{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
module FRP.Rhine.Reactimation.Combinators where
import FRP.Rhine.Clock
import FRP.Rhine.Clock.Proxy
import FRP.Rhine.ClSF.Core
import FRP.Rhine.ResamplingBuffer
import FRP.Rhine.Schedule
import FRP.Rhine.SN
import FRP.Rhine.SN.Combinators
import FRP.Rhine.Type
infix 5 @@
(@@) :: ( cl ~ In cl
, cl ~ Out cl )
=> ClSF m cl a b -> cl -> Rhine m cl a b
@@ :: ClSF m cl a b -> cl -> Rhine m cl a b
(@@) = SN m cl a b -> cl -> Rhine m cl a b
forall (m :: Type -> Type) cl a b.
SN m cl a b -> cl -> Rhine m cl a b
Rhine (SN m cl a b -> cl -> Rhine m cl a b)
-> (ClSF m cl a b -> SN m cl a b)
-> ClSF m cl a b
-> cl
-> Rhine m cl a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ClSF m cl a b -> SN m cl a b
forall cl (m :: Type -> Type) a b.
(cl ~ In cl, cl ~ Out cl) =>
ClSF m cl a b -> SN m cl a b
Synchronous
data ResamplingPoint m cla clb a b = ResamplingPoint
(ResamplingBuffer m (Out cla) (In clb) a b)
(Schedule m cla clb)
infix 8 -@-
(-@-) :: ResamplingBuffer m (Out cl1) (In cl2) a b
-> Schedule m cl1 cl2
-> ResamplingPoint m cl1 cl2 a b
-@- :: ResamplingBuffer m (Out cl1) (In cl2) a b
-> Schedule m cl1 cl2 -> ResamplingPoint m cl1 cl2 a b
(-@-) = ResamplingBuffer m (Out cl1) (In cl2) a b
-> Schedule m cl1 cl2 -> ResamplingPoint m cl1 cl2 a b
forall (m :: Type -> Type) cla clb a b.
ResamplingBuffer m (Out cla) (In clb) a b
-> Schedule m cla clb -> ResamplingPoint m cla clb a b
ResamplingPoint
infix 2 >--
data RhineAndResamplingPoint m cl1 cl2 a c = forall b.
RhineAndResamplingPoint (Rhine m cl1 a b) (ResamplingPoint m cl1 cl2 b c)
(>--) :: Rhine m cl1 a b
-> ResamplingPoint m cl1 cl2 b c
-> RhineAndResamplingPoint m cl1 cl2 a c
>-- :: Rhine m cl1 a b
-> ResamplingPoint m cl1 cl2 b c
-> RhineAndResamplingPoint m cl1 cl2 a c
(>--) = Rhine m cl1 a b
-> ResamplingPoint m cl1 cl2 b c
-> RhineAndResamplingPoint m cl1 cl2 a c
forall (m :: Type -> Type) cl1 cl2 a c b.
Rhine m cl1 a b
-> ResamplingPoint m cl1 cl2 b c
-> RhineAndResamplingPoint m cl1 cl2 a c
RhineAndResamplingPoint
infixr 1 -->
(-->) :: ( Clock m cl1
, Clock m cl2
, Time cl1 ~ Time cl2
, Time (Out cl1) ~ Time cl1
, Time (In cl2) ~ Time cl2
, Clock m (Out cl1), Clock m (Out cl2)
, Clock m (In cl1), Clock m (In cl2)
, GetClockProxy cl1, GetClockProxy cl2
)
=> RhineAndResamplingPoint m cl1 cl2 a b
-> Rhine m cl2 b c
-> Rhine m (SequentialClock m cl1 cl2) a c
RhineAndResamplingPoint (Rhine SN m cl1 a b
sn1 cl1
cl1) (ResamplingPoint ResamplingBuffer m (Out cl1) (In cl2) b b
rb Schedule m cl1 cl2
cc) --> :: RhineAndResamplingPoint m cl1 cl2 a b
-> Rhine m cl2 b c -> Rhine m (SequentialClock m cl1 cl2) a c
--> (Rhine SN m cl2 b c
sn2 cl2
cl2)
= SN m (SequentialClock m cl1 cl2) a c
-> SequentialClock m cl1 cl2
-> Rhine m (SequentialClock m cl1 cl2) a c
forall (m :: Type -> Type) cl a b.
SN m cl a b -> cl -> Rhine m cl a b
Rhine (SN m cl1 a b
-> ResamplingBuffer m (Out cl1) (In cl2) b b
-> SN m cl2 b c
-> SN m (SequentialClock m cl1 cl2) a c
forall (m :: Type -> Type) clab clcd a b c d.
(Clock m clab, Clock m clcd, Clock m (Out clab),
Clock m (Out clcd), Clock m (In clab), Clock m (In clcd),
GetClockProxy clab, GetClockProxy clcd, Time clab ~ Time clcd,
Time clab ~ Time (Out clab), Time clcd ~ Time (In clcd)) =>
SN m clab a b
-> ResamplingBuffer m (Out clab) (In clcd) b c
-> SN m clcd c d
-> SN m (SequentialClock m clab clcd) a d
Sequential SN m cl1 a b
sn1 ResamplingBuffer m (Out cl1) (In cl2) b b
rb SN m cl2 b c
sn2) (cl1 -> cl2 -> Schedule m cl1 cl2 -> SequentialClock m cl1 cl2
forall (m :: Type -> Type) cl1 cl2.
(Time cl1 ~ Time cl2) =>
cl1 -> cl2 -> Schedule m cl1 cl2 -> SequentialClock m cl1 cl2
SequentialClock cl1
cl1 cl2
cl2 Schedule m cl1 cl2
cc)
data RhineParallelAndSchedule m clL clR a b
= RhineParallelAndSchedule (Rhine m clL a b) (Schedule m clL clR)
infix 4 ++@
(++@)
:: Rhine m clL a b
-> Schedule m clL clR
-> RhineParallelAndSchedule m clL clR a b
++@ :: Rhine m clL a b
-> Schedule m clL clR -> RhineParallelAndSchedule m clL clR a b
(++@) = Rhine m clL a b
-> Schedule m clL clR -> RhineParallelAndSchedule m clL clR a b
forall (m :: Type -> Type) clL clR a b.
Rhine m clL a b
-> Schedule m clL clR -> RhineParallelAndSchedule m clL clR a b
RhineParallelAndSchedule
infix 3 @++
(@++)
:: ( Monad m, Clock m clL, Clock m clR
, Clock m (Out clL), Clock m (Out clR)
, GetClockProxy clL, GetClockProxy clR
, Time clL ~ Time (Out clL), Time clR ~ Time (Out clR)
, Time clL ~ Time (In clL), Time clR ~ Time (In clR)
, Time clL ~ Time clR
)
=> RhineParallelAndSchedule m clL clR a b
-> Rhine m clR a c
-> Rhine m (ParallelClock m clL clR) a (Either b c)
RhineParallelAndSchedule (Rhine SN m clL a b
sn1 clL
clL) Schedule m clL clR
schedule @++ :: RhineParallelAndSchedule m clL clR a b
-> Rhine m clR a c
-> Rhine m (ParallelClock m clL clR) a (Either b c)
@++ (Rhine SN m clR a c
sn2 clR
clR)
= SN m (ParallelClock m clL clR) a (Either b c)
-> ParallelClock m clL clR
-> Rhine m (ParallelClock m clL clR) a (Either b c)
forall (m :: Type -> Type) cl a b.
SN m cl a b -> cl -> Rhine m cl a b
Rhine (SN m clL a b
sn1 SN m clL a b
-> SN m clR a c -> SN m (ParallelClock m clL clR) a (Either b c)
forall (m :: Type -> Type) clL clR a b c.
(Monad m, Clock m clL, Clock m clR, Clock m (Out clL),
Clock m (Out clR), GetClockProxy clL, GetClockProxy clR,
Time clL ~ Time clR, Time clL ~ Time (Out clL),
Time clL ~ Time (In clL), Time clR ~ Time (Out clR),
Time clR ~ Time (In clR)) =>
SN m clL a b
-> SN m clR a c -> SN m (ParClock m clL clR) a (Either b c)
++++ SN m clR a c
sn2) (clL -> clR -> Schedule m clL clR -> ParallelClock m clL clR
forall (m :: Type -> Type) cl1 cl2.
(Time cl1 ~ Time cl2) =>
cl1 -> cl2 -> Schedule m cl1 cl2 -> ParallelClock m cl1 cl2
ParallelClock clL
clL clR
clR Schedule m clL clR
schedule)
infix 4 ||@
(||@)
:: Rhine m clL a b
-> Schedule m clL clR
-> RhineParallelAndSchedule m clL clR a b
||@ :: Rhine m clL a b
-> Schedule m clL clR -> RhineParallelAndSchedule m clL clR a b
(||@) = Rhine m clL a b
-> Schedule m clL clR -> RhineParallelAndSchedule m clL clR a b
forall (m :: Type -> Type) clL clR a b.
Rhine m clL a b
-> Schedule m clL clR -> RhineParallelAndSchedule m clL clR a b
RhineParallelAndSchedule
infix 3 @||
(@||)
:: ( Monad m, Clock m clL, Clock m clR
, Clock m (Out clL), Clock m (Out clR)
, GetClockProxy clL, GetClockProxy clR
, Time clL ~ Time (Out clL), Time clR ~ Time (Out clR)
, Time clL ~ Time (In clL), Time clR ~ Time (In clR)
, Time clL ~ Time clR
)
=> RhineParallelAndSchedule m clL clR a b
-> Rhine m clR a b
-> Rhine m (ParallelClock m clL clR) a b
RhineParallelAndSchedule (Rhine SN m clL a b
sn1 clL
clL) Schedule m clL clR
schedule @|| :: RhineParallelAndSchedule m clL clR a b
-> Rhine m clR a b -> Rhine m (ParallelClock m clL clR) a b
@|| (Rhine SN m clR a b
sn2 clR
clR)
= SN m (ParallelClock m clL clR) a b
-> ParallelClock m clL clR -> Rhine m (ParallelClock m clL clR) a b
forall (m :: Type -> Type) cl a b.
SN m cl a b -> cl -> Rhine m cl a b
Rhine (SN m clL a b
sn1 SN m clL a b -> SN m clR a b -> SN m (ParallelClock m clL clR) a b
forall (m :: Type -> Type) clL clR a b.
(Monad m, Clock m clL, Clock m clR, Clock m (Out clL),
Clock m (Out clR), GetClockProxy clL, GetClockProxy clR,
Time clL ~ Time clR, Time clL ~ Time (Out clL),
Time clL ~ Time (In clL), Time clR ~ Time (Out clR),
Time clR ~ Time (In clR)) =>
SN m clL a b -> SN m clR a b -> SN m (ParClock m clL clR) a b
|||| SN m clR a b
sn2) (clL -> clR -> Schedule m clL clR -> ParallelClock m clL clR
forall (m :: Type -> Type) cl1 cl2.
(Time cl1 ~ Time cl2) =>
cl1 -> cl2 -> Schedule m cl1 cl2 -> ParallelClock m cl1 cl2
ParallelClock clL
clL clR
clR Schedule m clL clR
schedule)
(@>>^)
:: Monad m
=> Rhine m cl a b
-> (b -> c)
-> Rhine m cl a c
Rhine SN m cl a b
sn cl
cl @>>^ :: Rhine m cl a b -> (b -> c) -> Rhine m cl a c
@>>^ b -> c
f = SN m cl a c -> cl -> Rhine m cl a c
forall (m :: Type -> Type) cl a b.
SN m cl a b -> cl -> Rhine m cl a b
Rhine (SN m cl a b
sn SN m cl a b -> (b -> c) -> SN m cl a c
forall (m :: Type -> Type) cl a b c.
Monad m =>
SN m cl a b -> (b -> c) -> SN m cl a c
>>>^ b -> c
f) cl
cl
(^>>@)
:: Monad m
=> (a -> b)
-> Rhine m cl b c
-> Rhine m cl a c
a -> b
f ^>>@ :: (a -> b) -> Rhine m cl b c -> Rhine m cl a c
^>>@ Rhine SN m cl b c
sn cl
cl = SN m cl a c -> cl -> Rhine m cl a c
forall (m :: Type -> Type) cl a b.
SN m cl a b -> cl -> Rhine m cl a b
Rhine (a -> b
f (a -> b) -> SN m cl b c -> SN m cl a c
forall (m :: Type -> Type) a b cl c.
Monad m =>
(a -> b) -> SN m cl b c -> SN m cl a c
^>>> SN m cl b c
sn) cl
cl
(@>-^)
:: ( Clock m (Out cl)
, Time cl ~ Time (Out cl)
)
=> Rhine m cl a b
-> ClSF m (Out cl) b c
-> Rhine m cl a c
Rhine SN m cl a b
sn cl
cl @>-^ :: Rhine m cl a b -> ClSF m (Out cl) b c -> Rhine m cl a c
@>-^ ClSF m (Out cl) b c
clsf = SN m cl a c -> cl -> Rhine m cl a c
forall (m :: Type -> Type) cl a b.
SN m cl a b -> cl -> Rhine m cl a b
Rhine (SN m cl a b
sn SN m cl a b -> ClSF m (Out cl) b c -> SN m cl a c
forall (m :: Type -> Type) cl a b c.
(Clock m (Out cl), Time cl ~ Time (Out cl)) =>
SN m cl a b -> ClSF m (Out cl) b c -> SN m cl a c
>--^ ClSF m (Out cl) b c
clsf) cl
cl
(^->@)
:: ( Clock m (In cl)
, Time cl ~ Time (In cl)
)
=> ClSF m (In cl) a b
-> Rhine m cl b c
-> Rhine m cl a c
ClSF m (In cl) a b
clsf ^->@ :: ClSF m (In cl) a b -> Rhine m cl b c -> Rhine m cl a c
^->@ Rhine SN m cl b c
sn cl
cl = SN m cl a c -> cl -> Rhine m cl a c
forall (m :: Type -> Type) cl a b.
SN m cl a b -> cl -> Rhine m cl a b
Rhine (ClSF m (In cl) a b
clsf ClSF m (In cl) a b -> SN m cl b c -> SN m cl a c
forall (m :: Type -> Type) cl a b c.
(Clock m (In cl), Time cl ~ Time (In cl)) =>
ClSF m (In cl) a b -> SN m cl b c -> SN m cl a c
^--> SN m cl b c
sn) cl
cl