relude-1.2.1.0: Safe, performant, user-friendly and lightweight Haskell Standard Library
Copyright(c) 2018-2023 Kowainik
LicenseMIT
MaintainerKowainik <xrom.xkov@gmail.com>
StabilityStable
PortabilityPortable
Safe HaskellTrustworthy
LanguageHaskell2010

Relude.Numeric

Description

Provides numerical data types and functions.

Since: 0.5.0

Synopsis

Reexports

xor :: Bits a => a -> a -> a infixl 6 #

Bitwise "xor"

toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b #

Attempt to convert an Integral type a to an Integral type b using the size of the types as measured by Bits methods.

A simpler version of this function is:

toIntegral :: (Integral a, Integral b) => a -> Maybe b
toIntegral x
  | toInteger x == toInteger y = Just y
  | otherwise                  = Nothing
  where
    y = fromIntegral x

This version requires going through Integer, which can be inefficient. However, toIntegralSized is optimized to allow GHC to statically determine the relative type sizes (as measured by bitSizeMaybe and isSigned) and avoid going through Integer for many types. (The implementation uses fromIntegral, which is itself optimized with rules for base types but may go through Integer for some type pairs.)

Since: base-4.8.0.0

data Int #

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using minBound and maxBound from the Bounded class.

Instances

Instances details
Data Int

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int #

toConstr :: Int -> Constr #

dataTypeOf :: Int -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) #

gmapT :: (forall b. Data b => b -> b) -> Int -> Int #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

Bits Int

Since: base-2.1

Instance details

Defined in GHC.Bits

Methods

(.&.) :: Int -> Int -> Int #

(.|.) :: Int -> Int -> Int #

xor :: Int -> Int -> Int #

complement :: Int -> Int #

shift :: Int -> Int -> Int #

rotate :: Int -> Int -> Int #

zeroBits :: Int #

bit :: Int -> Int #

setBit :: Int -> Int -> Int #

clearBit :: Int -> Int -> Int #

complementBit :: Int -> Int -> Int #

testBit :: Int -> Int -> Bool #

bitSizeMaybe :: Int -> Maybe Int #

bitSize :: Int -> Int #

isSigned :: Int -> Bool #

shiftL :: Int -> Int -> Int #

unsafeShiftL :: Int -> Int -> Int #

shiftR :: Int -> Int -> Int #

unsafeShiftR :: Int -> Int -> Int #

rotateL :: Int -> Int -> Int #

rotateR :: Int -> Int -> Int #

popCount :: Int -> Int #

FiniteBits Int

Since: base-4.6.0.0

Instance details

Defined in GHC.Bits

Bounded Int

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: Int #

maxBound :: Int #

Enum Int

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Num Int

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Read Int

Since: base-2.1

Instance details

Defined in GHC.Read

Integral Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Real Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Int -> Rational #

Show Int

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

NFData Int 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int -> () #

Eq Int 
Instance details

Defined in GHC.Classes

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Ord Int 
Instance details

Defined in GHC.Classes

Methods

compare :: Int -> Int -> Ordering #

(<) :: Int -> Int -> Bool #

(<=) :: Int -> Int -> Bool #

(>) :: Int -> Int -> Bool #

(>=) :: Int -> Int -> Bool #

max :: Int -> Int -> Int #

min :: Int -> Int -> Int #

Hashable Int 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Int -> Int #

hash :: Int -> Int #

Lift Int 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Int -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Int -> Code m Int #

Generic1 (URec Int :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Int) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Int a -> Rep1 (URec Int) a #

to1 :: forall (a :: k0). Rep1 (URec Int) a -> URec Int a #

Foldable (UInt :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UInt m -> m #

foldMap :: Monoid m => (a -> m) -> UInt a -> m #

foldMap' :: Monoid m => (a -> m) -> UInt a -> m #

foldr :: (a -> b -> b) -> b -> UInt a -> b #

foldr' :: (a -> b -> b) -> b -> UInt a -> b #

foldl :: (b -> a -> b) -> b -> UInt a -> b #

foldl' :: (b -> a -> b) -> b -> UInt a -> b #

foldr1 :: (a -> a -> a) -> UInt a -> a #

foldl1 :: (a -> a -> a) -> UInt a -> a #

toList :: UInt a -> [a] #

null :: UInt a -> Bool #

length :: UInt a -> Int #

elem :: Eq a => a -> UInt a -> Bool #

maximum :: Ord a => UInt a -> a #

minimum :: Ord a => UInt a -> a #

sum :: Num a => UInt a -> a #

product :: Num a => UInt a -> a #

Traversable (UInt :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UInt a -> f (UInt b) #

sequenceA :: Applicative f => UInt (f a) -> f (UInt a) #

mapM :: Monad m => (a -> m b) -> UInt a -> m (UInt b) #

sequence :: Monad m => UInt (m a) -> m (UInt a) #

Functor (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Generic (URec Int p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Int p) :: Type -> Type #

Methods

from :: URec Int p -> Rep (URec Int p) x #

to :: Rep (URec Int p) x -> URec Int p #

Show (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> URec Int p -> ShowS #

show :: URec Int p -> String #

showList :: [URec Int p] -> ShowS #

Eq (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Int p -> URec Int p -> Bool #

(/=) :: URec Int p -> URec Int p -> Bool #

Ord (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Int p -> URec Int p -> Ordering #

(<) :: URec Int p -> URec Int p -> Bool #

(<=) :: URec Int p -> URec Int p -> Bool #

(>) :: URec Int p -> URec Int p -> Bool #

(>=) :: URec Int p -> URec Int p -> Bool #

max :: URec Int p -> URec Int p -> URec Int p #

min :: URec Int p -> URec Int p -> URec Int p #

data URec Int (p :: k)

Used for marking occurrences of Int#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Int (p :: k) = UInt {}
type Rep1 (URec Int :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep1 (URec Int :: k -> Type) = D1 ('MetaData "URec" "GHC.Generics" "base" 'False) (C1 ('MetaCons "UInt" 'PrefixI 'True) (S1 ('MetaSel ('Just "uInt#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UInt :: k -> Type)))
type Rep (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep (URec Int p) = D1 ('MetaData "URec" "GHC.Generics" "base" 'False) (C1 ('MetaCons "UInt" 'PrefixI 'True) (S1 ('MetaSel ('Just "uInt#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UInt :: Type -> Type)))

data Int8 #

8-bit signed integer type

Instances

Instances details
Data Int8

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 #

toConstr :: Int8 -> Constr #

dataTypeOf :: Int8 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) #

gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 #

Bits Int8

Since: base-2.1

Instance details

Defined in GHC.Int

FiniteBits Int8

Since: base-4.6.0.0

Instance details

Defined in GHC.Int

Bounded Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Ix Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

range :: (Int8, Int8) -> [Int8] #

index :: (Int8, Int8) -> Int8 -> Int #

unsafeIndex :: (Int8, Int8) -> Int8 -> Int #

inRange :: (Int8, Int8) -> Int8 -> Bool #

rangeSize :: (Int8, Int8) -> Int #

unsafeRangeSize :: (Int8, Int8) -> Int #

Num Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(+) :: Int8 -> Int8 -> Int8 #

(-) :: Int8 -> Int8 -> Int8 #

(*) :: Int8 -> Int8 -> Int8 #

negate :: Int8 -> Int8 #

abs :: Int8 -> Int8 #

signum :: Int8 -> Int8 #

fromInteger :: Integer -> Int8 #

Read Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Integral Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Real Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int8 -> Rational #

Show Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

NFData Int8 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int8 -> () #

Eq Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Ord Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

compare :: Int8 -> Int8 -> Ordering #

(<) :: Int8 -> Int8 -> Bool #

(<=) :: Int8 -> Int8 -> Bool #

(>) :: Int8 -> Int8 -> Bool #

(>=) :: Int8 -> Int8 -> Bool #

max :: Int8 -> Int8 -> Int8 #

min :: Int8 -> Int8 -> Int8 #

Hashable Int8 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Int8 -> Int #

hash :: Int8 -> Int #

Lift Int8 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Int8 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Int8 -> Code m Int8 #

data Int16 #

16-bit signed integer type

Instances

Instances details
Data Int16

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 #

toConstr :: Int16 -> Constr #

dataTypeOf :: Int16 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) #

gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 #

Bits Int16

Since: base-2.1

Instance details

Defined in GHC.Int

FiniteBits Int16

Since: base-4.6.0.0

Instance details

Defined in GHC.Int

Bounded Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Ix Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Read Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Integral Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Real Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int16 -> Rational #

Show Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

NFData Int16 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int16 -> () #

Eq Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Ord Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

compare :: Int16 -> Int16 -> Ordering #

(<) :: Int16 -> Int16 -> Bool #

(<=) :: Int16 -> Int16 -> Bool #

(>) :: Int16 -> Int16 -> Bool #

(>=) :: Int16 -> Int16 -> Bool #

max :: Int16 -> Int16 -> Int16 #

min :: Int16 -> Int16 -> Int16 #

Hashable Int16 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Int16 -> Int #

hash :: Int16 -> Int #

Lift Int16 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Int16 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Int16 -> Code m Int16 #

data Int32 #

32-bit signed integer type

Instances

Instances details
Data Int32

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 #

toConstr :: Int32 -> Constr #

dataTypeOf :: Int32 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) #

gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 #

Bits Int32

Since: base-2.1

Instance details

Defined in GHC.Int

FiniteBits Int32

Since: base-4.6.0.0

Instance details

Defined in GHC.Int

Bounded Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Ix Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Read Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Integral Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Real Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int32 -> Rational #

Show Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

NFData Int32 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int32 -> () #

Eq Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Ord Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

compare :: Int32 -> Int32 -> Ordering #

(<) :: Int32 -> Int32 -> Bool #

(<=) :: Int32 -> Int32 -> Bool #

(>) :: Int32 -> Int32 -> Bool #

(>=) :: Int32 -> Int32 -> Bool #

max :: Int32 -> Int32 -> Int32 #

min :: Int32 -> Int32 -> Int32 #

Hashable Int32 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Int32 -> Int #

hash :: Int32 -> Int #

Lift Int32 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Int32 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Int32 -> Code m Int32 #

data Int64 #

64-bit signed integer type

Instances

Instances details
Data Int64

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 #

toConstr :: Int64 -> Constr #

dataTypeOf :: Int64 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) #

gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 #

Bits Int64

Since: base-2.1

Instance details

Defined in GHC.Int

FiniteBits Int64

Since: base-4.6.0.0

Instance details

Defined in GHC.Int

Bounded Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Ix Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Read Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Integral Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Real Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int64 -> Rational #

Show Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

NFData Int64 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Int64 -> () #

Eq Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Ord Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

compare :: Int64 -> Int64 -> Ordering #

(<) :: Int64 -> Int64 -> Bool #

(<=) :: Int64 -> Int64 -> Bool #

(>) :: Int64 -> Int64 -> Bool #

(>=) :: Int64 -> Int64 -> Bool #

max :: Int64 -> Int64 -> Int64 #

min :: Int64 -> Int64 -> Int64 #

Hashable Int64 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Int64 -> Int #

hash :: Int64 -> Int #

Lift Int64 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Int64 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Int64 -> Code m Int64 #

data Word8 #

8-bit unsigned integer type

Instances

Instances details
Data Word8

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 #

toConstr :: Word8 -> Constr #

dataTypeOf :: Word8 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) #

gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

Bits Word8

Since: base-2.1

Instance details

Defined in GHC.Word

FiniteBits Word8

Since: base-4.6.0.0

Instance details

Defined in GHC.Word

Bounded Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Read Word8

Since: base-2.1

Instance details

Defined in GHC.Read

Integral Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

toRational :: Word8 -> Rational #

Show Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

NFData Word8 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word8 -> () #

Eq Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Ord Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

compare :: Word8 -> Word8 -> Ordering #

(<) :: Word8 -> Word8 -> Bool #

(<=) :: Word8 -> Word8 -> Bool #

(>) :: Word8 -> Word8 -> Bool #

(>=) :: Word8 -> Word8 -> Bool #

max :: Word8 -> Word8 -> Word8 #

min :: Word8 -> Word8 -> Word8 #

Hashable Word8 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word8 -> Int #

hash :: Word8 -> Int #

Lift Word8 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word8 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word8 -> Code m Word8 #

data Word #

A Word is an unsigned integral type, with the same size as Int.

Instances

Instances details
Data Word

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word #

toConstr :: Word -> Constr #

dataTypeOf :: Word -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

Bits Word

Since: base-2.1

Instance details

Defined in GHC.Bits

FiniteBits Word

Since: base-4.6.0.0

Instance details

Defined in GHC.Bits

Bounded Word

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Word

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Num Word

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Read Word

Since: base-4.5.0.0

Instance details

Defined in GHC.Read

Integral Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Real Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

toRational :: Word -> Rational #

Show Word

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

NFData Word 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word -> () #

Eq Word 
Instance details

Defined in GHC.Classes

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Ord Word 
Instance details

Defined in GHC.Classes

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Hashable Word 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word -> Int #

hash :: Word -> Int #

Lift Word 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word -> Code m Word #

Generic1 (URec Word :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Word) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Word a -> Rep1 (URec Word) a #

to1 :: forall (a :: k0). Rep1 (URec Word) a -> URec Word a #

Foldable (UWord :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UWord m -> m #

foldMap :: Monoid m => (a -> m) -> UWord a -> m #

foldMap' :: Monoid m => (a -> m) -> UWord a -> m #

foldr :: (a -> b -> b) -> b -> UWord a -> b #

foldr' :: (a -> b -> b) -> b -> UWord a -> b #

foldl :: (b -> a -> b) -> b -> UWord a -> b #

foldl' :: (b -> a -> b) -> b -> UWord a -> b #

foldr1 :: (a -> a -> a) -> UWord a -> a #

foldl1 :: (a -> a -> a) -> UWord a -> a #

toList :: UWord a -> [a] #

null :: UWord a -> Bool #

length :: UWord a -> Int #

elem :: Eq a => a -> UWord a -> Bool #

maximum :: Ord a => UWord a -> a #

minimum :: Ord a => UWord a -> a #

sum :: Num a => UWord a -> a #

product :: Num a => UWord a -> a #

Traversable (UWord :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UWord a -> f (UWord b) #

sequenceA :: Applicative f => UWord (f a) -> f (UWord a) #

mapM :: Monad m => (a -> m b) -> UWord a -> m (UWord b) #

sequence :: Monad m => UWord (m a) -> m (UWord a) #

Functor (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Generic (URec Word p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Word p) :: Type -> Type #

Methods

from :: URec Word p -> Rep (URec Word p) x #

to :: Rep (URec Word p) x -> URec Word p #

Show (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> URec Word p -> ShowS #

show :: URec Word p -> String #

showList :: [URec Word p] -> ShowS #

Eq (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Word p -> URec Word p -> Bool #

(/=) :: URec Word p -> URec Word p -> Bool #

Ord (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Word p -> URec Word p -> Ordering #

(<) :: URec Word p -> URec Word p -> Bool #

(<=) :: URec Word p -> URec Word p -> Bool #

(>) :: URec Word p -> URec Word p -> Bool #

(>=) :: URec Word p -> URec Word p -> Bool #

max :: URec Word p -> URec Word p -> URec Word p #

min :: URec Word p -> URec Word p -> URec Word p #

data URec Word (p :: k)

Used for marking occurrences of Word#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Word (p :: k) = UWord {}
type Rep1 (URec Word :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep1 (URec Word :: k -> Type) = D1 ('MetaData "URec" "GHC.Generics" "base" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: k -> Type)))
type Rep (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep (URec Word p) = D1 ('MetaData "URec" "GHC.Generics" "base" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: Type -> Type)))

data Word64 #

64-bit unsigned integer type

Instances

Instances details
Data Word64

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 #

toConstr :: Word64 -> Constr #

dataTypeOf :: Word64 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) #

gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

Bits Word64

Since: base-2.1

Instance details

Defined in GHC.Word

FiniteBits Word64

Since: base-4.6.0.0

Instance details

Defined in GHC.Word

Bounded Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Read Word64

Since: base-2.1

Instance details

Defined in GHC.Read

Integral Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Show Word64

Since: base-2.1

Instance details

Defined in GHC.Word

NFData Word64 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word64 -> () #

Eq Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Ord Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Hashable Word64 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word64 -> Int #

hash :: Word64 -> Int #

Lift Word64 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word64 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word64 -> Code m Word64 #

data Word32 #

32-bit unsigned integer type

Instances

Instances details
Data Word32

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 #

toConstr :: Word32 -> Constr #

dataTypeOf :: Word32 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) #

gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

Bits Word32

Since: base-2.1

Instance details

Defined in GHC.Word

FiniteBits Word32

Since: base-4.6.0.0

Instance details

Defined in GHC.Word

Bounded Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Read Word32

Since: base-2.1

Instance details

Defined in GHC.Read

Integral Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Show Word32

Since: base-2.1

Instance details

Defined in GHC.Word

NFData Word32 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word32 -> () #

Eq Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Ord Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Hashable Word32 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word32 -> Int #

hash :: Word32 -> Int #

Lift Word32 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word32 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word32 -> Code m Word32 #

data Word16 #

16-bit unsigned integer type

Instances

Instances details
Data Word16

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 #

toConstr :: Word16 -> Constr #

dataTypeOf :: Word16 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) #

gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

Bits Word16

Since: base-2.1

Instance details

Defined in GHC.Word

FiniteBits Word16

Since: base-4.6.0.0

Instance details

Defined in GHC.Word

Bounded Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Ix Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Read Word16

Since: base-2.1

Instance details

Defined in GHC.Read

Integral Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Show Word16

Since: base-2.1

Instance details

Defined in GHC.Word

NFData Word16 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word16 -> () #

Eq Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Ord Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Hashable Word16 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word16 -> Int #

hash :: Word16 -> Int #

Lift Word16 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word16 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word16 -> Code m Word16 #

byteSwap16 :: Word16 -> Word16 #

Reverse order of bytes in Word16.

Since: base-4.7.0.0

byteSwap32 :: Word32 -> Word32 #

Reverse order of bytes in Word32.

Since: base-4.7.0.0

byteSwap64 :: Word64 -> Word64 #

Reverse order of bytes in Word64.

Since: base-4.7.0.0

data Float #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Constructors

F# Float# 

Instances

Instances details
Data Float

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float #

toConstr :: Float -> Constr #

dataTypeOf :: Float -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

Floating Float

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat Float

Since: base-2.1

Instance details

Defined in GHC.Float

Read Float

Since: base-2.1

Instance details

Defined in GHC.Read

NFData Float 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Float -> () #

Eq Float

Note that due to the presence of NaN, Float's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Float)
False

Also note that Float's Eq instance does not satisfy extensionality:

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Ord Float

Note that due to the presence of NaN, Float's Ord instance does not satisfy reflexivity.

>>> 0/0 <= (0/0 :: Float)
False

Also note that, due to the same, Ord's operator interactions are not respected by Float's instance:

>>> (0/0 :: Float) > 1
False
>>> compare (0/0 :: Float) 1
GT
Instance details

Defined in GHC.Classes

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

Hashable Float

Note: prior to hashable-1.3.0.0, hash 0.0 /= hash (-0.0)

The hash of NaN is not well defined.

Since: hashable-1.3.0.0

Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Float -> Int #

hash :: Float -> Int #

Lift Float 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Float -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Float -> Code m Float #

Generic1 (URec Float :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Float) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Float a -> Rep1 (URec Float) a #

to1 :: forall (a :: k0). Rep1 (URec Float) a -> URec Float a #

Foldable (UFloat :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UFloat m -> m #

foldMap :: Monoid m => (a -> m) -> UFloat a -> m #

foldMap' :: Monoid m => (a -> m) -> UFloat a -> m #

foldr :: (a -> b -> b) -> b -> UFloat a -> b #

foldr' :: (a -> b -> b) -> b -> UFloat a -> b #

foldl :: (b -> a -> b) -> b -> UFloat a -> b #

foldl' :: (b -> a -> b) -> b -> UFloat a -> b #

foldr1 :: (a -> a -> a) -> UFloat a -> a #

foldl1 :: (a -> a -> a) -> UFloat a -> a #

toList :: UFloat a -> [a] #

null :: UFloat a -> Bool #

length :: UFloat a -> Int #

elem :: Eq a => a -> UFloat a -> Bool #

maximum :: Ord a => UFloat a -> a #

minimum :: Ord a => UFloat a -> a #

sum :: Num a => UFloat a -> a #

product :: Num a => UFloat a -> a #

Traversable (UFloat :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UFloat a -> f (UFloat b) #

sequenceA :: Applicative f => UFloat (f a) -> f (UFloat a) #

mapM :: Monad m => (a -> m b) -> UFloat a -> m (UFloat b) #

sequence :: Monad m => UFloat (m a) -> m (UFloat a) #

Functor (URec Float :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Generic (URec Float p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Float p) :: Type -> Type #

Methods

from :: URec Float p -> Rep (URec Float p) x #

to :: Rep (URec Float p) x -> URec Float p #

Show (URec Float p) 
Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> URec Float p -> ShowS #

show :: URec Float p -> String #

showList :: [URec Float p] -> ShowS #

Eq (URec Float p) 
Instance details

Defined in GHC.Generics

Methods

(==) :: URec Float p -> URec Float p -> Bool #

(/=) :: URec Float p -> URec Float p -> Bool #

Ord (URec Float p) 
Instance details

Defined in GHC.Generics

Methods

compare :: URec Float p -> URec Float p -> Ordering #

(<) :: URec Float p -> URec Float p -> Bool #

(<=) :: URec Float p -> URec Float p -> Bool #

(>) :: URec Float p -> URec Float p -> Bool #

(>=) :: URec Float p -> URec Float p -> Bool #

max :: URec Float p -> URec Float p -> URec Float p #

min :: URec Float p -> URec Float p -> URec Float p #

data URec Float (p :: k)

Used for marking occurrences of Float#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Float (p :: k) = UFloat {}
type Rep1 (URec Float :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep1 (URec Float :: k -> Type) = D1 ('MetaData "URec" "GHC.Generics" "base" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: k -> Type)))
type Rep (URec Float p) 
Instance details

Defined in GHC.Generics

type Rep (URec Float p) = D1 ('MetaData "URec" "GHC.Generics" "base" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: Type -> Type)))

data Double #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Constructors

D# Double# 

Instances

Instances details
Data Double

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double #

toConstr :: Double -> Constr #

dataTypeOf :: Double -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

Floating Double

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat Double

Since: base-2.1

Instance details

Defined in GHC.Float

Read Double

Since: base-2.1

Instance details

Defined in GHC.Read

NFData Double 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Double -> () #

Eq Double

Note that due to the presence of NaN, Double's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Double)
False

Also note that Double's Eq instance does not satisfy substitutivity:

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Ord Double

Note that due to the presence of NaN, Double's Ord instance does not satisfy reflexivity.

>>> 0/0 <= (0/0 :: Double)
False

Also note that, due to the same, Ord's operator interactions are not respected by Double's instance:

>>> (0/0 :: Double) > 1
False
>>> compare (0/0 :: Double) 1
GT
Instance details

Defined in GHC.Classes

Hashable Double

Note: prior to hashable-1.3.0.0, hash 0.0 /= hash (-0.0)

The hash of NaN is not well defined.

Since: hashable-1.3.0.0

Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Double -> Int #

hash :: Double -> Int #

Lift Double 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Double -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Double -> Code m Double #

Generic1 (URec Double :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Double) :: k -> Type #

Methods

from1 :: forall (a :: k0). URec Double a -> Rep1 (URec Double) a #

to1 :: forall (a :: k0). Rep1 (URec Double) a -> URec Double a #

Foldable (UDouble :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => UDouble m -> m #

foldMap :: Monoid m => (a -> m) -> UDouble a -> m #

foldMap' :: Monoid m => (a -> m) -> UDouble a -> m #

foldr :: (a -> b -> b) -> b -> UDouble a -> b #

foldr' :: (a -> b -> b) -> b -> UDouble a -> b #

foldl :: (b -> a -> b) -> b -> UDouble a -> b #

foldl' :: (b -> a -> b) -> b -> UDouble a -> b #

foldr1 :: (a -> a -> a) -> UDouble a -> a #

foldl1 :: (a -> a -> a) -> UDouble a -> a #

toList :: UDouble a -> [a] #

null :: UDouble a -> Bool #

length :: UDouble a -> Int #

elem :: Eq a => a -> UDouble a -> Bool #

maximum :: Ord a => UDouble a -> a #

minimum :: Ord a => UDouble a -> a #

sum :: Num a => UDouble a -> a #

product :: Num a => UDouble a -> a #

Traversable (UDouble :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UDouble a -> f (UDouble b) #

sequenceA :: Applicative f => UDouble (f a) -> f (UDouble a) #

mapM :: Monad m => (a -> m b) -> UDouble a -> m (UDouble b) #

sequence :: Monad m => UDouble (m a) -> m (UDouble a) #

Functor (URec Double :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Generic (URec Double p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Double p) :: Type -> Type #

Methods

from :: URec Double p -> Rep (URec Double p) x #

to :: Rep (URec Double p) x -> URec Double p #

Show (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> URec Double p -> ShowS #

show :: URec Double p -> String #

showList :: [URec Double p] -> ShowS #

Eq (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Double p -> URec Double p -> Bool #

(/=) :: URec Double p -> URec Double p -> Bool #

Ord (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Double p -> URec Double p -> Ordering #

(<) :: URec Double p -> URec Double p -> Bool #

(<=) :: URec Double p -> URec Double p -> Bool #

(>) :: URec Double p -> URec Double p -> Bool #

(>=) :: URec Double p -> URec Double p -> Bool #

max :: URec Double p -> URec Double p -> URec Double p #

min :: URec Double p -> URec Double p -> URec Double p #

data URec Double (p :: k)

Used for marking occurrences of Double#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Double (p :: k) = UDouble {}
type Rep1 (URec Double :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep1 (URec Double :: k -> Type) = D1 ('MetaData "URec" "GHC.Generics" "base" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: k -> Type)))
type Rep (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep (URec Double p) = D1 ('MetaData "URec" "GHC.Generics" "base" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: Type -> Type)))

class Fractional a => Floating a where #

Trigonometric and hyperbolic functions and related functions.

The Haskell Report defines no laws for Floating. However, (+), (*) and exp are customarily expected to define an exponential field and have the following properties:

  • exp (a + b) = exp a * exp b
  • exp (fromInteger 0) = fromInteger 1

Minimal complete definition

pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh

Methods

pi :: a #

exp :: a -> a #

sqrt :: a -> a #

(**) :: a -> a -> a infixr 8 #

logBase :: a -> a -> a #

sin :: a -> a #

cos :: a -> a #

tan :: a -> a #

asin :: a -> a #

acos :: a -> a #

atan :: a -> a #

sinh :: a -> a #

cosh :: a -> a #

tanh :: a -> a #

asinh :: a -> a #

acosh :: a -> a #

atanh :: a -> a #

Instances

Instances details
Floating Double

Since: base-2.1

Instance details

Defined in GHC.Float

Floating Float

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat a => Floating (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

pi :: Complex a #

exp :: Complex a -> Complex a #

log :: Complex a -> Complex a #

sqrt :: Complex a -> Complex a #

(**) :: Complex a -> Complex a -> Complex a #

logBase :: Complex a -> Complex a -> Complex a #

sin :: Complex a -> Complex a #

cos :: Complex a -> Complex a #

tan :: Complex a -> Complex a #

asin :: Complex a -> Complex a #

acos :: Complex a -> Complex a #

atan :: Complex a -> Complex a #

sinh :: Complex a -> Complex a #

cosh :: Complex a -> Complex a #

tanh :: Complex a -> Complex a #

asinh :: Complex a -> Complex a #

acosh :: Complex a -> Complex a #

atanh :: Complex a -> Complex a #

log1p :: Complex a -> Complex a #

expm1 :: Complex a -> Complex a #

log1pexp :: Complex a -> Complex a #

log1mexp :: Complex a -> Complex a #

Floating a => Floating (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Floating a => Floating (Down a)

Since: base-4.14.0.0

Instance details

Defined in Data.Ord

Methods

pi :: Down a #

exp :: Down a -> Down a #

log :: Down a -> Down a #

sqrt :: Down a -> Down a #

(**) :: Down a -> Down a -> Down a #

logBase :: Down a -> Down a -> Down a #

sin :: Down a -> Down a #

cos :: Down a -> Down a #

tan :: Down a -> Down a #

asin :: Down a -> Down a #

acos :: Down a -> Down a #

atan :: Down a -> Down a #

sinh :: Down a -> Down a #

cosh :: Down a -> Down a #

tanh :: Down a -> Down a #

asinh :: Down a -> Down a #

acosh :: Down a -> Down a #

atanh :: Down a -> Down a #

log1p :: Down a -> Down a #

expm1 :: Down a -> Down a #

log1pexp :: Down a -> Down a #

log1mexp :: Down a -> Down a #

Floating a => Floating (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

pi :: Op a b #

exp :: Op a b -> Op a b #

log :: Op a b -> Op a b #

sqrt :: Op a b -> Op a b #

(**) :: Op a b -> Op a b -> Op a b #

logBase :: Op a b -> Op a b -> Op a b #

sin :: Op a b -> Op a b #

cos :: Op a b -> Op a b #

tan :: Op a b -> Op a b #

asin :: Op a b -> Op a b #

acos :: Op a b -> Op a b #

atan :: Op a b -> Op a b #

sinh :: Op a b -> Op a b #

cosh :: Op a b -> Op a b #

tanh :: Op a b -> Op a b #

asinh :: Op a b -> Op a b #

acosh :: Op a b -> Op a b #

atanh :: Op a b -> Op a b #

log1p :: Op a b -> Op a b #

expm1 :: Op a b -> Op a b #

log1pexp :: Op a b -> Op a b #

log1mexp :: Op a b -> Op a b #

Floating a => Floating (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

class (RealFrac a, Floating a) => RealFloat a where #

Efficient, machine-independent access to the components of a floating-point number.

Methods

floatRadix :: a -> Integer #

a constant function, returning the radix of the representation (often 2)

floatDigits :: a -> Int #

a constant function, returning the number of digits of floatRadix in the significand

floatRange :: a -> (Int, Int) #

a constant function, returning the lowest and highest values the exponent may assume

decodeFloat :: a -> (Integer, Int) #

The function decodeFloat applied to a real floating-point number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to m*b^^n, where b is the floating-point radix, and furthermore, either m and n are both zero or else b^(d-1) <= abs m < b^d, where d is the value of floatDigits x. In particular, decodeFloat 0 = (0,0). If the type contains a negative zero, also decodeFloat (-0.0) = (0,0). The result of decodeFloat x is unspecified if either of isNaN x or isInfinite x is True.

encodeFloat :: Integer -> Int -> a #

encodeFloat performs the inverse of decodeFloat in the sense that for finite x with the exception of -0.0, uncurry encodeFloat (decodeFloat x) = x. encodeFloat m n is one of the two closest representable floating-point numbers to m*b^^n (or ±Infinity if overflow occurs); usually the closer, but if m contains too many bits, the result may be rounded in the wrong direction.

isNaN :: a -> Bool #

True if the argument is an IEEE "not-a-number" (NaN) value

isInfinite :: a -> Bool #

True if the argument is an IEEE infinity or negative infinity

isDenormalized :: a -> Bool #

True if the argument is too small to be represented in normalized format

isNegativeZero :: a -> Bool #

True if the argument is an IEEE negative zero

isIEEE :: a -> Bool #

True if the argument is an IEEE floating point number

atan2 :: a -> a -> a #

a version of arctangent taking two real floating-point arguments. For real floating x and y, atan2 y x computes the angle (from the positive x-axis) of the vector from the origin to the point (x,y). atan2 y x returns a value in the range [-pi, pi]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. atan2 y 1, with y in a type that is RealFloat, should return the same value as atan y. A default definition of atan2 is provided, but implementors can provide a more accurate implementation.

Instances

Instances details
RealFloat Double

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat Float

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat a => RealFloat (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

RealFloat a => RealFloat (Down a)

Since: base-4.14.0.0

Instance details

Defined in Data.Ord

RealFloat a => RealFloat (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

data Integer #

Arbitrary precision integers. In contrast with fixed-size integral types such as Int, the Integer type represents the entire infinite range of integers.

Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.

If the value is small (fit into an Int), IS constructor is used. Otherwise Integer and IN constructors are used to store a BigNat representing respectively the positive or the negative value magnitude.

Invariant: Integer and IN are used iff value doesn't fit in IS

Instances

Instances details
Data Integer

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer #

toConstr :: Integer -> Constr #

dataTypeOf :: Integer -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) #

gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

Bits Integer

Since: base-2.1

Instance details

Defined in GHC.Bits

Enum Integer

Since: base-2.1

Instance details

Defined in GHC.Enum

Num Integer

Since: base-2.1

Instance details

Defined in GHC.Num

Read Integer

Since: base-2.1

Instance details

Defined in GHC.Read

Integral Integer

Since: base-2.0.1

Instance details

Defined in GHC.Real

Real Integer

Since: base-2.0.1

Instance details

Defined in GHC.Real

Show Integer

Since: base-2.1

Instance details

Defined in GHC.Show

NFData Integer 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Integer -> () #

Eq Integer 
Instance details

Defined in GHC.Num.Integer

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Ord Integer 
Instance details

Defined in GHC.Num.Integer

Hashable Integer 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Integer -> Int #

hash :: Integer -> Int #

Lift Integer 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Integer -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Integer -> Code m Integer #

class Num a where #

Basic numeric class.

The Haskell Report defines no laws for Num. However, (+) and (*) are customarily expected to define a ring and have the following properties:

Associativity of (+)
(x + y) + z = x + (y + z)
Commutativity of (+)
x + y = y + x
fromInteger 0 is the additive identity
x + fromInteger 0 = x
negate gives the additive inverse
x + negate x = fromInteger 0
Associativity of (*)
(x * y) * z = x * (y * z)
fromInteger 1 is the multiplicative identity
x * fromInteger 1 = x and fromInteger 1 * x = x
Distributivity of (*) with respect to (+)
a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)
Coherence with toInteger
if the type also implements Integral, then fromInteger is a left inverse for toInteger, i.e. fromInteger (toInteger i) == i

Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.

Minimal complete definition

(+), (*), abs, signum, fromInteger, (negate | (-))

Methods

(+) :: a -> a -> a infixl 6 #

(-) :: a -> a -> a infixl 6 #

(*) :: a -> a -> a infixl 7 #

negate :: a -> a #

Unary negation.

abs :: a -> a #

Absolute value.

signum :: a -> a #

Sign of a number. The functions abs and signum should satisfy the law:

abs x * signum x == x

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> a #

Conversion from an Integer. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer, so such literals have type (Num a) => a.

Instances

Instances details
Num Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Num Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

(+) :: Int8 -> Int8 -> Int8 #

(-) :: Int8 -> Int8 -> Int8 #

(*) :: Int8 -> Int8 -> Int8 #

negate :: Int8 -> Int8 #

abs :: Int8 -> Int8 #

signum :: Int8 -> Int8 #

fromInteger :: Integer -> Int8 #

Num Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Num Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Num Integer

Since: base-2.1

Instance details

Defined in GHC.Num

Num Natural

Note that Natural's Num instance isn't a ring: no element but 0 has an additive inverse. It is a semiring though.

Since: base-4.8.0.0

Instance details

Defined in GHC.Num

Num Int

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Num Word

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

RealFloat a => Num (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(+) :: Complex a -> Complex a -> Complex a #

(-) :: Complex a -> Complex a -> Complex a #

(*) :: Complex a -> Complex a -> Complex a #

negate :: Complex a -> Complex a #

abs :: Complex a -> Complex a #

signum :: Complex a -> Complex a #

fromInteger :: Integer -> Complex a #

Num a => Num (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Num a => Num (Down a)

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(+) :: Down a -> Down a -> Down a #

(-) :: Down a -> Down a -> Down a #

(*) :: Down a -> Down a -> Down a #

negate :: Down a -> Down a #

abs :: Down a -> Down a #

signum :: Down a -> Down a #

fromInteger :: Integer -> Down a #

Num a => Num (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(+) :: Max a -> Max a -> Max a #

(-) :: Max a -> Max a -> Max a #

(*) :: Max a -> Max a -> Max a #

negate :: Max a -> Max a #

abs :: Max a -> Max a #

signum :: Max a -> Max a #

fromInteger :: Integer -> Max a #

Num a => Num (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(+) :: Min a -> Min a -> Min a #

(-) :: Min a -> Min a -> Min a #

(*) :: Min a -> Min a -> Min a #

negate :: Min a -> Min a #

abs :: Min a -> Min a #

signum :: Min a -> Min a #

fromInteger :: Integer -> Min a #

Num a => Num (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Num a => Num (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Integral a => Num (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

(+) :: Ratio a -> Ratio a -> Ratio a #

(-) :: Ratio a -> Ratio a -> Ratio a #

(*) :: Ratio a -> Ratio a -> Ratio a #

negate :: Ratio a -> Ratio a #

abs :: Ratio a -> Ratio a #

signum :: Ratio a -> Ratio a #

fromInteger :: Integer -> Ratio a #

Num a => Num (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(+) :: Op a b -> Op a b -> Op a b #

(-) :: Op a b -> Op a b -> Op a b #

(*) :: Op a b -> Op a b -> Op a b #

negate :: Op a b -> Op a b #

abs :: Op a b -> Op a b #

signum :: Op a b -> Op a b #

fromInteger :: Integer -> Op a b #

Num a => Num (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

(Applicative f, Num a) => Num (Ap f a)

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a #

(-) :: Ap f a -> Ap f a -> Ap f a #

(*) :: Ap f a -> Ap f a -> Ap f a #

negate :: Ap f a -> Ap f a #

abs :: Ap f a -> Ap f a #

signum :: Ap f a -> Ap f a #

fromInteger :: Integer -> Ap f a #

Num (f a) => Num (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Alt f a -> Alt f a -> Alt f a #

(-) :: Alt f a -> Alt f a -> Alt f a #

(*) :: Alt f a -> Alt f a -> Alt f a #

negate :: Alt f a -> Alt f a #

abs :: Alt f a -> Alt f a #

signum :: Alt f a -> Alt f a #

fromInteger :: Integer -> Alt f a #

subtract :: Num a => a -> a -> a #

the same as flip (-).

Because - is treated specially in the Haskell grammar, (- e) is not a section, but an application of prefix negation. However, (subtract exp) is equivalent to the disallowed section.

class (Real a, Enum a) => Integral a where #

Integral numbers, supporting integer division.

The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the div/mod and quot/rem pairs, given suitable Euclidean functions f and g:

  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y

An example of a suitable Euclidean function, for Integer's instance, is abs.

In addition, toInteger should be total, and fromInteger should be a left inverse for it, i.e. fromInteger (toInteger i) = i.

Minimal complete definition

quotRem, toInteger

Methods

quot :: a -> a -> a infixl 7 #

integer division truncated toward zero

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

rem :: a -> a -> a infixl 7 #

integer remainder, satisfying

(x `quot` y)*y + (x `rem` y) == x

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

div :: a -> a -> a infixl 7 #

integer division truncated toward negative infinity

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

mod :: a -> a -> a infixl 7 #

integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

quotRem :: a -> a -> (a, a) #

simultaneous quot and rem

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

divMod :: a -> a -> (a, a) #

simultaneous div and mod

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

toInteger :: a -> Integer #

conversion to Integer

Instances

Instances details
Integral Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Integral Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Integral Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Integral Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Integral Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Integral Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Integral Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Integral Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Integral Integer

Since: base-2.0.1

Instance details

Defined in GHC.Real

Integral Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Integral Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Integral Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Integral a => Integral (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Integral a => Integral (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

type Rational = Ratio Integer #

Arbitrary-precision rational numbers, represented as a ratio of two Integer values. A rational number may be constructed using the % operator.

class Num a => Fractional a where #

Fractional numbers, supporting real division.

The Haskell Report defines no laws for Fractional. However, (+) and (*) are customarily expected to define a division ring and have the following properties:

recip gives the multiplicative inverse
x * recip x = recip x * x = fromInteger 1
Totality of toRational
toRational is total
Coherence with toRational
if the type also implements Real, then fromRational is a left inverse for toRational, i.e. fromRational (toRational i) = i

Note that it isn't customarily expected that a type instance of Fractional implement a field. However, all instances in base do.

Minimal complete definition

fromRational, (recip | (/))

Methods

(/) :: a -> a -> a infixl 7 #

Fractional division.

recip :: a -> a #

Reciprocal fraction.

fromRational :: Rational -> a #

Conversion from a Rational (that is Ratio Integer). A floating literal stands for an application of fromRational to a value of type Rational, so such literals have type (Fractional a) => a.

Instances

Instances details
RealFloat a => Fractional (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(/) :: Complex a -> Complex a -> Complex a #

recip :: Complex a -> Complex a #

fromRational :: Rational -> Complex a #

Fractional a => Fractional (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Fractional a => Fractional (Down a)

Since: base-4.14.0.0

Instance details

Defined in Data.Ord

Methods

(/) :: Down a -> Down a -> Down a #

recip :: Down a -> Down a #

fromRational :: Rational -> Down a #

Integral a => Fractional (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

Fractional a => Fractional (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(/) :: Op a b -> Op a b -> Op a b #

recip :: Op a b -> Op a b #

fromRational :: Rational -> Op a b #

Fractional a => Fractional (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

class (Num a, Ord a) => Real a where #

Real numbers.

The Haskell report defines no laws for Real, however Real instances are customarily expected to adhere to the following law:

Coherence with fromRational
if the type also implements Fractional, then fromRational is a left inverse for toRational, i.e. fromRational (toRational i) = i

Methods

toRational :: a -> Rational #

the rational equivalent of its real argument with full precision

Instances

Instances details
Real Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int16 -> Rational #

Real Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int32 -> Rational #

Real Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int64 -> Rational #

Real Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int8 -> Rational #

Real Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

toRational :: Word8 -> Rational #

Real Integer

Since: base-2.0.1

Instance details

Defined in GHC.Real

Real Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Real Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Int -> Rational #

Real Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

toRational :: Word -> Rational #

Real a => Real (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

toRational :: Identity a -> Rational #

Real a => Real (Down a)

Since: base-4.14.0.0

Instance details

Defined in Data.Ord

Methods

toRational :: Down a -> Rational #

Integral a => Real (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Ratio a -> Rational #

Real a => Real (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

class (Real a, Fractional a) => RealFrac a where #

Extracting components of fractions.

Minimal complete definition

properFraction

Methods

properFraction :: Integral b => a -> (b, a) #

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.

truncate :: Integral b => a -> b #

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> b #

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> b #

ceiling x returns the least integer not less than x

floor :: Integral b => a -> b #

floor x returns the greatest integer not greater than x

Instances

Instances details
RealFrac a => RealFrac (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

properFraction :: Integral b => Identity a -> (b, Identity a) #

truncate :: Integral b => Identity a -> b #

round :: Integral b => Identity a -> b #

ceiling :: Integral b => Identity a -> b #

floor :: Integral b => Identity a -> b #

RealFrac a => RealFrac (Down a)

Since: base-4.14.0.0

Instance details

Defined in Data.Ord

Methods

properFraction :: Integral b => Down a -> (b, Down a) #

truncate :: Integral b => Down a -> b #

round :: Integral b => Down a -> b #

ceiling :: Integral b => Down a -> b #

floor :: Integral b => Down a -> b #

Integral a => RealFrac (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) #

truncate :: Integral b => Ratio a -> b #

round :: Integral b => Ratio a -> b #

ceiling :: Integral b => Ratio a -> b #

floor :: Integral b => Ratio a -> b #

RealFrac a => RealFrac (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

data Ratio a #

Rational numbers, with numerator and denominator of some Integral type.

Note that Ratio's instances inherit the deficiencies from the type parameter's. For example, Ratio Natural's Num instance has similar problems to Natural's.

Instances

Instances details
NFData1 Ratio

Available on base >=4.9

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Ratio a -> () #

Integral a => Lift (Ratio a :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Ratio a -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Ratio a -> Code m (Ratio a) #

(Data a, Integral a) => Data (Ratio a)

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) #

toConstr :: Ratio a -> Constr #

dataTypeOf :: Ratio a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) #

gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

Integral a => Enum (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Integral a => Num (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

(+) :: Ratio a -> Ratio a -> Ratio a #

(-) :: Ratio a -> Ratio a -> Ratio a #

(*) :: Ratio a -> Ratio a -> Ratio a #

negate :: Ratio a -> Ratio a #

abs :: Ratio a -> Ratio a #

signum :: Ratio a -> Ratio a #

fromInteger :: Integer -> Ratio a #

(Integral a, Read a) => Read (Ratio a)

Since: base-2.1

Instance details

Defined in GHC.Read

Integral a => Fractional (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

Integral a => Real (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Ratio a -> Rational #

Integral a => RealFrac (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) #

truncate :: Integral b => Ratio a -> b #

round :: Integral b => Ratio a -> b #

ceiling :: Integral b => Ratio a -> b #

floor :: Integral b => Ratio a -> b #

Show a => Show (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

NFData a => NFData (Ratio a) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Ratio a -> () #

Eq a => Eq (Ratio a)

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Integral a => Ord (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

compare :: Ratio a -> Ratio a -> Ordering #

(<) :: Ratio a -> Ratio a -> Bool #

(<=) :: Ratio a -> Ratio a -> Bool #

(>) :: Ratio a -> Ratio a -> Bool #

(>=) :: Ratio a -> Ratio a -> Bool #

max :: Ratio a -> Ratio a -> Ratio a #

min :: Ratio a -> Ratio a -> Ratio a #

Hashable a => Hashable (Ratio a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Ratio a -> Int #

hash :: Ratio a -> Int #

even :: Integral a => a -> Bool #

fromIntegral :: (Integral a, Num b) => a -> b #

General coercion from Integral types.

WARNING: This function performs silent truncation if the result type is not at least as big as the argument's type.

realToFrac :: (Real a, Fractional b) => a -> b #

General coercion to Fractional types.

WARNING: This function goes through the Rational type, which does not have values for NaN for example. This means it does not round-trip.

For Double it also behaves differently with or without -O0:

Prelude> realToFrac nan -- With -O0
-Infinity
Prelude> realToFrac nan
NaN

(^) :: (Num a, Integral b) => a -> b -> a infixr 8 #

raise a number to a non-negative integral power

numerator :: Ratio a -> a #

Extract the numerator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.

denominator :: Ratio a -> a #

Extract the denominator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.

odd :: Integral a => a -> Bool #

(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #

raise a number to an integral power

gcd :: Integral a => a -> a -> a #

gcd x y is the non-negative factor of both x and y of which every common factor of x and y is also a factor; for example gcd 4 2 = 2, gcd (-4) 6 = 2, gcd 0 4 = 4. gcd 0 0 = 0. (That is, the common divisor that is "greatest" in the divisibility preordering.)

Note: Since for signed fixed-width integer types, abs minBound < 0, the result may be negative if one of the arguments is minBound (and necessarily is if the other is 0 or minBound) for such types.

lcm :: Integral a => a -> a -> a #

lcm x y is the smallest positive integer that both x and y divide.

data Natural #

Natural number

Invariant: numbers <= 0xffffffffffffffff use the NS constructor

Instances

Instances details
Data Natural

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural #

toConstr :: Natural -> Constr #

dataTypeOf :: Natural -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) #

gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r #

gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

Bits Natural

Since: base-4.8.0

Instance details

Defined in GHC.Bits

Enum Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Enum

Num Natural

Note that Natural's Num instance isn't a ring: no element but 0 has an additive inverse. It is a semiring though.

Since: base-4.8.0.0

Instance details

Defined in GHC.Num

Read Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Read

Integral Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Real Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Show Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Show

NFData Natural

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Natural -> () #

Eq Natural 
Instance details

Defined in GHC.Num.Natural

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Ord Natural 
Instance details

Defined in GHC.Num.Natural

Hashable Natural 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Natural -> Int #

hash :: Natural -> Int #

TestCoercion SNat

Since: base-4.18.0.0

Instance details

Defined in GHC.TypeNats

Methods

testCoercion :: forall (a :: k) (b :: k). SNat a -> SNat b -> Maybe (Coercion a b) #

TestEquality SNat

Since: base-4.18.0.0

Instance details

Defined in GHC.TypeNats

Methods

testEquality :: forall (a :: k) (b :: k). SNat a -> SNat b -> Maybe (a :~: b) #

Lift Natural 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Natural -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Natural -> Code m Natural #

type Compare (a :: Natural) (b :: Natural) 
Instance details

Defined in Data.Type.Ord

type Compare (a :: Natural) (b :: Natural) = CmpNat a b

Combinators

integerToBounded :: forall a. (Integral a, Bounded a) => Integer -> Maybe a Source #

Transforms an integer number to a bounded integral. It returns Nothing for integers outside the bound of the return type.

>>> integerToBounded @Int 42
Just 42
>>> integerToBounded @Int8 1024
Nothing
>>> integerToBounded @Int (toInteger (minBound :: Int))
Just (-9223372036854775808)
>>> integerToBounded @Int $ (toInteger (minBound :: Int)) - 1
Nothing
>>> integerToBounded @Int (toInteger (maxBound :: Int))
Just 9223372036854775807
>>> integerToBounded @Int $ (toInteger (maxBound :: Int)) + 1
Nothing

If you want to convert Int or Word to a bounded type, take a look at toIntegralSized function instead.

Since: 0.5.0

integerToNatural :: Integer -> Maybe Natural Source #

Transforms an integer number to a natural. Only non-negative integers are considered natural, everything else will return Nothing.

>>> integerToNatural (-1)
Nothing
>>> integerToNatural 0
Just 0
>>> integerToNatural 10
Just 10

Since: 0.5.0