relude-1.2.2.0: Safe, performant, user-friendly and lightweight Haskell Standard Library
Copyright(c) 2018-2023 Kowainik
LicenseMIT
MaintainerKowainik <xrom.xkov@gmail.com>
StabilityStable
PortabilityPortable
Safe HaskellTrustworthy
LanguageHaskell2010

Relude.Numeric

Description

Provides numerical data types and functions.

Since: 0.5.0

Synopsis

Reexports

xor :: Bits a => a -> a -> a infixl 6 #

Bitwise "xor"

toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b #

Attempt to convert an Integral type a to an Integral type b using the size of the types as measured by Bits methods.

A simpler version of this function is:

toIntegral :: (Integral a, Integral b) => a -> Maybe b
toIntegral x
  | toInteger x == toInteger y = Just y
  | otherwise                  = Nothing
  where
    y = fromIntegral x

This version requires going through Integer, which can be inefficient. However, toIntegralSized is optimized to allow GHC to statically determine the relative type sizes (as measured by bitSizeMaybe and isSigned) and avoid going through Integer for many types. (The implementation uses fromIntegral, which is itself optimized with rules for base types but may go through Integer for some type pairs.)

@since base-4.8.0.0

module Data.Int

data Word8 #

8-bit unsigned integer type

Instances

Instances details
PrintfArg Word8

Since: base-2.1

Instance details

Defined in Text.Printf

NFData Word8 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word8 -> () #

Bits Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

FiniteBits Word8

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Word

Data Word8

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 #

toConstr :: Word8 -> Constr #

dataTypeOf :: Word8 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) #

gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 #

Bounded Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Enum Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Ix Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Num Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Read Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Integral Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Real Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Methods

toRational :: Word8 -> Rational #

Show Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Eq Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Ord Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Methods

compare :: Word8 -> Word8 -> Ordering #

(<) :: Word8 -> Word8 -> Bool #

(<=) :: Word8 -> Word8 -> Bool #

(>) :: Word8 -> Word8 -> Bool #

(>=) :: Word8 -> Word8 -> Bool #

max :: Word8 -> Word8 -> Word8 #

min :: Word8 -> Word8 -> Word8 #

Hashable Word8 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word8 -> Int #

hash :: Word8 -> Int #

Lift Word8 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word8 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word8 -> Code m Word8 #

data Word #

A Word is an unsigned integral type, with the same size as Int.

Instances

Instances details
PrintfArg Word

Since: base-2.1

Instance details

Defined in Text.Printf

NFData Word 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word -> () #

Bits Word

@since base-2.01

Instance details

Defined in GHC.Internal.Bits

FiniteBits Word

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Bits

Data Word

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word #

toConstr :: Word -> Constr #

dataTypeOf :: Word -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

Bounded Word

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Enum Word

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Num Word

@since base-2.01

Instance details

Defined in GHC.Internal.Num

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Read Word

@since base-4.5.0.0

Instance details

Defined in GHC.Internal.Read

Integral Word

@since base-2.01

Instance details

Defined in GHC.Internal.Real

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Real Word

@since base-2.01

Instance details

Defined in GHC.Internal.Real

Methods

toRational :: Word -> Rational #

Show Word

@since base-2.01

Instance details

Defined in GHC.Internal.Show

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Eq Word 
Instance details

Defined in GHC.Classes

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Ord Word 
Instance details

Defined in GHC.Classes

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Hashable Word 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word -> Int #

hash :: Word -> Int #

Lift Word 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word -> Code m Word #

Generic1 (URec Word :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Word :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Word :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Word a -> Rep1 (URec Word :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Word :: k -> Type) a -> URec Word a #

Foldable (UWord :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UWord m -> m #

foldMap :: Monoid m => (a -> m) -> UWord a -> m #

foldMap' :: Monoid m => (a -> m) -> UWord a -> m #

foldr :: (a -> b -> b) -> b -> UWord a -> b #

foldr' :: (a -> b -> b) -> b -> UWord a -> b #

foldl :: (b -> a -> b) -> b -> UWord a -> b #

foldl' :: (b -> a -> b) -> b -> UWord a -> b #

foldr1 :: (a -> a -> a) -> UWord a -> a #

foldl1 :: (a -> a -> a) -> UWord a -> a #

toList :: UWord a -> [a] #

null :: UWord a -> Bool #

length :: UWord a -> Int #

elem :: Eq a => a -> UWord a -> Bool #

maximum :: Ord a => UWord a -> a #

minimum :: Ord a => UWord a -> a #

sum :: Num a => UWord a -> a #

product :: Num a => UWord a -> a #

Traversable (UWord :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UWord a -> f (UWord b) #

sequenceA :: Applicative f => UWord (f a) -> f (UWord a) #

mapM :: Monad m => (a -> m b) -> UWord a -> m (UWord b) #

sequence :: Monad m => UWord (m a) -> m (UWord a) #

Functor (URec Word :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Generic (URec Word p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Word p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Word p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: Type -> Type)))

Methods

from :: URec Word p -> Rep (URec Word p) x #

to :: Rep (URec Word p) x -> URec Word p #

Show (URec Word p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Word p -> ShowS #

show :: URec Word p -> String #

showList :: [URec Word p] -> ShowS #

Eq (URec Word p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Word p -> URec Word p -> Bool #

(/=) :: URec Word p -> URec Word p -> Bool #

Ord (URec Word p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec Word p -> URec Word p -> Ordering #

(<) :: URec Word p -> URec Word p -> Bool #

(<=) :: URec Word p -> URec Word p -> Bool #

(>) :: URec Word p -> URec Word p -> Bool #

(>=) :: URec Word p -> URec Word p -> Bool #

max :: URec Word p -> URec Word p -> URec Word p #

min :: URec Word p -> URec Word p -> URec Word p #

data URec Word (p :: k)

Used for marking occurrences of Word#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Word (p :: k) = UWord {}
type Rep1 (URec Word :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Word :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: k -> Type)))
type Rep (URec Word p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Word p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UWord" 'PrefixI 'True) (S1 ('MetaSel ('Just "uWord#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UWord :: Type -> Type)))

data Word64 #

64-bit unsigned integer type

Instances

Instances details
PrintfArg Word64

Since: base-2.1

Instance details

Defined in Text.Printf

NFData Word64 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word64 -> () #

Bits Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

FiniteBits Word64

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Word

Data Word64

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 #

toConstr :: Word64 -> Constr #

dataTypeOf :: Word64 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) #

gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 #

Bounded Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Enum Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Ix Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Num Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Read Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Integral Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Real Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Show Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Eq Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Ord Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Hashable Word64 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word64 -> Int #

hash :: Word64 -> Int #

Lift Word64 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word64 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word64 -> Code m Word64 #

data Word32 #

32-bit unsigned integer type

Instances

Instances details
PrintfArg Word32

Since: base-2.1

Instance details

Defined in Text.Printf

NFData Word32 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word32 -> () #

Bits Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

FiniteBits Word32

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Word

Data Word32

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 #

toConstr :: Word32 -> Constr #

dataTypeOf :: Word32 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) #

gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 #

Bounded Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Enum Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Ix Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Num Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Read Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Integral Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Real Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Show Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Eq Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Ord Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Hashable Word32 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word32 -> Int #

hash :: Word32 -> Int #

Lift Word32 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word32 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word32 -> Code m Word32 #

data Word16 #

16-bit unsigned integer type

Instances

Instances details
PrintfArg Word16

Since: base-2.1

Instance details

Defined in Text.Printf

NFData Word16 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Word16 -> () #

Bits Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

FiniteBits Word16

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Word

Data Word16

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 #

toConstr :: Word16 -> Constr #

dataTypeOf :: Word16 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) #

gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 #

Bounded Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Enum Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Ix Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Num Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Read Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Integral Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Real Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Show Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Eq Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Ord Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Hashable Word16 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Word16 -> Int #

hash :: Word16 -> Int #

Lift Word16 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Word16 -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Word16 -> Code m Word16 #

byteSwap16 :: Word16 -> Word16 #

Reverse order of bytes in Word16.

@since base-4.7.0.0

byteSwap32 :: Word32 -> Word32 #

Reverse order of bytes in Word32.

@since base-4.7.0.0

byteSwap64 :: Word64 -> Word64 #

Reverse order of bytes in Word64.

@since base-4.7.0.0

data Float #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Constructors

F# Float# 

Instances

Instances details
PrintfArg Float

Since: base-2.1

Instance details

Defined in Text.Printf

NFData Float 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Float -> () #

Data Float

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float #

toConstr :: Float -> Constr #

dataTypeOf :: Float -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

Floating Float

@since base-2.01

Instance details

Defined in GHC.Internal.Float

RealFloat Float

@since base-2.01

Instance details

Defined in GHC.Internal.Float

Read Float

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Eq Float

Note that due to the presence of NaN, Float's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Float)
False

Also note that Float's Eq instance does not satisfy extensionality:

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Ord Float

See instance Ord Double for discussion of deviations from IEEE 754 standard.

Instance details

Defined in GHC.Classes

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

Hashable Float

Note: prior to hashable-1.3.0.0, hash 0.0 /= hash (-0.0)

The hash of NaN is not well defined.

Since: hashable-1.3.0.0

Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Float -> Int #

hash :: Float -> Int #

Lift Float 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Float -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Float -> Code m Float #

Generic1 (URec Float :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Float :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Float :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Float a -> Rep1 (URec Float :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Float :: k -> Type) a -> URec Float a #

Foldable (UFloat :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UFloat m -> m #

foldMap :: Monoid m => (a -> m) -> UFloat a -> m #

foldMap' :: Monoid m => (a -> m) -> UFloat a -> m #

foldr :: (a -> b -> b) -> b -> UFloat a -> b #

foldr' :: (a -> b -> b) -> b -> UFloat a -> b #

foldl :: (b -> a -> b) -> b -> UFloat a -> b #

foldl' :: (b -> a -> b) -> b -> UFloat a -> b #

foldr1 :: (a -> a -> a) -> UFloat a -> a #

foldl1 :: (a -> a -> a) -> UFloat a -> a #

toList :: UFloat a -> [a] #

null :: UFloat a -> Bool #

length :: UFloat a -> Int #

elem :: Eq a => a -> UFloat a -> Bool #

maximum :: Ord a => UFloat a -> a #

minimum :: Ord a => UFloat a -> a #

sum :: Num a => UFloat a -> a #

product :: Num a => UFloat a -> a #

Traversable (UFloat :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UFloat a -> f (UFloat b) #

sequenceA :: Applicative f => UFloat (f a) -> f (UFloat a) #

mapM :: Monad m => (a -> m b) -> UFloat a -> m (UFloat b) #

sequence :: Monad m => UFloat (m a) -> m (UFloat a) #

Functor (URec Float :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Generic (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

type Rep (URec Float p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: Type -> Type)))

Methods

from :: URec Float p -> Rep (URec Float p) x #

to :: Rep (URec Float p) x -> URec Float p #

Show (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Float p -> ShowS #

show :: URec Float p -> String #

showList :: [URec Float p] -> ShowS #

Eq (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Float p -> URec Float p -> Bool #

(/=) :: URec Float p -> URec Float p -> Bool #

Ord (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec Float p -> URec Float p -> Ordering #

(<) :: URec Float p -> URec Float p -> Bool #

(<=) :: URec Float p -> URec Float p -> Bool #

(>) :: URec Float p -> URec Float p -> Bool #

(>=) :: URec Float p -> URec Float p -> Bool #

max :: URec Float p -> URec Float p -> URec Float p #

min :: URec Float p -> URec Float p -> URec Float p #

data URec Float (p :: k)

Used for marking occurrences of Float#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Float (p :: k) = UFloat {}
type Rep1 (URec Float :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Float :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: k -> Type)))
type Rep (URec Float p) 
Instance details

Defined in GHC.Internal.Generics

type Rep (URec Float p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UFloat" 'PrefixI 'True) (S1 ('MetaSel ('Just "uFloat#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UFloat :: Type -> Type)))

data Double #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Constructors

D# Double# 

Instances

Instances details
PrintfArg Double

Since: base-2.1

Instance details

Defined in Text.Printf

NFData Double 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Double -> () #

Data Double

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double #

toConstr :: Double -> Constr #

dataTypeOf :: Double -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

Floating Double

@since base-2.01

Instance details

Defined in GHC.Internal.Float

RealFloat Double

@since base-2.01

Instance details

Defined in GHC.Internal.Float

Read Double

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Eq Double

Note that due to the presence of NaN, Double's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Double)
False

Also note that Double's Eq instance does not satisfy substitutivity:

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Ord Double

IEEE 754 Double-precision type includes not only numbers, but also positive and negative infinities and a special element called NaN (which can be quiet or signal).

IEEE 754-2008, section 5.11 requires that if at least one of arguments of <=, <, >, >= is NaN then the result of the comparison is False, and instance Ord Double complies with this requirement. This violates the reflexivity: both NaN <= NaN and NaN >= NaN are False.

IEEE 754-2008, section 5.10 defines totalOrder predicate. Unfortunately, compare on Doubles violates the IEEE standard and does not define a total order. More specifically, both compare NaN x and compare x NaN always return GT.

Thus, users must be extremely cautious when using instance Ord Double. For instance, one should avoid ordered containers with keys represented by Double, because data loss and corruption may happen. An IEEE-compliant compare is available in fp-ieee package as TotallyOrdered newtype.

Moving further, the behaviour of min and max with regards to NaN is also non-compliant. IEEE 754-2008, section 5.3.1 defines that quiet NaN should be treated as a missing data by minNum and maxNum functions, for example, minNum(NaN, 1) = minNum(1, NaN) = 1. Some languages such as Java deviate from the standard implementing minNum(NaN, 1) = minNum(1, NaN) = NaN. However, min / max in base are even worse: min NaN 1 is 1, but min 1 NaN is NaN.

IEEE 754-2008 compliant min / max can be found in ieee754 package under minNum / maxNum names. Implementations compliant with minimumNumber / maximumNumber from a newer IEEE 754-2019, section 9.6 are available from fp-ieee package.

Instance details

Defined in GHC.Classes

Hashable Double

Note: prior to hashable-1.3.0.0, hash 0.0 /= hash (-0.0)

The hash of NaN is not well defined.

Since: hashable-1.3.0.0

Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Double -> Int #

hash :: Double -> Int #

Lift Double 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Double -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Double -> Code m Double #

Generic1 (URec Double :: k -> Type) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep1 (URec Double :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Double :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: k -> Type)))

Methods

from1 :: forall (a :: k). URec Double a -> Rep1 (URec Double :: k -> Type) a #

to1 :: forall (a :: k). Rep1 (URec Double :: k -> Type) a -> URec Double a #

Foldable (UDouble :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Foldable

Methods

fold :: Monoid m => UDouble m -> m #

foldMap :: Monoid m => (a -> m) -> UDouble a -> m #

foldMap' :: Monoid m => (a -> m) -> UDouble a -> m #

foldr :: (a -> b -> b) -> b -> UDouble a -> b #

foldr' :: (a -> b -> b) -> b -> UDouble a -> b #

foldl :: (b -> a -> b) -> b -> UDouble a -> b #

foldl' :: (b -> a -> b) -> b -> UDouble a -> b #

foldr1 :: (a -> a -> a) -> UDouble a -> a #

foldl1 :: (a -> a -> a) -> UDouble a -> a #

toList :: UDouble a -> [a] #

null :: UDouble a -> Bool #

length :: UDouble a -> Int #

elem :: Eq a => a -> UDouble a -> Bool #

maximum :: Ord a => UDouble a -> a #

minimum :: Ord a => UDouble a -> a #

sum :: Num a => UDouble a -> a #

product :: Num a => UDouble a -> a #

Traversable (UDouble :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> UDouble a -> f (UDouble b) #

sequenceA :: Applicative f => UDouble (f a) -> f (UDouble a) #

mapM :: Monad m => (a -> m b) -> UDouble a -> m (UDouble b) #

sequence :: Monad m => UDouble (m a) -> m (UDouble a) #

Functor (URec Double :: Type -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Generic (URec Double p) 
Instance details

Defined in GHC.Internal.Generics

Associated Types

type Rep (URec Double p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Double p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: Type -> Type)))

Methods

from :: URec Double p -> Rep (URec Double p) x #

to :: Rep (URec Double p) x -> URec Double p #

Show (URec Double p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

showsPrec :: Int -> URec Double p -> ShowS #

show :: URec Double p -> String #

showList :: [URec Double p] -> ShowS #

Eq (URec Double p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(==) :: URec Double p -> URec Double p -> Bool #

(/=) :: URec Double p -> URec Double p -> Bool #

Ord (URec Double p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

compare :: URec Double p -> URec Double p -> Ordering #

(<) :: URec Double p -> URec Double p -> Bool #

(<=) :: URec Double p -> URec Double p -> Bool #

(>) :: URec Double p -> URec Double p -> Bool #

(>=) :: URec Double p -> URec Double p -> Bool #

max :: URec Double p -> URec Double p -> URec Double p #

min :: URec Double p -> URec Double p -> URec Double p #

data URec Double (p :: k)

Used for marking occurrences of Double#

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

data URec Double (p :: k) = UDouble {}
type Rep1 (URec Double :: k -> Type)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep1 (URec Double :: k -> Type) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: k -> Type)))
type Rep (URec Double p)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

type Rep (URec Double p) = D1 ('MetaData "URec" "GHC.Internal.Generics" "ghc-internal" 'False) (C1 ('MetaCons "UDouble" 'PrefixI 'True) (S1 ('MetaSel ('Just "uDouble#") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (UDouble :: Type -> Type)))

class Fractional a => Floating a where #

Trigonometric and hyperbolic functions and related functions.

The Haskell Report defines no laws for Floating. However, (+), (*) and exp are customarily expected to define an exponential field and have the following properties:

  • exp (a + b) = exp a * exp b
  • exp (fromInteger 0) = fromInteger 1

Minimal complete definition

pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh

Methods

pi :: a #

exp :: a -> a #

sqrt :: a -> a #

(**) :: a -> a -> a infixr 8 #

logBase :: a -> a -> a #

sin :: a -> a #

cos :: a -> a #

tan :: a -> a #

asin :: a -> a #

acos :: a -> a #

atan :: a -> a #

sinh :: a -> a #

cosh :: a -> a #

tanh :: a -> a #

asinh :: a -> a #

acosh :: a -> a #

atanh :: a -> a #

Instances

Instances details
Floating Double

@since base-2.01

Instance details

Defined in GHC.Internal.Float

Floating Float

@since base-2.01

Instance details

Defined in GHC.Internal.Float

RealFloat a => Floating (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

pi :: Complex a #

exp :: Complex a -> Complex a #

log :: Complex a -> Complex a #

sqrt :: Complex a -> Complex a #

(**) :: Complex a -> Complex a -> Complex a #

logBase :: Complex a -> Complex a -> Complex a #

sin :: Complex a -> Complex a #

cos :: Complex a -> Complex a #

tan :: Complex a -> Complex a #

asin :: Complex a -> Complex a #

acos :: Complex a -> Complex a #

atan :: Complex a -> Complex a #

sinh :: Complex a -> Complex a #

cosh :: Complex a -> Complex a #

tanh :: Complex a -> Complex a #

asinh :: Complex a -> Complex a #

acosh :: Complex a -> Complex a #

atanh :: Complex a -> Complex a #

log1p :: Complex a -> Complex a #

expm1 :: Complex a -> Complex a #

log1pexp :: Complex a -> Complex a #

log1mexp :: Complex a -> Complex a #

Floating a => Floating (Identity a)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Floating a => Floating (Down a)

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

pi :: Down a #

exp :: Down a -> Down a #

log :: Down a -> Down a #

sqrt :: Down a -> Down a #

(**) :: Down a -> Down a -> Down a #

logBase :: Down a -> Down a -> Down a #

sin :: Down a -> Down a #

cos :: Down a -> Down a #

tan :: Down a -> Down a #

asin :: Down a -> Down a #

acos :: Down a -> Down a #

atan :: Down a -> Down a #

sinh :: Down a -> Down a #

cosh :: Down a -> Down a #

tanh :: Down a -> Down a #

asinh :: Down a -> Down a #

acosh :: Down a -> Down a #

atanh :: Down a -> Down a #

log1p :: Down a -> Down a #

expm1 :: Down a -> Down a #

log1pexp :: Down a -> Down a #

log1mexp :: Down a -> Down a #

Floating a => Floating (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

pi :: Op a b #

exp :: Op a b -> Op a b #

log :: Op a b -> Op a b #

sqrt :: Op a b -> Op a b #

(**) :: Op a b -> Op a b -> Op a b #

logBase :: Op a b -> Op a b -> Op a b #

sin :: Op a b -> Op a b #

cos :: Op a b -> Op a b #

tan :: Op a b -> Op a b #

asin :: Op a b -> Op a b #

acos :: Op a b -> Op a b #

atan :: Op a b -> Op a b #

sinh :: Op a b -> Op a b #

cosh :: Op a b -> Op a b #

tanh :: Op a b -> Op a b #

asinh :: Op a b -> Op a b #

acosh :: Op a b -> Op a b #

atanh :: Op a b -> Op a b #

log1p :: Op a b -> Op a b #

expm1 :: Op a b -> Op a b #

log1pexp :: Op a b -> Op a b #

log1mexp :: Op a b -> Op a b #

Floating a => Floating (Const a b)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

Floating (f (g a)) => Floating (Compose f g a)

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

pi :: Compose f g a #

exp :: Compose f g a -> Compose f g a #

log :: Compose f g a -> Compose f g a #

sqrt :: Compose f g a -> Compose f g a #

(**) :: Compose f g a -> Compose f g a -> Compose f g a #

logBase :: Compose f g a -> Compose f g a -> Compose f g a #

sin :: Compose f g a -> Compose f g a #

cos :: Compose f g a -> Compose f g a #

tan :: Compose f g a -> Compose f g a #

asin :: Compose f g a -> Compose f g a #

acos :: Compose f g a -> Compose f g a #

atan :: Compose f g a -> Compose f g a #

sinh :: Compose f g a -> Compose f g a #

cosh :: Compose f g a -> Compose f g a #

tanh :: Compose f g a -> Compose f g a #

asinh :: Compose f g a -> Compose f g a #

acosh :: Compose f g a -> Compose f g a #

atanh :: Compose f g a -> Compose f g a #

log1p :: Compose f g a -> Compose f g a #

expm1 :: Compose f g a -> Compose f g a #

log1pexp :: Compose f g a -> Compose f g a #

log1mexp :: Compose f g a -> Compose f g a #

class (RealFrac a, Floating a) => RealFloat a where #

Efficient, machine-independent access to the components of a floating-point number.

Methods

floatRadix :: a -> Integer #

a constant function, returning the radix of the representation (often 2)

floatDigits :: a -> Int #

a constant function, returning the number of digits of floatRadix in the significand

floatRange :: a -> (Int, Int) #

a constant function, returning the lowest and highest values the exponent may assume

decodeFloat :: a -> (Integer, Int) #

The function decodeFloat applied to a real floating-point number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to m*b^^n, where b is the floating-point radix, and furthermore, either m and n are both zero or else b^(d-1) <= abs m < b^d, where d is the value of floatDigits x. In particular, decodeFloat 0 = (0,0). If the type contains a negative zero, also decodeFloat (-0.0) = (0,0). The result of decodeFloat x is unspecified if either of isNaN x or isInfinite x is True.

encodeFloat :: Integer -> Int -> a #

encodeFloat performs the inverse of decodeFloat in the sense that for finite x with the exception of -0.0, uncurry encodeFloat (decodeFloat x) = x. encodeFloat m n is one of the two closest representable floating-point numbers to m*b^^n (or ±Infinity if overflow occurs); usually the closer, but if m contains too many bits, the result may be rounded in the wrong direction.

isNaN :: a -> Bool #

True if the argument is an IEEE "not-a-number" (NaN) value

isInfinite :: a -> Bool #

True if the argument is an IEEE infinity or negative infinity

isDenormalized :: a -> Bool #

True if the argument is too small to be represented in normalized format

isNegativeZero :: a -> Bool #

True if the argument is an IEEE negative zero

isIEEE :: a -> Bool #

True if the argument is an IEEE floating point number

atan2 :: a -> a -> a #

a version of arctangent taking two real floating-point arguments. For real floating x and y, atan2 y x computes the angle (from the positive x-axis) of the vector from the origin to the point (x,y). atan2 y x returns a value in the range [-pi, pi]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. atan2 y 1, with y in a type that is RealFloat, should return the same value as atan y. A default definition of atan2 is provided, but implementors can provide a more accurate implementation.

Instances

Instances details
RealFloat Double

@since base-2.01

Instance details

Defined in GHC.Internal.Float

RealFloat Float

@since base-2.01

Instance details

Defined in GHC.Internal.Float

RealFloat a => RealFloat (Identity a)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

RealFloat a => RealFloat (Down a)

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

RealFloat a => RealFloat (Const a b)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

RealFloat (f (g a)) => RealFloat (Compose f g a)

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

floatRadix :: Compose f g a -> Integer #

floatDigits :: Compose f g a -> Int #

floatRange :: Compose f g a -> (Int, Int) #

decodeFloat :: Compose f g a -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Compose f g a #

exponent :: Compose f g a -> Int #

significand :: Compose f g a -> Compose f g a #

scaleFloat :: Int -> Compose f g a -> Compose f g a #

isNaN :: Compose f g a -> Bool #

isInfinite :: Compose f g a -> Bool #

isDenormalized :: Compose f g a -> Bool #

isNegativeZero :: Compose f g a -> Bool #

isIEEE :: Compose f g a -> Bool #

atan2 :: Compose f g a -> Compose f g a -> Compose f g a #

data Integer #

Arbitrary precision integers. In contrast with fixed-size integral types such as Int, the Integer type represents the entire infinite range of integers.

Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.

If the value is small (i.e., fits into an Int), the IS constructor is used. Otherwise IP and IN constructors are used to store a BigNat representing the positive or the negative value magnitude, respectively.

Invariant: IP and IN are used iff the value does not fit in IS.

Instances

Instances details
PrintfArg Integer

Since: base-2.1

Instance details

Defined in Text.Printf

NFData Integer 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Integer -> () #

Bits Integer

@since base-2.01

Instance details

Defined in GHC.Internal.Bits

Data Integer

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer #

toConstr :: Integer -> Constr #

dataTypeOf :: Integer -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) #

gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

Enum Integer

@since base-2.01

Instance details

Defined in GHC.Internal.Enum

Num Integer

@since base-2.01

Instance details

Defined in GHC.Internal.Num

Read Integer

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Integral Integer

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Real Integer

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Show Integer

@since base-2.01

Instance details

Defined in GHC.Internal.Show

Eq Integer 
Instance details

Defined in GHC.Num.Integer

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Ord Integer 
Instance details

Defined in GHC.Num.Integer

Hashable Integer 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Integer -> Int #

hash :: Integer -> Int #

Lift Integer 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Integer -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Integer -> Code m Integer #

class Num a where #

Basic numeric class.

The Haskell Report defines no laws for Num. However, (+) and (*) are customarily expected to define a ring and have the following properties:

Associativity of (+)
(x + y) + z = x + (y + z)
Commutativity of (+)
x + y = y + x
fromInteger 0 is the additive identity
x + fromInteger 0 = x
negate gives the additive inverse
x + negate x = fromInteger 0
Associativity of (*)
(x * y) * z = x * (y * z)
fromInteger 1 is the multiplicative identity
x * fromInteger 1 = x and fromInteger 1 * x = x
Distributivity of (*) with respect to (+)
a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)
Coherence with toInteger
if the type also implements Integral, then fromInteger is a left inverse for toInteger, i.e. fromInteger (toInteger i) == i

Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.

Minimal complete definition

(+), (*), abs, signum, fromInteger, (negate | (-))

Methods

(+) :: a -> a -> a infixl 6 #

(-) :: a -> a -> a infixl 6 #

(*) :: a -> a -> a infixl 7 #

negate :: a -> a #

Unary negation.

abs :: a -> a #

Absolute value.

signum :: a -> a #

Sign of a number. The functions abs and signum should satisfy the law:

abs x * signum x == x

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> a #

Conversion from an Integer. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer, so such literals have type (Num a) => a.

Instances

Instances details
Num Int16

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Num Int32

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Num Int64

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Num Int8

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Methods

(+) :: Int8 -> Int8 -> Int8 #

(-) :: Int8 -> Int8 -> Int8 #

(*) :: Int8 -> Int8 -> Int8 #

negate :: Int8 -> Int8 #

abs :: Int8 -> Int8 #

signum :: Int8 -> Int8 #

fromInteger :: Integer -> Int8 #

Num Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Num Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Num Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Num Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Num I8 
Instance details

Defined in Data.Text.Foreign

Methods

(+) :: I8 -> I8 -> I8 #

(-) :: I8 -> I8 -> I8 #

(*) :: I8 -> I8 -> I8 #

negate :: I8 -> I8 #

abs :: I8 -> I8 #

signum :: I8 -> I8 #

fromInteger :: Integer -> I8 #

Num Size 
Instance details

Defined in Data.Text.Internal.Fusion.Size

Methods

(+) :: Size -> Size -> Size #

(-) :: Size -> Size -> Size #

(*) :: Size -> Size -> Size #

negate :: Size -> Size #

abs :: Size -> Size #

signum :: Size -> Size #

fromInteger :: Integer -> Size #

Num Integer

@since base-2.01

Instance details

Defined in GHC.Internal.Num

Num Natural

Note that Natural's Num instance isn't a ring: no element but 0 has an additive inverse. It is a semiring though.

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Num

Num Int

@since base-2.01

Instance details

Defined in GHC.Internal.Num

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Num Word

@since base-2.01

Instance details

Defined in GHC.Internal.Num

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

RealFloat a => Num (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(+) :: Complex a -> Complex a -> Complex a #

(-) :: Complex a -> Complex a -> Complex a #

(*) :: Complex a -> Complex a -> Complex a #

negate :: Complex a -> Complex a #

abs :: Complex a -> Complex a #

signum :: Complex a -> Complex a #

fromInteger :: Integer -> Complex a #

Num a => Num (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(+) :: Max a -> Max a -> Max a #

(-) :: Max a -> Max a -> Max a #

(*) :: Max a -> Max a -> Max a #

negate :: Max a -> Max a #

abs :: Max a -> Max a #

signum :: Max a -> Max a #

fromInteger :: Integer -> Max a #

Num a => Num (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(+) :: Min a -> Min a -> Min a #

(-) :: Min a -> Min a -> Min a #

(*) :: Min a -> Min a -> Min a #

negate :: Min a -> Min a #

abs :: Min a -> Min a #

signum :: Min a -> Min a #

fromInteger :: Integer -> Min a #

Num a => Num (Identity a)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Num a => Num (Down a)

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(+) :: Down a -> Down a -> Down a #

(-) :: Down a -> Down a -> Down a #

(*) :: Down a -> Down a -> Down a #

negate :: Down a -> Down a #

abs :: Down a -> Down a #

signum :: Down a -> Down a #

fromInteger :: Integer -> Down a #

Num a => Num (Product a)

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Num a => Num (Sum a)

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Integral a => Num (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(+) :: Ratio a -> Ratio a -> Ratio a #

(-) :: Ratio a -> Ratio a -> Ratio a #

(*) :: Ratio a -> Ratio a -> Ratio a #

negate :: Ratio a -> Ratio a #

abs :: Ratio a -> Ratio a #

signum :: Ratio a -> Ratio a #

fromInteger :: Integer -> Ratio a #

HasResolution a => Num (Fixed a)

Multiplication is not associative or distributive:

>>> (0.2 * 0.6 :: Deci) * 0.9 == 0.2 * (0.6 * 0.9)
False
>>> (0.1 + 0.1 :: Deci) * 0.5 == 0.1 * 0.5 + 0.1 * 0.5
False

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

(+) :: Fixed a -> Fixed a -> Fixed a #

(-) :: Fixed a -> Fixed a -> Fixed a #

(*) :: Fixed a -> Fixed a -> Fixed a #

negate :: Fixed a -> Fixed a #

abs :: Fixed a -> Fixed a #

signum :: Fixed a -> Fixed a #

fromInteger :: Integer -> Fixed a #

Num a => Num (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(+) :: Op a b -> Op a b -> Op a b #

(-) :: Op a b -> Op a b -> Op a b #

(*) :: Op a b -> Op a b -> Op a b #

negate :: Op a b -> Op a b #

abs :: Op a b -> Op a b #

signum :: Op a b -> Op a b #

fromInteger :: Integer -> Op a b #

Num a => Num (Const a b)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

(Applicative f, Num a) => Num (Ap f a)

Note that even if the underlying Num and Applicative instances are lawful, for most Applicatives, this instance will not be lawful. If you use this instance with the list Applicative, the following customary laws will not hold:

Commutativity:

>>> Ap [10,20] + Ap [1,2]
Ap {getAp = [11,12,21,22]}
>>> Ap [1,2] + Ap [10,20]
Ap {getAp = [11,21,12,22]}

Additive inverse:

>>> Ap [] + negate (Ap [])
Ap {getAp = []}
>>> fromInteger 0 :: Ap [] Int
Ap {getAp = [0]}

Distributivity:

>>> Ap [1,2] * (3 + 4)
Ap {getAp = [7,14]}
>>> (Ap [1,2] * 3) + (Ap [1,2] * 4)
Ap {getAp = [7,11,10,14]}

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a #

(-) :: Ap f a -> Ap f a -> Ap f a #

(*) :: Ap f a -> Ap f a -> Ap f a #

negate :: Ap f a -> Ap f a #

abs :: Ap f a -> Ap f a #

signum :: Ap f a -> Ap f a #

fromInteger :: Integer -> Ap f a #

Num (f a) => Num (Alt f a)

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(+) :: Alt f a -> Alt f a -> Alt f a #

(-) :: Alt f a -> Alt f a -> Alt f a #

(*) :: Alt f a -> Alt f a -> Alt f a #

negate :: Alt f a -> Alt f a #

abs :: Alt f a -> Alt f a #

signum :: Alt f a -> Alt f a #

fromInteger :: Integer -> Alt f a #

Num (f (g a)) => Num (Compose f g a)

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(+) :: Compose f g a -> Compose f g a -> Compose f g a #

(-) :: Compose f g a -> Compose f g a -> Compose f g a #

(*) :: Compose f g a -> Compose f g a -> Compose f g a #

negate :: Compose f g a -> Compose f g a #

abs :: Compose f g a -> Compose f g a #

signum :: Compose f g a -> Compose f g a #

fromInteger :: Integer -> Compose f g a #

subtract :: Num a => a -> a -> a #

the same as flip (-).

Because - is treated specially in the Haskell grammar, (- e) is not a section, but an application of prefix negation. However, (subtract exp) is equivalent to the disallowed section.

class Num a => Fractional a where #

Fractional numbers, supporting real division.

The Haskell Report defines no laws for Fractional. However, (+) and (*) are customarily expected to define a division ring and have the following properties:

recip gives the multiplicative inverse
x * recip x = recip x * x = fromInteger 1
Totality of toRational
toRational is total
Coherence with toRational
if the type also implements Real, then fromRational is a left inverse for toRational, i.e. fromRational (toRational i) = i

Note that it isn't customarily expected that a type instance of Fractional implement a field. However, all instances in base do.

Minimal complete definition

fromRational, (recip | (/))

Methods

(/) :: a -> a -> a infixl 7 #

Fractional division.

recip :: a -> a #

Reciprocal fraction.

fromRational :: Rational -> a #

Conversion from a Rational (that is Ratio Integer). A floating literal stands for an application of fromRational to a value of type Rational, so such literals have type (Fractional a) => a.

Instances

Instances details
RealFloat a => Fractional (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Methods

(/) :: Complex a -> Complex a -> Complex a #

recip :: Complex a -> Complex a #

fromRational :: Rational -> Complex a #

Fractional a => Fractional (Identity a)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Fractional a => Fractional (Down a)

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(/) :: Down a -> Down a -> Down a #

recip :: Down a -> Down a #

fromRational :: Rational -> Down a #

Integral a => Fractional (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

HasResolution a => Fractional (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

(/) :: Fixed a -> Fixed a -> Fixed a #

recip :: Fixed a -> Fixed a #

fromRational :: Rational -> Fixed a #

Fractional a => Fractional (Op a b) 
Instance details

Defined in Data.Functor.Contravariant

Methods

(/) :: Op a b -> Op a b -> Op a b #

recip :: Op a b -> Op a b #

fromRational :: Rational -> Op a b #

Fractional a => Fractional (Const a b)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

Fractional (f (g a)) => Fractional (Compose f g a)

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(/) :: Compose f g a -> Compose f g a -> Compose f g a #

recip :: Compose f g a -> Compose f g a #

fromRational :: Rational -> Compose f g a #

fromIntegral :: (Integral a, Num b) => a -> b #

General coercion from Integral types.

WARNING: This function performs silent truncation if the result type is not at least as big as the argument's type.

realToFrac :: (Real a, Fractional b) => a -> b #

General coercion to Fractional types.

WARNING: This function goes through the Rational type, which does not have values for NaN for example. This means it does not round-trip.

For Double it also behaves differently with or without -O0:

Prelude> realToFrac nan -- With -O0
-Infinity
Prelude> realToFrac nan
NaN

class (Real a, Enum a) => Integral a where #

Integral numbers, supporting integer division.

The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the div/mod and quot/rem pairs, given suitable Euclidean functions f and g:

  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y

An example of a suitable Euclidean function, for Integer's instance, is abs.

In addition, toInteger should be total, and fromInteger should be a left inverse for it, i.e. fromInteger (toInteger i) = i.

Minimal complete definition

quotRem, toInteger

Methods

quot :: a -> a -> a infixl 7 #

Integer division truncated toward zero.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

rem :: a -> a -> a infixl 7 #

Integer remainder, satisfying

(x `quot` y)*y + (x `rem` y) == x

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

div :: a -> a -> a infixl 7 #

Integer division truncated toward negative infinity.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

mod :: a -> a -> a infixl 7 #

Integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

quotRem :: a -> a -> (a, a) #

Simultaneous quot and rem.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

divMod :: a -> a -> (a, a) #

simultaneous div and mod.

WARNING: This function is partial (because it throws when 0 is passed as the divisor) for all the integer types in base.

toInteger :: a -> Integer #

Conversion to Integer.

Instances

Instances details
Integral Int16

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Integral Int32

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Integral Int64

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Integral Int8

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Integral Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Integral Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Integral Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Integral Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Integral I8 
Instance details

Defined in Data.Text.Foreign

Methods

quot :: I8 -> I8 -> I8 #

rem :: I8 -> I8 -> I8 #

div :: I8 -> I8 -> I8 #

mod :: I8 -> I8 -> I8 #

quotRem :: I8 -> I8 -> (I8, I8) #

divMod :: I8 -> I8 -> (I8, I8) #

toInteger :: I8 -> Integer #

Integral Integer

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Integral Natural

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Real

Integral Int

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Integral Word

@since base-2.01

Instance details

Defined in GHC.Internal.Real

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Integral a => Integral (Identity a)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Integral a => Integral (Const a b)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

Integral (f (g a)) => Integral (Compose f g a)

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

quot :: Compose f g a -> Compose f g a -> Compose f g a #

rem :: Compose f g a -> Compose f g a -> Compose f g a #

div :: Compose f g a -> Compose f g a -> Compose f g a #

mod :: Compose f g a -> Compose f g a -> Compose f g a #

quotRem :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a) #

divMod :: Compose f g a -> Compose f g a -> (Compose f g a, Compose f g a) #

toInteger :: Compose f g a -> Integer #

class (Num a, Ord a) => Real a where #

Real numbers.

The Haskell report defines no laws for Real, however Real instances are customarily expected to adhere to the following law:

Coherence with fromRational
if the type also implements Fractional, then fromRational is a left inverse for toRational, i.e. fromRational (toRational i) = i

The law does not hold for Float, Double, CFloat, CDouble, etc., because these types contain non-finite values, which cannot be roundtripped through Rational.

Methods

toRational :: a -> Rational #

Rational equivalent of its real argument with full precision.

Instances

Instances details
Real Int16

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Methods

toRational :: Int16 -> Rational #

Real Int32

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Methods

toRational :: Int32 -> Rational #

Real Int64

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Methods

toRational :: Int64 -> Rational #

Real Int8

@since base-2.01

Instance details

Defined in GHC.Internal.Int

Methods

toRational :: Int8 -> Rational #

Real Word16

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Real Word32

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Real Word64

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Real Word8

@since base-2.01

Instance details

Defined in GHC.Internal.Word

Methods

toRational :: Word8 -> Rational #

Real I8 
Instance details

Defined in Data.Text.Foreign

Methods

toRational :: I8 -> Rational #

Real Integer

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Real Natural

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Real

Real Int

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

toRational :: Int -> Rational #

Real Word

@since base-2.01

Instance details

Defined in GHC.Internal.Real

Methods

toRational :: Word -> Rational #

Real a => Real (Identity a)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

toRational :: Identity a -> Rational #

Real a => Real (Down a)

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

toRational :: Down a -> Rational #

Integral a => Real (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

toRational :: Ratio a -> Rational #

HasResolution a => Real (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

toRational :: Fixed a -> Rational #

Real a => Real (Const a b)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

Real (f (g a)) => Real (Compose f g a)

Since: base-4.19.0.0

Instance details

Defined in Data.Functor.Compose

Methods

toRational :: Compose f g a -> Rational #

class (Real a, Fractional a) => RealFrac a where #

Extracting components of fractions.

Minimal complete definition

properFraction

Methods

properFraction :: Integral b => a -> (b, a) #

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.

truncate :: Integral b => a -> b #

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> b #

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> b #

ceiling x returns the least integer not less than x

floor :: Integral b => a -> b #

floor x returns the greatest integer not greater than x

Instances

Instances details
RealFrac a => RealFrac (Identity a)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

properFraction :: Integral b => Identity a -> (b, Identity a) #

truncate :: Integral b => Identity a -> b #

round :: Integral b => Identity a -> b #

ceiling :: Integral b => Identity a -> b #

floor :: Integral b => Identity a -> b #

RealFrac a => RealFrac (Down a)

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

properFraction :: Integral b => Down a -> (b, Down a) #

truncate :: Integral b => Down a -> b #

round :: Integral b => Down a -> b #

ceiling :: Integral b => Down a -> b #

floor :: Integral b => Down a -> b #

Integral a => RealFrac (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) #

truncate :: Integral b => Ratio a -> b #

round :: Integral b => Ratio a -> b #

ceiling :: Integral b => Ratio a -> b #

floor :: Integral b => Ratio a -> b #

HasResolution a => RealFrac (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

properFraction :: Integral b => Fixed a -> (b, Fixed a) #

truncate :: Integral b => Fixed a -> b #

round :: Integral b => Fixed a -> b #

ceiling :: Integral b => Fixed a -> b #

floor :: Integral b => Fixed a -> b #

RealFrac a => RealFrac (Const a b)

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

RealFrac (f (g a)) => RealFrac (Compose f g a)

Since: base-4.20.0.0

Instance details

Defined in Data.Functor.Compose

Methods

properFraction :: Integral b => Compose f g a -> (b, Compose f g a) #

truncate :: Integral b => Compose f g a -> b #

round :: Integral b => Compose f g a -> b #

ceiling :: Integral b => Compose f g a -> b #

floor :: Integral b => Compose f g a -> b #

data Ratio a #

Rational numbers, with numerator and denominator of some Integral type.

Note that Ratio's instances inherit the deficiencies from the type parameter's. For example, Ratio Natural's Num instance has similar problems to Natural's.

Instances

Instances details
NFData1 Ratio

Available on base >=4.9

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a -> ()) -> Ratio a -> () #

Integral a => Lift (Ratio a :: Type) 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Ratio a -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Ratio a -> Code m (Ratio a) #

NFData a => NFData (Ratio a) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Ratio a -> () #

(Data a, Integral a) => Data (Ratio a)

@since base-4.0.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) #

toConstr :: Ratio a -> Constr #

dataTypeOf :: Ratio a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) #

gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) #

Integral a => Enum (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Integral a => Num (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(+) :: Ratio a -> Ratio a -> Ratio a #

(-) :: Ratio a -> Ratio a -> Ratio a #

(*) :: Ratio a -> Ratio a -> Ratio a #

negate :: Ratio a -> Ratio a #

abs :: Ratio a -> Ratio a #

signum :: Ratio a -> Ratio a #

fromInteger :: Integer -> Ratio a #

(Integral a, Read a) => Read (Ratio a)

@since base-2.01

Instance details

Defined in GHC.Internal.Read

Integral a => Fractional (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

Integral a => Real (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

toRational :: Ratio a -> Rational #

Integral a => RealFrac (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) #

truncate :: Integral b => Ratio a -> b #

round :: Integral b => Ratio a -> b #

ceiling :: Integral b => Ratio a -> b #

floor :: Integral b => Ratio a -> b #

Show a => Show (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

Eq a => Eq (Ratio a)

@since base-2.01

Instance details

Defined in GHC.Internal.Real

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Integral a => Ord (Ratio a)

@since base-2.0.1

Instance details

Defined in GHC.Internal.Real

Methods

compare :: Ratio a -> Ratio a -> Ordering #

(<) :: Ratio a -> Ratio a -> Bool #

(<=) :: Ratio a -> Ratio a -> Bool #

(>) :: Ratio a -> Ratio a -> Bool #

(>=) :: Ratio a -> Ratio a -> Bool #

max :: Ratio a -> Ratio a -> Ratio a #

min :: Ratio a -> Ratio a -> Ratio a #

Hashable a => Hashable (Ratio a) 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Ratio a -> Int #

hash :: Ratio a -> Int #

type Rational = Ratio Integer #

Arbitrary-precision rational numbers, represented as a ratio of two Integer values. A rational number may be constructed using the % operator.

(^) :: (Num a, Integral b) => a -> b -> a infixr 8 #

raise a number to a non-negative integral power

numerator :: Ratio a -> a #

Extract the numerator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.

denominator :: Ratio a -> a #

Extract the denominator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.

even :: Integral a => a -> Bool #

odd :: Integral a => a -> Bool #

(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #

raise a number to an integral power

gcd :: Integral a => a -> a -> a #

gcd x y is the non-negative factor of both x and y of which every common factor of x and y is also a factor; for example gcd 4 2 = 2, gcd (-4) 6 = 2, gcd 0 4 = 4. gcd 0 0 = 0. (That is, the common divisor that is "greatest" in the divisibility preordering.)

Note: Since for signed fixed-width integer types, abs minBound < 0, the result may be negative if one of the arguments is minBound (and necessarily is if the other is 0 or minBound) for such types.

lcm :: Integral a => a -> a -> a #

lcm x y is the smallest positive integer that both x and y divide.

data Natural #

Natural number

Invariant: numbers <= 0xffffffffffffffff use the NS constructor

Instances

Instances details
PrintfArg Natural

Since: base-4.8.0.0

Instance details

Defined in Text.Printf

NFData Natural

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Natural -> () #

Bits Natural

@since base-4.8.0

Instance details

Defined in GHC.Internal.Bits

Data Natural

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural #

toConstr :: Natural -> Constr #

dataTypeOf :: Natural -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) #

gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r #

gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural #

Enum Natural

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Enum

Num Natural

Note that Natural's Num instance isn't a ring: no element but 0 has an additive inverse. It is a semiring though.

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Num

Read Natural

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Read

Integral Natural

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Real

Real Natural

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Real

Show Natural

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Show

Eq Natural 
Instance details

Defined in GHC.Num.Natural

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Ord Natural 
Instance details

Defined in GHC.Num.Natural

Hashable Natural 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Natural -> Int #

hash :: Natural -> Int #

KnownNat n => HasResolution (n :: Nat)

For example, Fixed 1000 will give you a Fixed with a resolution of 1000.

Instance details

Defined in Data.Fixed

Methods

resolution :: p n -> Integer #

TestCoercion SNat

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.TypeNats

Methods

testCoercion :: forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> Maybe (Coercion a b) #

TestEquality SNat

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.TypeNats

Methods

testEquality :: forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> Maybe (a :~: b) #

Lift Natural 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

lift :: Quote m => Natural -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Natural -> Code m Natural #

type Compare (a :: Natural) (b :: Natural) 
Instance details

Defined in GHC.Internal.Data.Type.Ord

type Compare (a :: Natural) (b :: Natural) = CmpNat a b

Combinators

integerToBounded :: (Integral a, Bounded a) => Integer -> Maybe a Source #

Transforms an integer number to a bounded integral. It returns Nothing for integers outside the bound of the return type.

>>> integerToBounded @Int 42
Just 42
>>> integerToBounded @Int8 1024
Nothing
>>> integerToBounded @Int (toInteger (minBound :: Int))
Just (-9223372036854775808)
>>> integerToBounded @Int $ (toInteger (minBound :: Int)) - 1
Nothing
>>> integerToBounded @Int (toInteger (maxBound :: Int))
Just 9223372036854775807
>>> integerToBounded @Int $ (toInteger (maxBound :: Int)) + 1
Nothing

If you want to convert Int or Word to a bounded type, take a look at toIntegralSized function instead.

Since: 0.5.0

integerToNatural :: Integer -> Maybe Natural Source #

Transforms an integer number to a natural. Only non-negative integers are considered natural, everything else will return Nothing.

>>> integerToNatural (-1)
Nothing
>>> integerToNatural 0
Just 0
>>> integerToNatural 10
Just 10

Since: 0.5.0