined in Data.Sequence.Internal

Methods

mempty :: Seq a #

mappend :: Seq a -> Seq a -> Seq a #

mconcat :: [Seq a] -> Seq a #

Ord a => Monoid (Set a) 
Instance details

Defined in Data.Set.Internal

Methods

mempty :: Set a #

mappend :: Set a -> Set a -> Set a #

mconcat :: [Set a] -> Set a #

(Hashable a, Eq a) => Monoid (HashSet a)

mempty = empty

mappend = union

O(n+m)

To obtain good performance, the smaller set must be presented as the first argument.

Examples

Expand
>>> mappend (fromList [1,2]) (fromList [2,3])
fromList [1,2,3]
Instance details

Defined in Data.HashSet.Internal

Methods

mempty :: HashSet a #

mappend :: HashSet a -> HashSet a -> HashSet a #

mconcat :: [HashSet a] -> HashSet a #

Monoid (MergeSet a) 
Instance details

Defined in Data.Set.Internal

Methods

mempty :: MergeSet a #

mappend :: MergeSet a -> MergeSet a -> MergeSet a #

mconcat :: [MergeSet a] -> MergeSet a #

Monoid b => Monoid (a -> b)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

Monoid (U1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: U1 p #

mappend :: U1 p -> U1 p -> U1 p #

mconcat :: [U1 p] -> U1 p #

(Monoid a, Monoid b) => Monoid (a, b)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid a => Monoid (Op a b)

mempty @(Op a b) without newtypes is mempty @(b->a) = _ -> mempty.

mempty :: Op a b
mempty = Op _ -> mempty
Instance details

Defined in Data.Functor.Contravariant

Methods

mempty :: Op a b #

mappend :: Op a b -> Op a b -> Op a b #

mconcat :: [Op a b] -> Op a b #

Monoid (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

mempty :: Proxy s #

mappend :: Proxy s -> Proxy s -> Proxy s #

mconcat :: [Proxy s] -> Proxy s #

Ord k => Monoid (Map k v) 
Instance details

Defined in Data.Map.Internal

Methods

mempty :: Map k v #

mappend :: Map k v -> Map k v -> Map k v #

mconcat :: [Map k v] -> Map k v #

(Eq k, Hashable k) => Monoid (HashMap k v)

mempty = empty

mappend = union

If a key occurs in both maps, the mapping from the first will be the mapping in the result.

Examples

Expand
>>> mappend (fromList [(1,'a'),(2,'b')]) (fromList [(2,'c'),(3,'d')])
fromList [(1,'a'),(2,'b'),(3,'d')]
Instance details

Defined in Data.HashMap.Internal

Methods

mempty :: HashMap k v #

mappend :: HashMap k v -> HashMap k v -> HashMap k v #

mconcat :: [HashMap k v] -> HashMap k v #

Monoid (f p) => Monoid (Rec1 f p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: Rec1 f p #

mappend :: Rec1 f p -> Rec1 f p -> Rec1 f p #

mconcat :: [Rec1 f p] -> Rec1 f p #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

Monoid a => Monoid (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

(Applicative f, Monoid a) => Monoid (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mempty :: Ap f a #

mappend :: Ap f a -> Ap f a -> Ap f a #

mconcat :: [Ap f a] -> Ap f a #

Alternative f => Monoid (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

Monoid c => Monoid (K1 i c p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: K1 i c p #

mappend :: K1 i c p -> K1 i c p -> K1 i c p #

mconcat :: [K1 i c p] -> K1 i c p #

(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: (f :*: g) p #

mappend :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

mconcat :: [(f :*: g) p] -> (f :*: g) p #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

Monoid (f p) => Monoid (M1 i c f p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: M1 i c f p #

mappend :: M1 i c f p -> M1 i c f p -> M1 i c f p #

mconcat :: [M1 i c f p] -> M1 i c f p #

Monoid (f (g p)) => Monoid ((f :.: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: (f :.: g) p #

mappend :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

mconcat :: [(f :.: g) p] -> (f :.: g) p #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

newtype First a #

Maybe monoid returning the leftmost non-Nothing value.

First a is isomorphic to Alt Maybe a, but precedes it historically.

>>> getFirst (First (Just "hello") <> First Nothing <> First (Just "world"))
Just "hello"

Constructors

First 

Fields

Instances

Instances details
Monad First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

Functor First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Applicative First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

liftA2 :: (a -> b -> c) -> First a -> First b -> First c #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Foldable First

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldMap' :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Traversable First

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

NFData1 First

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> First a -> () #

Eq a => Eq (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Data a => Data (First a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) #

toConstr :: First a -> Constr #

dataTypeOf :: First a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) #

gmapT :: (forall b. Data b => b -> b) -> First a -> First a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

Ord a => Ord (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Read a => Read (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Show a => Show (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Generic (First a)

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep (First a) :: Type -> Type #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Monoid (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

NFData a => NFData (First a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: First a -> () #

Generic1 First

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep1 First :: k -> Type #

Methods

from1 :: forall (a :: k). First a -> Rep1 First a #

to1 :: forall (a :: k). Rep1 First a -> First a #

type Rep (First a) 
Instance details

Defined in Data.Monoid

type Rep (First a) = D1 ('MetaData "First" "Data.Monoid" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe a))))
type Rep1 First 
Instance details

Defined in Data.Monoid

type Rep1 First = D1 ('MetaData "First" "Data.Monoid" "base" 'True) (C1 ('MetaCons "First" 'PrefixI 'True) (S1 ('MetaSel ('Just "getFirst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

newtype Last a #

Maybe monoid returning the rightmost non-Nothing value.

Last a is isomorphic to Dual (First a), and thus to Dual (Alt Maybe a)

>>> getLast (Last (Just "hello") <> Last Nothing <> Last (Just "world"))
Just "world"

Constructors

Last 

Fields

Instances

Instances details
Monad Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

Functor Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Applicative Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

liftA2 :: (a -> b -> c) -> Last a -> Last b -> Last c #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Foldable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldMap' :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Traversable Last

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

NFData1 Last

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Last a -> () #

Eq a => Eq (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Data a => Data (Last a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) #

toConstr :: Last a -> Constr #

dataTypeOf :: Last a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) #

gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

Ord a => Ord (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

Read a => Read (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Show a => Show (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Generic (Last a)

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep (Last a) :: Type -> Type #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Monoid (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

NFData a => NFData (Last a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Last a -> () #

Generic1 Last

Since: base-4.7.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep1 Last :: k -> Type #

Methods

from1 :: forall (a :: k). Last a -> Rep1 Last a #

to1 :: forall (a :: k). Rep1 Last a -> Last a #

type Rep (Last a) 
Instance details

Defined in Data.Monoid

type Rep (Last a) = D1 ('MetaData "Last" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe a))))
type Rep1 Last 
Instance details

Defined in Data.Monoid

type Rep1 Last = D1 ('MetaData "Last" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Last" 'PrefixI 'True) (S1 ('MetaSel ('Just "getLast") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

newtype Ap (f :: k -> Type) (a :: k) #

This data type witnesses the lifting of a Monoid into an Applicative pointwise.

Since: base-4.12.0.0

Constructors

Ap 

Fields

Instances

Instances details
Generic1 (Ap f :: k -> Type)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep1 (Ap f) :: k -> Type #

Methods

from1 :: forall (a :: k0). Ap f a -> Rep1 (Ap f) a #

to1 :: forall (a :: k0). Rep1 (Ap f) a -> Ap f a #

Monad f => Monad (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b #

(>>) :: Ap f a -> Ap f b -> Ap f b #

return :: a -> Ap f a #

Functor f => Functor (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b #

(<$) :: a -> Ap f b -> Ap f a #

MonadFail f => MonadFail (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fail :: String -> Ap f a #

Applicative f => Applicative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Ap f a #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

(*>) :: Ap f a -> Ap f b -> Ap f b #

(<*) :: Ap f a -> Ap f b -> Ap f a #

Foldable f => Foldable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m #

foldMap' :: Monoid m => (a -> m) -> Ap f a -> m #

foldr :: (a -> b -> b) -> b -> Ap f a -> b #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b #

foldl :: (b -> a -> b) -> b -> Ap f a -> b #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b #

foldr1 :: (a -> a -> a) -> Ap f a -> a #

foldl1 :: (a -> a -> a) -> Ap f a -> a #

toList :: Ap f a -> [a] #

null :: Ap f a -> Bool #

length :: Ap f a -> Int #

elem :: Eq a => a -> Ap f a -> Bool #

maximum :: Ord a => Ap f a -> a #

minimum :: Ord a => Ap f a -> a #

sum :: Num a => Ap f a -> a #

product :: Num a => Ap f a -> a #

Traversable f => Traversable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) #

Alternative f => Alternative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

empty :: Ap f a #

(<|>) :: Ap f a -> Ap f a -> Ap f a #

some :: Ap f a -> Ap f [a] #

many :: Ap f a -> Ap f [a] #

MonadPlus f => MonadPlus (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mzero :: Ap f a #

mplus :: Ap f a -> Ap f a -> Ap f a #

(Applicative f, Bounded a) => Bounded (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

minBound :: Ap f a #

maxBound :: Ap f a #

Enum (f a) => Enum (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

succ :: Ap f a -> Ap f a #

pred :: Ap f a -> Ap f a #

toEnum :: Int -> Ap f a #

fromEnum :: Ap f a -> Int #

enumFrom :: Ap f a -> [Ap f a] #

enumFromThen :: Ap f a -> Ap f a -> [Ap f a] #

enumFromTo :: Ap f a -> Ap f a -> [Ap f a] #

enumFromThenTo :: Ap f a -> Ap f a -> Ap f a -> [Ap f a] #

Eq (f a) => Eq (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(==) :: Ap f a -> Ap f a -> Bool #

(/=) :: Ap f a -> Ap f a -> Bool #

(Data (f a), Data a, Typeable f) => Data (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) #

toConstr :: Ap f a -> Constr #

dataTypeOf :: Ap f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) #

gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

(Applicative f, Num a) => Num (Ap f a)

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a #

(-) :: Ap f a -> Ap f a -> Ap f a #

(*) :: Ap f a -> Ap f a -> Ap f a #

negate :: Ap f a -> Ap f a #

abs :: Ap f a -> Ap f a #

signum :: Ap f a -> Ap f a #

fromInteger :: Integer -> Ap f a #

Ord (f a) => Ord (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

compare :: Ap f a -> Ap f a -> Ordering #

(<) :: Ap f a -> Ap f a -> Bool #

(<=) :: Ap f a -> Ap f a -> Bool #

(>) :: Ap f a -> Ap f a -> Bool #

(>=) :: Ap f a -> Ap f a -> Bool #

max :: Ap f a -> Ap f a -> Ap f a #

min :: Ap f a -> Ap f a -> Ap f a #

Read (f a) => Read (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

readsPrec :: Int -> ReadS (Ap f a) #

readList :: ReadS [Ap f a] #

readPrec :: ReadPrec (Ap f a) #

readListPrec :: ReadPrec [Ap f a] #

Show (f a) => Show (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Ap f a -> ShowS #

show :: Ap f a -> String #

showList :: [Ap f a] -> ShowS #

Generic (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep (Ap f a) :: Type -> Type #

Methods

from :: Ap f a -> Rep (Ap f a) x #

to :: Rep (Ap f a) x -> Ap f a #

(Applicative f, Semigroup a) => Semigroup (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a #

sconcat :: NonEmpty (Ap f a) -> Ap f a #

stimes :: Integral b => b -> Ap f a -> Ap f a #

(Applicative f, Monoid a) => Monoid (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mempty :: Ap f a #

mappend :: Ap f a -> Ap f a -> Ap f a #

mconcat :: [Ap f a] -> Ap f a #

type Rep1 (Ap f :: k -> Type) 
Instance details

Defined in Data.Monoid

type Rep1 (Ap f :: k -> Type) = D1 ('MetaData "Ap" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
type Rep (Ap f a) 
Instance details

Defined in Data.Monoid

type Rep (Ap f a) = D1 ('MetaData "Ap" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

newtype Dual a #

The dual of a Monoid, obtained by swapping the arguments of mappend.

>>> getDual (mappend (Dual "Hello") (Dual "World"))
"WorldHello"

Constructors

Dual 

Fields

Instances

Instances details
Monad Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

Functor Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Applicative Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

liftA2 :: (a -> b -> c) -> Dual a -> Dual b -> Dual c #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Foldable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldMap' :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Traversable Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

NFData1 Dual

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Dual a -> () #

Bounded a => Bounded (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Dual a #

maxBound :: Dual a #

Eq a => Eq (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Data a => Data (Dual a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) #

toConstr :: Dual a -> Constr #

dataTypeOf :: Dual a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) #

gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) #

Ord a => Ord (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Dual a -> Dual a -> Ordering #

(<) :: Dual a -> Dual a -> Bool #

(<=) :: Dual a -> Dual a -> Bool #

(>) :: Dual a -> Dual a -> Bool #

(>=) :: Dual a -> Dual a -> Bool #

max :: Dual a -> Dual a -> Dual a #

min :: Dual a -> Dual a -> Dual a #

Read a => Read (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Generic (Dual a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Dual a) :: Type -> Type #

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Semigroup a => Semigroup (Dual a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Monoid a => Monoid (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

NFData a => NFData (Dual a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Dual a -> () #

Generic1 Dual

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Dual :: k -> Type #

Methods

from1 :: forall (a :: k). Dual a -> Rep1 Dual a #

to1 :: forall (a :: k). Rep1 Dual a -> Dual a #

type Rep (Dual a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Dual a) = D1 ('MetaData "Dual" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Rep1 Dual 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Dual = D1 ('MetaData "Dual" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Dual" 'PrefixI 'True) (S1 ('MetaSel ('Just "getDual") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

newtype Endo a #

The monoid of endomorphisms under composition.

>>> let computation = Endo ("Hello, " ++) <> Endo (++ "!")
>>> appEndo computation "Haskell"
"Hello, Haskell!"

Constructors

Endo 

Fields

Instances

Instances details
Generic (Endo a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Endo a) :: Type -> Type #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Semigroup (Endo a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Monoid (Endo a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

type Rep (Endo a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Endo a) = D1 ('MetaData "Endo" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Endo" 'PrefixI 'True) (S1 ('MetaSel ('Just "appEndo") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a -> a))))

newtype All #

Boolean monoid under conjunction (&&).

>>> getAll (All True <> mempty <> All False)
False
>>> getAll (mconcat (map (\x -> All (even x)) [2,4,6,7,8]))
False

Constructors

All 

Fields

Instances

Instances details
Bounded All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: All #

maxBound :: All #

Eq All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Data All

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All #

toConstr :: All -> Constr #

dataTypeOf :: All -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) #

gmapT :: (forall b. Data b => b -> b) -> All -> All #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r #

gmapQ :: (forall d. Data d => d -> u) -> All -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All #

Ord All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: All -> All -> Ordering #

(<) :: All -> All -> Bool #

(<=) :: All -> All -> Bool #

(>) :: All -> All -> Bool #

(>=) :: All -> All -> Bool #

max :: All -> All -> All #

min :: All -> All -> All #

Read All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Generic All

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep All :: Type -> Type #

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Semigroup All

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Monoid All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

NFData All

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: All -> () #

type Rep All 
Instance details

Defined in Data.Semigroup.Internal

type Rep All = D1 ('MetaData "All" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "All" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAll") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))

newtype Any #

Boolean monoid under disjunction (||).

>>> getAny (Any True <> mempty <> Any False)
True
>>> getAny (mconcat (map (\x -> Any (even x)) [2,4,6,7,8]))
True

Constructors

Any 

Fields

Instances

Instances details
Bounded Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Any #

maxBound :: Any #

Eq Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Data Any

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any #

toConstr :: Any -> Constr #

dataTypeOf :: Any -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) #

gmapT :: (forall b. Data b => b -> b) -> Any -> Any #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r #

gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any #

Ord Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Any -> Any -> Ordering #

(<) :: Any -> Any -> Bool #

(<=) :: Any -> Any -> Bool #

(>) :: Any -> Any -> Bool #

(>=) :: Any -> Any -> Bool #

max :: Any -> Any -> Any #

min :: Any -> Any -> Any #

Read Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Generic Any

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep Any :: Type -> Type #

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Semigroup Any

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Monoid Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

NFData Any

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Any -> () #

type Rep Any 
Instance details

Defined in Data.Semigroup.Internal

type Rep Any = D1 ('MetaData "Any" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Any" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAny") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Bool)))

newtype Sum a #

Monoid under addition.

>>> getSum (Sum 1 <> Sum 2 <> mempty)
3

Constructors

Sum 

Fields

Instances

Instances details
Monad Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

Functor Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Applicative Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

liftA2 :: (a -> b -> c) -> Sum a -> Sum b -> Sum c #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Foldable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldMap' :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Traversable Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

NFData1 Sum

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Sum a -> () #

Bounded a => Bounded (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Sum a #

maxBound :: Sum a #

Eq a => Eq (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Data a => Data (Sum a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) #

toConstr :: Sum a -> Constr #

dataTypeOf :: Sum a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) #

gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) #

Num a => Num (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Ord a => Ord (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

Read a => Read (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Generic (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Sum a) :: Type -> Type #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Num a => Semigroup (Sum a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Monoid (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

NFData a => NFData (Sum a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Sum a -> () #

Generic1 Sum

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Sum :: k -> Type #

Methods

from1 :: forall (a :: k). Sum a -> Rep1 Sum a #

to1 :: forall (a :: k). Rep1 Sum a -> Sum a #

type Rep (Sum a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Sum a) = D1 ('MetaData "Sum" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Rep1 Sum 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Sum = D1 ('MetaData "Sum" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Sum" 'PrefixI 'True) (S1 ('MetaSel ('Just "getSum") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

newtype Product a #

Monoid under multiplication.

>>> getProduct (Product 3 <> Product 4 <> mempty)
12

Constructors

Product 

Fields

Instances

Instances details
Monad Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

Functor Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Applicative Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

liftA2 :: (a -> b -> c) -> Product a -> Product b -> Product c #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Foldable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldMap' :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Traversable Product

Since: base-4.8.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

NFData1 Product

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Product a -> () #

Bounded a => Bounded (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Eq a => Eq (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Data a => Data (Product a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) #

toConstr :: Product a -> Constr #

dataTypeOf :: Product a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) #

gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) #

Num a => Num (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Ord a => Ord (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

Read a => Read (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Show a => Show (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Generic (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Product a) :: Type -> Type #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Num a => Semigroup (Product a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Num a => Monoid (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

NFData a => NFData (Product a)

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Product a -> () #

Generic1 Product

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Product :: k -> Type #

Methods

from1 :: forall (a :: k). Product a -> Rep1 Product a #

to1 :: forall (a :: k). Rep1 Product a -> Product a #

type Rep (Product a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Product a) = D1 ('MetaData "Product" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Rep1 Product 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Product = D1 ('MetaData "Product" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Product" 'PrefixI 'True) (S1 ('MetaSel ('Just "getProduct") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

newtype Alt (f :: k -> Type) (a :: k) #

Monoid under <|>.

>>> getAlt (Alt (Just 12) <> Alt (Just 24))
Just 12
>>> getAlt $ Alt Nothing <> Alt (Just 24)
Just 24

Since: base-4.8.0.0

Constructors

Alt 

Fields

Instances

Instances details
Generic1 (Alt f :: k -> Type)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 (Alt f) :: k -> Type #

Methods

from1 :: forall (a :: k0). Alt f a -> Rep1 (Alt f) a #

to1 :: forall (a :: k0). Rep1 (Alt f) a -> Alt f a #

Monad f => Monad (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b #

(>>) :: Alt f a -> Alt f b -> Alt f b #

return :: a -> Alt f a #

Functor f => Functor (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

Applicative f => Applicative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Alt f a #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

(*>) :: Alt f a -> Alt f b -> Alt f b #

(<*) :: Alt f a -> Alt f b -> Alt f a #

Foldable f => Foldable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Alt f m -> m #

foldMap :: Monoid m => (a -> m) -> Alt f a -> m #

foldMap' :: Monoid m => (a -> m) -> Alt f a -> m #

foldr :: (a -> b -> b) -> b -> Alt f a -> b #

foldr' :: (a -> b -> b) -> b -> Alt f a -> b #

foldl :: (b -> a -> b) -> b -> Alt f a -> b #

foldl' :: (b -> a -> b) -> b -> Alt f a -> b #

foldr1 :: (a -> a -> a) -> Alt f a -> a #

foldl1 :: (a -> a -> a) -> Alt f a -> a #

toList :: Alt f a -> [a] #

null :: Alt f a -> Bool #

length :: Alt f a -> Int #

elem :: Eq a => a -> Alt f a -> Bool #

maximum :: Ord a => Alt f a -> a #

minimum :: Ord a => Alt f a -> a #

sum :: Num a => Alt f a -> a #

product :: Num a => Alt f a -> a #

Traversable f => Traversable (Alt f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Alt f a -> f0 (Alt f b) #

sequenceA :: Applicative f0 => Alt f (f0 a) -> f0 (Alt f a) #

mapM :: Monad m => (a -> m b) -> Alt f a -> m (Alt f b) #

sequence :: Monad m => Alt f (m a) -> m (Alt f a) #

Contravariant f => Contravariant (Alt f) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a) -> Alt f a -> Alt f a' #

(>$) :: b -> Alt f b -> Alt f a #

Alternative f => Alternative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

empty :: Alt f a #

(<|>) :: Alt f a -> Alt f a -> Alt f a #

some :: Alt f a -> Alt f [a] #

many :: Alt f a -> Alt f [a] #

MonadPlus f => MonadPlus (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mzero :: Alt f a #

mplus :: Alt f a -> Alt f a -> Alt f a #

Enum (f a) => Enum (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

succ :: Alt f a -> Alt f a #

pred :: Alt f a -> Alt f a #

toEnum :: Int -> Alt f a #

fromEnum :: Alt f a -> Int #

enumFrom :: Alt f a -> [Alt f a] #

enumFromThen :: Alt f a -> Alt f a -> [Alt f a] #

enumFromTo :: Alt f a -> Alt f a -> [Alt f a] #

enumFromThenTo :: Alt f a -> Alt f a -> Alt f a -> [Alt f a] #

Eq (f a) => Eq (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Alt f a -> Alt f a -> Bool #

(/=) :: Alt f a -> Alt f a -> Bool #

(Data (f a), Data a, Typeable f) => Data (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) #

toConstr :: Alt f a -> Constr #

dataTypeOf :: Alt f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) #

gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) #

Num (f a) => Num (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Alt f a -> Alt f a -> Alt f a #

(-) :: Alt f a -> Alt f a -> Alt f a #

(*) :: Alt f a -> Alt f a -> Alt f a #

negate :: Alt f a -> Alt f a #

abs :: Alt f a -> Alt f a #

signum :: Alt f a -> Alt f a #

fromInteger :: Integer -> Alt f a #

Ord (f a) => Ord (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Alt f a -> Alt f a -> Ordering #

(<) :: Alt f a -> Alt f a -> Bool #

(<=) :: Alt f a -> Alt f a -> Bool #

(>) :: Alt f a -> Alt f a -> Bool #

(>=) :: Alt f a -> Alt f a -> Bool #

max :: Alt f a -> Alt f a -> Alt f a #

min :: Alt f a -> Alt f a -> Alt f a #

Read (f a) => Read (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

readsPrec :: Int -> ReadS (Alt f a) #

readList :: ReadS [Alt f a] #

readPrec :: ReadPrec (Alt f a) #

readListPrec :: ReadPrec [Alt f a] #

Show (f a) => Show (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Alt f a -> ShowS #

show :: Alt f a -> String #

showList :: [Alt f a] -> ShowS #

Generic (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep (Alt f a) :: Type -> Type #

Methods

from :: Alt f a -> Rep (Alt f a) x #

to :: Rep (Alt f a) x -> Alt f a #

Alternative f => Semigroup (Alt f a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a #

sconcat :: NonEmpty (Alt f a) -> Alt f a #

stimes :: Integral b => b -> Alt f a -> Alt f a #

Alternative f => Monoid (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

type Rep1 (Alt f :: k -> Type) 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 (Alt f :: k -> Type) = D1 ('MetaData "Alt" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
type Rep (Alt f a) 
Instance details

Defined in Data.Semigroup.Internal

type Rep (Alt f a) = D1 ('MetaData "Alt" "Data.Semigroup.Internal" "base" 'True) (C1 ('MetaCons "Alt" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAlt") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Instances should satisfy the following:

Associativity
x <> (y <> z) = (x <> y) <> z

Since: base-4.9.0.0

Minimal complete definition

(<>)

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

>>> [1,2,3] <> [4,5,6]
[1,2,3,4,5,6]

sconcat :: NonEmpty a -> a #

Reduce a non-empty list with <>

The default definition should be sufficient, but this can be overridden for efficiency.

>>> import Data.List.NonEmpty
>>> sconcat $ "Hello" :| [" ", "Haskell", "!"]
"Hello Haskell!"

stimes :: Integral b => b -> a -> a #

Repeat a value n times.

Given that this works on a Semigroup it is allowed to fail if you request 0 or fewer repetitions, and the default definition will do so.

By making this a member of the class, idempotent semigroups and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by picking stimes = stimesIdempotent or stimes = stimesIdempotentMonoid respectively.

>>> stimes 4 [1]
[1,1,1,1]

Instances

Instances details
Semigroup Ordering

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Semigroup ()

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup Void

Since: base-4.9.0.0

Instance details

Defined in Data.Void

Methods

(<>) :: Void -> Void -> Void #

sconcat :: NonEmpty Void -> Void #

stimes :: Integral b => b -> Void -> Void #

Semigroup All

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Semigroup Any

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Semigroup ShortByteString 
Instance details

Defined in Data.ByteString.Short.Internal

Semigroup ByteString 
Instance details

Defined in Data.ByteString.Lazy.Internal

Semigroup ByteString 
Instance details

Defined in Data.ByteString.Internal

Semigroup Builder 
Instance details

Defined in Data.ByteString.Builder.Internal

Semigroup IntSet

Since: containers-0.5.7

Instance details

Defined in Data.IntSet.Internal

Semigroup [a]

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

Semigroup a => Semigroup (Maybe a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (IO a)

Since: base-4.10.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Semigroup p => Semigroup (Par1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: Par1 p -> Par1 p -> Par1 p #

sconcat :: NonEmpty (Par1 p) -> Par1 p #

stimes :: Integral b => b -> Par1 p -> Par1 p #

Semigroup a => Semigroup (Q a)

Since: template-haskell-2.17.0.0

Instance details

Defined in Language.Haskell.TH.Syntax

Methods

(<>) :: Q a -> Q a -> Q a #

sconcat :: NonEmpty (Q a) -> Q a #

stimes :: Integral b => b -> Q a -> Q a #

Semigroup a => Semigroup (a)

Since: base-4.15

Instance details

Defined in GHC.Base

Methods

(<>) :: (a) -> (a) -> (a) #

sconcat :: NonEmpty (a) -> (a) #

stimes :: Integral b => b -> (a) -> (a) #

Semigroup (Predicate a)

(<>) on predicates uses logical conjunction (&&) on the results. Without newtypes this equals liftA2 (&&).

(<>) :: Predicate a -> Predicate a -> Predicate a
Predicate pred <> Predicate pred' = Predicate a ->
  pred a && pred' a
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Predicate a -> Predicate a -> Predicate a #

sconcat :: NonEmpty (Predicate a) -> Predicate a #

stimes :: Integral b => b -> Predicate a -> Predicate a #

Semigroup (Comparison a)

(<>) on comparisons combines results with (<>) @Ordering. Without newtypes this equals liftA2 (liftA2 (<>)).

(<>) :: Comparison a -> Comparison a -> Comparison a
Comparison cmp <> Comparison cmp' = Comparison a a' ->
  cmp a a' <> cmp a a'
Instance details

Defined in Data.Functor.Contravariant

Semigroup (Equivalence a)

(<>) on equivalences uses logical conjunction (&&) on the results. Without newtypes this equals liftA2 (liftA2 (&&)).

(<>) :: Equivalence a -> Equivalence a -> Equivalence a
Equivalence equiv <> Equivalence equiv' = Equivalence a b ->
  equiv a b && equiv a b
Instance details

Defined in Data.Functor.Contravariant

Ord a => Semigroup (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Ord a => Semigroup (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Monoid m => Semigroup (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Semigroup a => Semigroup (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Semigroup a => Semigroup (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(<>) :: Identity a -> Identity a -> Identity a #

sconcat :: NonEmpty (Identity a) -> Identity a #

stimes :: Integral b => b -> Identity a -> Identity a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup a => Semigroup (Dual a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Semigroup (Endo a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Num a => Semigroup (Sum a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Semigroup (Product a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Semigroup a => Semigroup (Down a)

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(<>) :: Down a -> Down a -> Down a #

sconcat :: NonEmpty (Down a) -> Down a #

stimes :: Integral b => b -> Down a -> Down a #

Semigroup (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Semigroup (IntMap a)

Since: containers-0.5.7

Instance details

Defined in Data.IntMap.Internal

Methods

(<>) :: IntMap a -> IntMap a -> IntMap a #

sconcat :: NonEmpty (IntMap a) -> IntMap a #

stimes :: Integral b => b -> IntMap a -> IntMap a #

Semigroup (Seq a)

Since: containers-0.5.7

Instance details

Defined in Data.Sequence.Internal

Methods

(<>) :: Seq a -> Seq a -> Seq a #

sconcat :: NonEmpty (Seq a) -> Seq a #

stimes :: Integral b => b -> Seq a -> Seq a #

Ord a => Semigroup (Set a)

Since: containers-0.5.7

Instance details

Defined in Data.Set.Internal

Methods

(<>) :: Set a -> Set a -> Set a #

sconcat :: NonEmpty (Set a) -> Set a #

stimes :: Integral b => b -> Set a -> Set a #

(Hashable a, Eq a) => Semigroup (HashSet a)

<> = union

O(n+m)

To obtain good performance, the smaller set must be presented as the first argument.

Examples

Expand
>>> fromList [1,2] <> fromList [2,3]
fromList [1,2,3]
Instance details

Defined in Data.HashSet.Internal

Methods

(<>) :: HashSet a -> HashSet a -> HashSet a #

sconcat :: NonEmpty (HashSet a) -> HashSet a #

stimes :: Integral b => b -> HashSet a -> HashSet a #

Semigroup (MergeSet a) 
Instance details

Defined in Data.Set.Internal

Methods

(<>) :: MergeSet a -> MergeSet a -> MergeSet a #

sconcat :: NonEmpty (MergeSet a) -> MergeSet a #

stimes :: Integral b => b -> MergeSet a -> MergeSet a #

Semigroup b => Semigroup (a -> b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b0 => b0 -> (a -> b) -> a -> b #

Semigroup (Either a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Either

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b0 => b0 -> Either a b -> Either a b #

Semigroup (V1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: V1 p -> V1 p -> V1 p #

sconcat :: NonEmpty (V1 p) -> V1 p #

stimes :: Integral b => b -> V1 p -> V1 p #

Semigroup (U1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: U1 p -> U1 p -> U1 p #

sconcat :: NonEmpty (U1 p) -> U1 p #

stimes :: Integral b => b -> U1 p -> U1 p #

(Semigroup a, Semigroup b) => Semigroup (a, b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b0 => b0 -> (a, b) -> (a, b) #

Semigroup a => Semigroup (Op a b)

(<>) @(Op a b) without newtypes is (<>) @(b->a) = liftA2 (<>). This lifts the Semigroup operation (<>) over the output of a.

(<>) :: Op a b -> Op a b -> Op a b
Op f <> Op g = Op a -> f a <> g a
Instance details

Defined in Data.Functor.Contravariant

Methods

(<>) :: Op a b -> Op a b -> Op a b #

sconcat :: NonEmpty (Op a b) -> Op a b #

stimes :: Integral b0 => b0 -> Op a b -> Op a b #

Semigroup (Proxy s)

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

(<>) :: Proxy s -> Proxy s -> Proxy s #

sconcat :: NonEmpty (Proxy s) -> Proxy s #

stimes :: Integral b => b -> Proxy s -> Proxy s #

Ord k => Semigroup (Map k v) 
Instance details

Defined in Data.Map.Internal

Methods

(<>) :: Map k v -> Map k v -> Map k v #

sconcat :: NonEmpty (Map k v) -> Map k v #

stimes :: Integral b => b -> Map k v -> Map k v #

(Eq k, Hashable k) => Semigroup (HashMap k v)

<> = union

If a key occurs in both maps, the mapping from the first will be the mapping in the result.

Examples

Expand
>>> fromList [(1,'a'),(2,'b')] <> fromList [(2,'c'),(3,'d')]
fromList [(1,'a'),(2,'b'),(3,'d')]
Instance details

Defined in Data.HashMap.Internal

Methods

(<>) :: HashMap k v -> HashMap k v -> HashMap k v #

sconcat :: NonEmpty (HashMap k v) -> HashMap k v #

stimes :: Integral b => b -> HashMap k v -> HashMap k v #

Semigroup (f p) => Semigroup (Rec1 f p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: Rec1 f p -> Rec1 f p -> Rec1 f p #

sconcat :: NonEmpty (Rec1 f p) -> Rec1 f p #

stimes :: Integral b => b -> Rec1 f p -> Rec1 f p #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b0 => b0 -> (a, b, c) -> (a, b, c) #

Semigroup a => Semigroup (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

(Applicative f, Semigroup a) => Semigroup (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a #

sconcat :: NonEmpty (Ap f a) -> Ap f a #

stimes :: Integral b => b -> Ap f a -> Ap f a #

Alternative f => Semigroup (Alt f a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a #

sconcat :: NonEmpty (Alt f a) -> Alt f a #

stimes :: Integral b => b -> Alt f a -> Alt f a #

Semigroup c => Semigroup (K1 i c p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: K1 i c p -> K1 i c p -> K1 i c p #

sconcat :: NonEmpty (K1 i c p) -> K1 i c p #

stimes :: Integral b => b -> K1 i c p -> K1 i c p #

(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

sconcat :: NonEmpty ((f :*: g) p) -> (f :*: g) p #

stimes :: Integral b => b -> (f :*: g) p -> (f :*: g) p #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b0 => b0 -> (a, b, c, d) -> (a, b, c, d) #

Semigroup (f p) => Semigroup (M1 i c f p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: M1 i c f p -> M1 i c f p -> M1 i c f p #

sconcat :: NonEmpty (M1 i c f p) -> M1 i c f p #

stimes :: Integral b => b -> M1 i c f p -> M1 i c f p #

Semigroup (f (g p)) => Semigroup ((f :.: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

sconcat :: NonEmpty ((f :.: g) p) -> (f :.: g) p #

stimes :: Integral b => b -> (f :.: g) p -> (f :.: g) p #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b0 => b0 -> (a, b, c, d, e) -> (a, b, c, d, e) #

mtimesDefault :: (Integral b, Monoid a) => b -> a -> a #

Repeat a value n times.

mtimesDefault n a = a <> a <> ... <> a  -- using <> (n-1) times

Implemented using stimes and mempty.

This is a suitable definition for an mtimes member of Monoid.

cycle1 :: Semigroup m => m -> m #

A generalization of cycle to an arbitrary Semigroup. May fail to terminate for some values in some semigroups.

data WrappedMonoid m #

Provide a Semigroup for an arbitrary Monoid.

NOTE: This is not needed anymore since Semigroup became a superclass of Monoid in base-4.11 and this newtype be deprecated at some point in the future.

Instances

Instances details
NFData1 WrappedMonoid

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> WrappedMonoid a -> () #

Hashable1 WrappedMonoid

Since: hashable-1.3.1.0

Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> WrappedMonoid a -> Int #

Bounded m => Bounded (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Enum a => Enum (WrappedMonoid a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Eq m => Eq (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Data m => Data (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) #

toConstr :: WrappedMonoid m -> Constr #

dataTypeOf :: WrappedMonoid m -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) #

gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u #

gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) #

Ord m => Ord (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Read m => Read (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Show m => Show (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Generic (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (WrappedMonoid m) :: Type -> Type #

Monoid m => Semigroup (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Monoid m => Monoid (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

NFData m => NFData (WrappedMonoid m)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: WrappedMonoid m -> () #

Hashable a => Hashable (WrappedMonoid a) 
Instance details

Defined in Data.Hashable.Class

Generic1 WrappedMonoid

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 WrappedMonoid :: k -> Type #

Methods

from1 :: forall (a :: k). WrappedMonoid a -> Rep1 WrappedMonoid a #

to1 :: forall (a :: k). Rep1 WrappedMonoid a -> WrappedMonoid a #

type Rep (WrappedMonoid m) 
Instance details

Defined in Data.Semigroup

type Rep (WrappedMonoid m) = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 m)))
type Rep1 WrappedMonoid 
Instance details

Defined in Data.Semigroup

type Rep1 WrappedMonoid = D1 ('MetaData "WrappedMonoid" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "WrapMonoid" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapMonoid") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1))

newtype Option a #

Option is effectively Maybe with a better instance of Monoid, built off of an underlying Semigroup instead of an underlying Monoid.

Ideally, this type would not exist at all and we would just fix the Monoid instance of Maybe.

In GHC 8.4 and higher, the Monoid instance for Maybe has been corrected to lift a Semigroup instance instead of a Monoid instance. Consequently, this type is no longer useful.

Constructors

Option 

Fields

Instances

Instances details
Monad Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(>>=) :: Option a -> (a -> Option b) -> Option b #

(>>) :: Option a -> Option b -> Option b #

return :: a -> Option a #

Functor Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fmap :: (a -> b) -> Option a -> Option b #

(<$) :: a -> Option b -> Option a #

MonadFix Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mfix :: (a -> Option a) -> Option a #

Applicative Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

pure :: a -> Option a #

(<*>) :: Option (a -> b) -> Option a -> Option b #

liftA2 :: (a -> b -> c) -> Option a -> Option b -> Option c #

(*>) :: Option a -> Option b -> Option b #

(<*) :: Option a -> Option b -> Option a #

Foldable Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

fold :: Monoid m => Option m -> m #

foldMap :: Monoid m => (a -> m) -> Option a -> m #

foldMap' :: Monoid m => (a -> m) -> Option a -> m #

foldr :: (a -> b -> b) -> b -> Option a -> b #

foldr' :: (a -> b -> b) -> b -> Option a -> b #

foldl :: (b -> a -> b) -> b -> Option a -> b #

foldl' :: (b -> a -> b) -> b -> Option a -> b #

foldr1 :: (a -> a -> a) -> Option a -> a #

foldl1 :: (a -> a -> a) -> Option a -> a #

toList :: Option a -> [a] #

null :: Option a -> Bool #

length :: Option a -> Int #

elem :: Eq a => a -> Option a -> Bool #

maximum :: Ord a => Option a -> a #

minimum :: Ord a => Option a -> a #

sum :: Num a => Option a -> a #

product :: Num a => Option a -> a #

Traversable Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

traverse :: Applicative f => (a -> f b) -> Option a -> f (Option b) #

sequenceA :: Applicative f => Option (f a) -> f (Option a) #

mapM :: Monad m => (a -> m b) -> Option a -> m (Option b) #

sequence :: Monad m => Option (m a) -> m (Option a) #

Alternative Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

empty :: Option a #

(<|>) :: Option a -> Option a -> Option a #

some :: Option a -> Option [a] #

many :: Option a -> Option [a] #

MonadPlus Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mzero :: Option a #

mplus :: Option a -> Option a -> Option a #

NFData1 Option

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Option a -> () #

Hashable1 Option

Since: hashable-1.3.1.0

Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> Option a -> Int #

Eq a => Eq (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(==) :: Option a -> Option a -> Bool #

(/=) :: Option a -> Option a -> Bool #

Data a => Data (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) #

toConstr :: Option a -> Constr #

dataTypeOf :: Option a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) #

gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

Ord a => Ord (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

compare :: Option a -> Option a -> Ordering #

(<) :: Option a -> Option a -> Bool #

(<=) :: Option a -> Option a -> Bool #

(>) :: Option a -> Option a -> Bool #

(>=) :: Option a -> Option a -> Bool #

max :: Option a -> Option a -> Option a #

min :: Option a -> Option a -> Option a #

Read a => Read (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Show a => Show (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

showsPrec :: Int -> Option a -> ShowS #

show :: Option a -> String #

showList :: [Option a] -> ShowS #

Generic (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep (Option a) :: Type -> Type #

Methods

from :: Option a -> Rep (Option a) x #

to :: Rep (Option a) x -> Option a #

Semigroup a => Semigroup (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Semigroup a => Monoid (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

NFData a => NFData (Option a)

Since: deepseq-1.4.2.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Option a -> () #

Hashable a => Hashable (Option a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Option a -> Int #

hash :: Option a -> Int #

Generic1 Option

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Option :: k -> Type #

Methods

from1 :: forall (a :: k). Option a -> Rep1 Option a #

to1 :: forall (a :: k). Rep1 Option a -> Option a #

type Rep (Option a) 
Instance details

Defined in Data.Semigroup

type Rep (Option a) = D1 ('MetaData "Option" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Option" 'PrefixI 'True) (S1 ('MetaSel ('Just "getOption") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Maybe a))))
type Rep1 Option 
Instance details

Defined in Data.Semigroup

type Rep1 Option = D1 ('MetaData "Option" "Data.Semigroup" "base" 'True) (C1 ('MetaCons "Option" 'PrefixI 'True) (S1 ('MetaSel ('Just "getOption") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Maybe)))

stimesMonoid :: (Integral b, Monoid a) => b -> a -> a #

This is a valid definition of stimes for a Monoid.

Unlike the default definition of stimes, it is defined for 0 and so it should be preferred where possible.

stimesIdempotent :: Integral b => b -> a -> a #

This is a valid definition of stimes for an idempotent Semigroup.

When x <> x = x, this definition should be preferred, because it works in \(\mathcal{O}(1)\) rather than \(\mathcal{O}(\log n)\).

stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a #

This is a valid definition of stimes for an idempotent Monoid.

When mappend x x = x, this definition should be preferred, because it works in \(\mathcal{O}(1)\) rather than \(\mathcal{O}(\log n)\)

newtype Ap (f :: k -> Type) (a :: k) #

This data type witnesses the lifting of a Monoid into an Applicative pointwise.

Since: base-4.12.0.0

Constructors

Ap 

Fields

Instances

Instances details
Generic1 (Ap f :: k -> Type)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep1 (Ap f) :: k -> Type #

Methods

from1 :: forall (a :: k0). Ap f a -> Rep1 (Ap f) a #

to1 :: forall (a :: k0). Rep1 (Ap f) a -> Ap f a #

Monad f => Monad (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b #

(>>) :: Ap f a -> Ap f b -> Ap f b #

return :: a -> Ap f a #

Functor f => Functor (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b #

(<$) :: a -> Ap f b -> Ap f a #

MonadFail f => MonadFail (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fail :: String -> Ap f a #

Applicative f => Applicative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

pure :: a -> Ap f a #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

(*>) :: Ap f a -> Ap f b -> Ap f b #

(<*) :: Ap f a -> Ap f b -> Ap f a #

Foldable f => Foldable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Ap f m -> m #

foldMap :: Monoid m => (a -> m) -> Ap f a -> m #

foldMap' :: Monoid m => (a -> m) -> Ap f a -> m #

foldr :: (a -> b -> b) -> b -> Ap f a -> b #

foldr' :: (a -> b -> b) -> b -> Ap f a -> b #

foldl :: (b -> a -> b) -> b -> Ap f a -> b #

foldl' :: (b -> a -> b) -> b -> Ap f a -> b #

foldr1 :: (a -> a -> a) -> Ap f a -> a #

foldl1 :: (a -> a -> a) -> Ap f a -> a #

toList :: Ap f a -> [a] #

null :: Ap f a -> Bool #

length :: Ap f a -> Int #

elem :: Eq a => a -> Ap f a -> Bool #

maximum :: Ord a => Ap f a -> a #

minimum :: Ord a => Ap f a -> a #

sum :: Num a => Ap f a -> a #

product :: Num a => Ap f a -> a #

Traversable f => Traversable (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Ap f a -> f0 (Ap f b) #

sequenceA :: Applicative f0 => Ap f (f0 a) -> f0 (Ap f a) #

mapM :: Monad m => (a -> m b) -> Ap f a -> m (Ap f b) #

sequence :: Monad m => Ap f (m a) -> m (Ap f a) #

Alternative f => Alternative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

empty :: Ap f a #

(<|>) :: Ap f a -> Ap f a -> Ap f a #

some :: Ap f a -> Ap f [a] #

many :: Ap f a -> Ap f [a] #

MonadPlus f => MonadPlus (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mzero :: Ap f a #

mplus :: Ap f a -> Ap f a -> Ap f a #

(Applicative f, Bounded a) => Bounded (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

minBound :: Ap f a #

maxBound :: Ap f a #

Enum (f a) => Enum (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

succ :: Ap f a -> Ap f a #

pred :: Ap f a -> Ap f a #

toEnum :: Int -> Ap f a #

fromEnum :: Ap f a -> Int #

enumFrom :: Ap f a -> [Ap f a] #

enumFromThen :: Ap f a -> Ap f a -> [Ap f a] #

enumFromTo :: Ap f a -> Ap f a -> [Ap f a] #

enumFromThenTo :: Ap f a -> Ap f a -> Ap f a -> [Ap f a] #

Eq (f a) => Eq (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(==) :: Ap f a -> Ap f a -> Bool #

(/=) :: Ap f a -> Ap f a -> Bool #

(Data (f a), Data a, Typeable f) => Data (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) #

toConstr :: Ap f a -> Constr #

dataTypeOf :: Ap f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) #

gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) #

(Applicative f, Num a) => Num (Ap f a)

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a #

(-) :: Ap f a -> Ap f a -> Ap f a #

(*) :: Ap f a -> Ap f a -> Ap f a #

negate :: Ap f a -> Ap f a #

abs :: Ap f a -> Ap f a #

signum :: Ap f a -> Ap f a #

fromInteger :: Integer -> Ap f a #

Ord (f a) => Ord (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

compare :: Ap f a -> Ap f a -> Ordering #

(<) :: Ap f a -> Ap f a -> Bool #

(<=) :: Ap f a -> Ap f a -> Bool #

(>) :: Ap f a -> Ap f a -> Bool #

(>=) :: Ap f a -> Ap f a -> Bool #

max :: Ap f a -> Ap f a -> Ap f a #

min :: Ap f a -> Ap f a -> Ap f a #

Read (f a) => Read (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

readsPrec :: Int -> ReadS (Ap f a) #

readList :: ReadS [Ap f a] #

readPrec :: ReadPrec (Ap f a) #

readListPrec :: ReadPrec [Ap f a] #

Show (f a) => Show (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Ap f a -> ShowS #

show :: Ap f a -> String #

showList :: [Ap f a] -> ShowS #

Generic (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Associated Types

type Rep (Ap f a) :: Type -> Type #

Methods

from :: Ap f a -> Rep (Ap f a) x #

to :: Rep (Ap f a) x -> Ap f a #

(Applicative f, Semigroup a) => Semigroup (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Ap f a -> Ap f a -> Ap f a #

sconcat :: NonEmpty (Ap f a) -> Ap f a #

stimes :: Integral b => b -> Ap f a -> Ap f a #

(Applicative f, Monoid a) => Monoid (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

mempty :: Ap f a #

mappend :: Ap f a -> Ap f a -> Ap f a #

mconcat :: [Ap f a] -> Ap f a #

type Rep1 (Ap f :: k -> Type) 
Instance details

Defined in Data.Monoid

type Rep1 (Ap f :: k -> Type) = D1 ('MetaData "Ap" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
type Rep (Ap f a) 
Instance details

Defined in Data.Monoid

type Rep (Ap f a) = D1 ('MetaData "Ap" "Data.Monoid" "base" 'True) (C1 ('MetaCons "Ap" 'PrefixI 'True) (S1 ('MetaSel ('Just "getAp") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f a))))

Combinators

maybeToMonoid :: Monoid m => Maybe m -> m Source #

Extracts Monoid value from Maybe returning mempty if Nothing.

>>> maybeToMonoid (Just [1,2,3] :: Maybe [Int])
[1,2,3]
>>> maybeToMonoid (Nothing :: Maybe [Int])
[]

memptyIfFalse :: Monoid m => Bool -> m -> m Source #

Returns the given value in case of the given predicate is satisfied (is True). Otherwise, it returns mempty.

>>> memptyIfFalse True (Just "Hello")
Just "Hello"
>>> memptyIfFalse False "Doesn't matter"
""

Since: 0.7.0.0

memptyIfTrue :: Monoid m => Bool -> m -> m Source #

Returns the given value in case of the given predicate is unsatisfied (is False). Otherwise, it returns mempty.

>>> memptyIfTrue True (Just "Hello")
Nothing
>>> memptyIfTrue False "Does matter"
"Does matter"

Since: 0.7.0.0