{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Row.Records
(
Label(..)
, KnownSymbol, AllUniqueLabels, WellBehaved
, Rec, Row, Empty, type (≈)
, empty
, type (.==), (.==), pattern (:==), unSingleton
, default', defaultA
, fromLabels, fromLabelsA, fromLabelsMapA
, extend, Extend, Lacks, type (.\)
, type (.-), (.-)
, lazyRemove
, Subset
, restrict, split
, update, focus, multifocus, Modify, rename, Rename
, HasType, type (.!), (.!)
, type (.+), (.+), Disjoint, pattern (:+)
, type (.//), (.//)
, curryRec
, (.$)
, fromNative, toNative, toNativeGeneral
, FromNative, ToNative, ToNativeGeneral
, NativeRow
, toDynamicMap, fromDynamicMap
, Map, map, map', mapF
, transform, transform'
, zipTransform, zipTransform'
, BiForall, Forall, erase, eraseWithLabels, eraseZip, eraseToHashMap
, Zip, zip
, traverse, traverseMap
, sequence, sequence'
, distribute
, compose, uncompose
, compose', uncompose'
, labels, labels'
, coerceRec
)
where
import Prelude hiding (map, sequence, traverse, zip)
import Control.DeepSeq (NFData(..), deepseq)
import Data.Bifunctor (Bifunctor(..))
import Data.Coerce
import Data.Dynamic
import Data.Functor.Compose
import Data.Functor.Const
import Data.Functor.Identity
import Data.Functor.Product
import Data.Generics.Product.Fields (HasField(..), HasField'(..))
import Data.Hashable
import Data.HashMap.Lazy (HashMap)
import qualified Data.HashMap.Lazy as M
import qualified Data.List as L
import Data.Monoid (Endo(..), appEndo)
import Data.Proxy
import Data.String (IsString)
import Data.Text (Text)
import qualified GHC.Generics as G
import GHC.TypeLits
import Unsafe.Coerce
import Data.Row.Dictionaries
import Data.Row.Internal
newtype Rec (r :: Row *) where
OR :: HashMap Text HideType -> Rec r
instance Forall r Show => Show (Rec r) where
showsPrec :: Int -> Rec r -> ShowS
showsPrec Int
p Rec r
r =
case (forall a. Show a => a -> ShowS) -> Rec r -> [(String, ShowS)]
forall (c :: * -> Constraint) (ρ :: Row *) s b.
(Forall ρ c, IsString s) =>
(forall a. c a => a -> b) -> Rec ρ -> [(s, b)]
eraseWithLabels @Show (Int -> a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec Int
7) Rec r
r of
[] ->
String -> ShowS
showString String
"empty"
[(String, ShowS)]
xs ->
Bool -> ShowS -> ShowS
showParen
(Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
6)
(Endo String -> ShowS
forall a. Endo a -> a -> a
appEndo (Endo String -> ShowS) -> Endo String -> ShowS
forall a b. (a -> b) -> a -> b
$ (ShowS -> Endo String) -> [ShowS] -> Endo String
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap ShowS -> Endo String
forall a. (a -> a) -> Endo a
Endo (ShowS -> [ShowS] -> [ShowS]
forall a. a -> [a] -> [a]
L.intersperse (String -> ShowS
showString String
" .+ ") (((String, ShowS) -> ShowS) -> [(String, ShowS)] -> [ShowS]
forall a b. (a -> b) -> [a] -> [b]
L.map (String, ShowS) -> ShowS
forall a. (String, a -> String) -> a -> String
binds [(String, ShowS)]
xs)))
where
binds :: (String, a -> String) -> a -> String
binds (String
label, a -> String
value) =
Char -> ShowS
showChar Char
'#' ShowS -> (a -> String) -> a -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
String -> ShowS
showString String
label ShowS -> (a -> String) -> a -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
String -> ShowS
showString String
" .== " ShowS -> (a -> String) -> a -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
a -> String
value
instance Forall r Eq => Eq (Rec r) where
Rec r
r == :: Rec r -> Rec r -> Bool
== Rec r
r' = [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and ([Bool] -> Bool) -> [Bool] -> Bool
forall a b. (a -> b) -> a -> b
$ (forall a. Eq a => a -> a -> Bool) -> Rec r -> Rec r -> [Bool]
forall (c :: * -> Constraint) (ρ :: Row *) b.
Forall ρ c =>
(forall a. c a => a -> a -> b) -> Rec ρ -> Rec ρ -> [b]
eraseZip @Eq forall a. Eq a => a -> a -> Bool
(==) Rec r
r Rec r
r'
instance (Forall r Eq, Forall r Ord) => Ord (Rec r) where
compare :: Rec r -> Rec r -> Ordering
compare Rec r
m Rec r
m' = [Ordering] -> Ordering
cmp ([Ordering] -> Ordering) -> [Ordering] -> Ordering
forall a b. (a -> b) -> a -> b
$ (forall a. Ord a => a -> a -> Ordering)
-> Rec r -> Rec r -> [Ordering]
forall (c :: * -> Constraint) (ρ :: Row *) b.
Forall ρ c =>
(forall a. c a => a -> a -> b) -> Rec ρ -> Rec ρ -> [b]
eraseZip @Ord forall a. Ord a => a -> a -> Ordering
compare Rec r
m Rec r
m'
where cmp :: [Ordering] -> Ordering
cmp [Ordering]
l | [] <- [Ordering]
l' = Ordering
EQ
| Ordering
a : [Ordering]
_ <- [Ordering]
l' = Ordering
a
where l' :: [Ordering]
l' = (Ordering -> Bool) -> [Ordering] -> [Ordering]
forall a. (a -> Bool) -> [a] -> [a]
dropWhile (Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
EQ) [Ordering]
l
instance (Forall r Bounded, AllUniqueLabels r) => Bounded (Rec r) where
minBound :: Rec r
minBound = (forall a. Bounded a => a) -> Rec r
forall (c :: * -> Constraint) (ρ :: Row *).
(Forall ρ c, AllUniqueLabels ρ) =>
(forall a. c a => a) -> Rec ρ
default' @Bounded forall a. Bounded a => a
minBound
maxBound :: Rec r
maxBound = (forall a. Bounded a => a) -> Rec r
forall (c :: * -> Constraint) (ρ :: Row *).
(Forall ρ c, AllUniqueLabels ρ) =>
(forall a. c a => a) -> Rec ρ
default' @Bounded forall a. Bounded a => a
maxBound
instance Forall r NFData => NFData (Rec r) where
rnf :: Rec r -> ()
rnf Rec r
r = Const () r -> ()
forall a k (b :: k). Const a b -> a
getConst (Const () r -> ()) -> Const () r -> ()
forall a b. (a -> b) -> a -> b
$ Proxy (Proxy Identity, Proxy (,))
-> (Rec Empty -> Const () Empty)
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, NFData τ, HasType ℓ τ ρ) =>
Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), Identity τ))
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, NFData τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (Const () ρ, Identity τ) -> Const () (Extend ℓ τ ρ))
-> Rec r
-> Const () r
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @r @NFData @(,) @Rec @(Const ()) @Identity Proxy (Proxy Identity, Proxy (,))
forall k (t :: k). Proxy t
Proxy Rec Empty -> Const () Empty
forall k b (b :: k). b -> Const () b
empty forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, NFData τ, HasType ℓ τ ρ) =>
Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), Identity τ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), Identity (r .! l))
doUncons forall k a a p (b :: k).
(NFData a, NFData a) =>
p -> (a, a) -> Const () b
forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, NFData τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (Const () ρ, Identity τ) -> Const () (Extend ℓ τ ρ)
doCons Rec r
r
where empty :: b -> Const () b
empty = Const () b -> b -> Const () b
forall a b. a -> b -> a
const (Const () b -> b -> Const () b) -> Const () b -> b -> Const () b
forall a b. (a -> b) -> a -> b
$ () -> Const () b
forall k a (b :: k). a -> Const a b
Const ()
doUncons :: Label l -> Rec r -> (Rec (r .- l), Identity (r .! l))
doUncons Label l
l = ((r .! l) -> Identity (r .! l))
-> (Rec (r .- l), r .! l) -> (Rec (r .- l), Identity (r .! l))
forall (p :: * -> * -> *) b c a.
Bifunctor p =>
(b -> c) -> p a b -> p a c
second (r .! l) -> Identity (r .! l)
forall a. a -> Identity a
Identity ((Rec (r .- l), r .! l) -> (Rec (r .- l), Identity (r .! l)))
-> (Rec r -> (Rec (r .- l), r .! l))
-> Rec r
-> (Rec (r .- l), Identity (r .! l))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Label l -> Rec r -> (Rec (r .- l), r .! l)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label l
l
doCons :: p -> (a, a) -> Const () b
doCons p
_ (a
r, a
x) = a -> Const () b -> Const () b
forall a b. NFData a => a -> b -> b
deepseq a
x (Const () b -> Const () b) -> Const () b -> Const () b
forall a b. (a -> b) -> a -> b
$ a -> Const () b -> Const () b
forall a b. NFData a => a -> b -> b
deepseq a
r (Const () b -> Const () b) -> Const () b -> Const () b
forall a b. (a -> b) -> a -> b
$ () -> Const () b
forall k a (b :: k). a -> Const a b
Const ()
empty :: Rec Empty
empty :: Rec Empty
empty = HashMap Text HideType -> Rec Empty
forall (r :: Row *). HashMap Text HideType -> Rec r
OR HashMap Text HideType
forall k v. HashMap k v
M.empty
infix 7 .==
(.==) :: KnownSymbol l => Label l -> a -> Rec (l .== a)
Label l
l .== :: Label l -> a -> Rec (l .== a)
.== a
a = Label l -> a -> Rec Empty -> Rec (l .== a)
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label l
l a
a Rec Empty
empty
{-# COMPLETE (:==) #-}
infix 7 :==
pattern (:==) :: forall l a. KnownSymbol l => Label l -> a -> Rec (l .== a)
pattern l $b:== :: Label l -> a -> Rec (l .== a)
$m:== :: forall r (l :: Symbol) a.
KnownSymbol l =>
Rec (l .== a) -> (Label l -> a -> r) -> (Void# -> r) -> r
:== a <- (unSingleton @l @a -> (l, a)) where
(:==) Label l
l a
a = Label l
l Label l -> a -> Rec (l .== a)
forall (l :: Symbol) a.
KnownSymbol l =>
Label l -> a -> Rec (l .== a)
.== a
a
unSingleton :: forall l a. KnownSymbol l => Rec (l .== a) -> (Label l, a)
unSingleton :: Rec (l .== a) -> (Label l, a)
unSingleton Rec (l .== a)
r = (Label l
l, Rec (l .== a)
Rec ('R '[ l ':-> a])
r Rec ('R '[ l ':-> a]) -> Label l -> 'R '[ l ':-> a] .! l
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label l
l) where l :: Label l
l = Label l
forall (s :: Symbol). Label s
Label @l
extend :: forall a l r. KnownSymbol l => Label l -> a -> Rec r -> Rec (Extend l a r)
extend :: Label l -> a -> Rec r -> Rec (Extend l a r)
extend (Label l -> Text
forall (s :: Symbol). KnownSymbol s => Label s -> Text
toKey -> Text
l) a
a (OR HashMap Text HideType
m) = HashMap Text HideType -> Rec (Extend l a r)
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec (Extend l a r))
-> HashMap Text HideType -> Rec (Extend l a r)
forall a b. (a -> b) -> a -> b
$ Text -> HideType -> HashMap Text HideType -> HashMap Text HideType
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
M.insert Text
l (a -> HideType
forall a. a -> HideType
HideType a
a) HashMap Text HideType
m
update :: (KnownSymbol l, r .! l ≈ a) => Label l -> a -> Rec r -> Rec r
update :: Label l -> a -> Rec r -> Rec r
update (Label l -> Text
forall (s :: Symbol). KnownSymbol s => Label s -> Text
toKey -> Text
l) a
a (OR HashMap Text HideType
m) = HashMap Text HideType -> Rec r
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec r) -> HashMap Text HideType -> Rec r
forall a b. (a -> b) -> a -> b
$ (HideType -> HideType)
-> Text -> HashMap Text HideType -> HashMap Text HideType
forall k v.
(Eq k, Hashable k) =>
(v -> v) -> k -> HashMap k v -> HashMap k v
M.adjust HideType -> HideType
f Text
l HashMap Text HideType
m where f :: HideType -> HideType
f = HideType -> HideType -> HideType
forall a b. a -> b -> a
const (a -> HideType
forall a. a -> HideType
HideType a
a)
focus ::
( KnownSymbol l
, r' .! l ≈ b
, r .! l ≈ a
, r' ~ Modify l b r
, r ~ Modify l a r'
, Functor f)
=> Label l -> (a -> f b) -> Rec r -> f (Rec r')
focus :: Label l -> (a -> f b) -> Rec r -> f (Rec r')
focus (Label l -> Text
forall (s :: Symbol). KnownSymbol s => Label s -> Text
toKey -> Text
l) a -> f b
f (OR HashMap Text HideType
m) = case HashMap Text HideType
m HashMap Text HideType -> Text -> HideType
forall k v.
(Eq k, Hashable k, HasCallStack) =>
HashMap k v -> k -> v
M.! Text
l of
HideType a
x -> HashMap Text HideType -> Rec r'
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec r')
-> (b -> HashMap Text HideType) -> b -> Rec r'
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (HideType -> HashMap Text HideType -> HashMap Text HideType)
-> HashMap Text HideType -> HideType -> HashMap Text HideType
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Text -> HideType -> HashMap Text HideType -> HashMap Text HideType
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
M.insert Text
l) HashMap Text HideType
m (HideType -> HashMap Text HideType)
-> (b -> HideType) -> b -> HashMap Text HideType
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> HideType
forall a. a -> HideType
HideType (b -> Rec r') -> f b -> f (Rec r')
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f (a -> a
forall a b. a -> b
unsafeCoerce a
x)
multifocus :: forall u v r f.
( Functor f
, Disjoint u r
, Disjoint v r)
=> (Rec u -> f (Rec v)) -> Rec (u .+ r) -> f (Rec (v .+ r))
multifocus :: (Rec u -> f (Rec v)) -> Rec (u .+ r) -> f (Rec (v .+ r))
multifocus Rec u -> f (Rec v)
f (u :+ r) = (Rec v -> Rec r -> Rec (v .+ r)
forall (l :: Row *) (r :: Row *).
FreeForall l =>
Rec l -> Rec r -> Rec (l .+ r)
.+ Rec r
r) (Rec v -> Rec (v .+ r)) -> f (Rec v) -> f (Rec (v .+ r))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Rec u -> f (Rec v)
f Rec u
u
rename :: (KnownSymbol l, KnownSymbol l') => Label l -> Label l' -> Rec r -> Rec (Rename l l' r)
rename :: Label l -> Label l' -> Rec r -> Rec (Rename l l' r)
rename (Label l -> Text
forall (s :: Symbol). KnownSymbol s => Label s -> Text
toKey -> Text
l) (Label l' -> Text
forall (s :: Symbol). KnownSymbol s => Label s -> Text
toKey -> Text
l') (OR HashMap Text HideType
m) = HashMap Text HideType -> Rec (Extend l' (r .! l) (r .- l))
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec (Extend l' (r .! l) (r .- l)))
-> HashMap Text HideType -> Rec (Extend l' (r .! l) (r .- l))
forall a b. (a -> b) -> a -> b
$ Text -> HideType -> HashMap Text HideType -> HashMap Text HideType
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
M.insert Text
l' (HashMap Text HideType
m HashMap Text HideType -> Text -> HideType
forall k v.
(Eq k, Hashable k, HasCallStack) =>
HashMap k v -> k -> v
M.! Text
l) (HashMap Text HideType -> HashMap Text HideType)
-> HashMap Text HideType -> HashMap Text HideType
forall a b. (a -> b) -> a -> b
$ Text -> HashMap Text HideType -> HashMap Text HideType
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
M.delete Text
l HashMap Text HideType
m
(.!) :: KnownSymbol l => Rec r -> Label l -> r .! l
OR HashMap Text HideType
m .! :: Rec r -> Label l -> r .! l
.! (Label l -> Text
forall (s :: Symbol). KnownSymbol s => Label s -> Text
toKey -> Text
a) = case HashMap Text HideType
m HashMap Text HideType -> Text -> HideType
forall k v.
(Eq k, Hashable k, HasCallStack) =>
HashMap k v -> k -> v
M.! Text
a of
HideType a
x -> a -> r .! l
forall a b. a -> b
unsafeCoerce a
x
infixl 6 .-
(.-) :: KnownSymbol l => Rec r -> Label l -> Rec (r .- l)
OR HashMap Text HideType
m .- :: Rec r -> Label l -> Rec (r .- l)
.- (Label l -> Text
forall (s :: Symbol). KnownSymbol s => Label s -> Text
toKey -> Text
a) = HashMap Text HideType -> Rec (r .- l)
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec (r .- l))
-> HashMap Text HideType -> Rec (r .- l)
forall a b. (a -> b) -> a -> b
$ Text -> HashMap Text HideType -> HashMap Text HideType
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
M.delete Text
a HashMap Text HideType
m
infixl 6 .+
(.+) :: forall l r. FreeForall l => Rec l -> Rec r -> Rec (l .+ r)
OR HashMap Text HideType
l .+ :: Rec l -> Rec r -> Rec (l .+ r)
.+ OR HashMap Text HideType
r = HashMap Text HideType -> Rec (l .+ r)
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec (l .+ r))
-> HashMap Text HideType -> Rec (l .+ r)
forall a b. (a -> b) -> a -> b
$ (Text -> HideType -> HideType -> HideType)
-> HashMap Text HideType
-> HashMap Text HideType
-> HashMap Text HideType
forall k v.
(Eq k, Hashable k) =>
(k -> v -> v -> v) -> HashMap k v -> HashMap k v -> HashMap k v
M.unionWithKey Text -> HideType -> HideType -> HideType
choose HashMap Text HideType
l HashMap Text HideType
r
where
choose :: Text -> HideType -> HideType -> HideType
choose Text
k HideType
lv HideType
rv = if Text
k Text -> [Text] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` (IsString Text, Forall l Unconstrained1) => [Text]
forall k (ρ :: Row k) s.
(IsString s, Forall ρ Unconstrained1) =>
[s]
labels' @l @Text then HideType
lv else HideType
rv
infixl 6 .//
(.//) :: Rec r -> Rec r' -> Rec (r .// r')
OR HashMap Text HideType
l .// :: Rec r -> Rec r' -> Rec (r .// r')
.// OR HashMap Text HideType
r = HashMap Text HideType -> Rec (r .// r')
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec (r .// r'))
-> HashMap Text HideType -> Rec (r .// r')
forall a b. (a -> b) -> a -> b
$ HashMap Text HideType
-> HashMap Text HideType -> HashMap Text HideType
forall k v.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k v -> HashMap k v
M.union HashMap Text HideType
l HashMap Text HideType
r
{-# COMPLETE (:+) #-}
infixl 6 :+
pattern (:+) :: forall l r. Disjoint l r => Rec l -> Rec r -> Rec (l .+ r)
pattern l $b:+ :: Rec l -> Rec r -> Rec (l .+ r)
$m:+ :: forall r (l :: Row *) (r :: Row *).
Disjoint l r =>
Rec (l .+ r) -> (Rec l -> Rec r -> r) -> (Void# -> r) -> r
:+ r <- (split @l -> (l, r)) where
(:+) Rec l
l Rec r
r = Rec l
l Rec l -> Rec r -> Rec (l .+ r)
forall (l :: Row *) (r :: Row *).
FreeForall l =>
Rec l -> Rec r -> Rec (l .+ r)
.+ Rec r
r
split :: forall s r. (Subset s r, FreeForall s)
=> Rec r -> (Rec s, Rec (r .\\ s))
split :: Rec r -> (Rec s, Rec (r .\\ s))
split (OR HashMap Text HideType
m) = (HashMap Text HideType -> Rec s
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec s) -> HashMap Text HideType -> Rec s
forall a b. (a -> b) -> a -> b
$ HashMap Text HideType -> HashMap Text () -> HashMap Text HideType
forall k v w.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k w -> HashMap k v
M.intersection HashMap Text HideType
m HashMap Text ()
labelMap, HashMap Text HideType -> Rec (r .\\ s)
forall (r :: Row *). HashMap Text HideType -> Rec r
OR (HashMap Text HideType -> Rec (r .\\ s))
-> HashMap Text HideType -> Rec (r .\\ s)
forall a b. (a -> b) -> a -> b
$ HashMap Text HideType -> HashMap Text () -> HashMap Text HideType
forall k v w.
(Eq k, Hashable k) =>
HashMap k v -> HashMap k w -> HashMap k v
M.difference HashMap Text HideType
m HashMap Text ()
labelMap)
where
labelMap :: HashMap Text ()
labelMap = [(Text, ())] -> HashMap Text ()
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
M.fromList ([(Text, ())] -> HashMap Text ())
-> [(Text, ())] -> HashMap Text ()
forall a b. (a -> b) -> a -> b
$ [Text] -> [()] -> [(Text, ())]
forall a b. [a] -> [b] -> [(a, b)]
L.zip (forall s. (IsString s, Forall s Unconstrained1) => [s]
forall k (ρ :: Row k) s.
(IsString s, Forall ρ Unconstrained1) =>
[s]
labels' @s) (() -> [()]
forall a. a -> [a]
repeat ())
restrict :: forall r r'. (FreeForall r, Subset r r') => Rec r' -> Rec r
restrict :: Rec r' -> Rec r
restrict = (Rec r, Rec (r' .\\ r)) -> Rec r
forall a b. (a, b) -> a
fst ((Rec r, Rec (r' .\\ r)) -> Rec r)
-> (Rec r' -> (Rec r, Rec (r' .\\ r))) -> Rec r' -> Rec r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec r' -> (Rec r, Rec (r' .\\ r))
forall (s :: Row *) (r :: Row *).
(Subset s r, FreeForall s) =>
Rec r -> (Rec s, Rec (r .\\ s))
split
lazyRemove :: KnownSymbol l => Label l -> Rec r -> Rec (r .- l)
lazyRemove :: Label l -> Rec r -> Rec (r .- l)
lazyRemove Label l
_ (OR HashMap Text HideType
m) = HashMap Text HideType -> Rec (r .- l)
forall (r :: Row *). HashMap Text HideType -> Rec r
OR HashMap Text HideType
m
lazyUncons :: KnownSymbol l => Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons :: Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label l
l Rec r
r = (Label l -> Rec r -> Rec (r .- l)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> Rec (r .- l)
lazyRemove Label l
l Rec r
r, Rec r
r Rec r -> Label l -> r .! l
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label l
l)
curryRec :: forall l t r x. KnownSymbol l => Label l -> (Rec (l .== t .+ r) -> x) -> t -> Rec r -> x
curryRec :: Label l -> (Rec ((l .== t) .+ r) -> x) -> t -> Rec r -> x
curryRec Label l
l Rec ((l .== t) .+ r) -> x
f t
t Rec r
r = Rec ((l .== t) .+ r) -> x
f (Rec ((l .== t) .+ r) -> x) -> Rec ((l .== t) .+ r) -> x
forall a b. (a -> b) -> a -> b
$ (Label l
l Label l -> t -> Rec (l .== t)
forall (l :: Symbol) a.
KnownSymbol l =>
Label l -> a -> Rec (l .== a)
.== t
t) Rec ('R '[ l ':-> t]) -> Rec r -> Rec ('R '[ l ':-> t] .+ r)
forall (l :: Row *) (r :: Row *).
FreeForall l =>
Rec l -> Rec r -> Rec (l .+ r)
.+ Rec r
r
infixl 2 .$
(.$) :: (KnownSymbol l, r' .! l ≈ t) => (Rec (l .== t .+ r) -> x) -> (Label l, Rec r') -> Rec r -> x
.$ :: (Rec ((l .== t) .+ r) -> x) -> (Label l, Rec r') -> Rec r -> x
(.$) Rec ((l .== t) .+ r) -> x
f (Label l
l, Rec r'
r') Rec r
r = Label l -> (Rec ((l .== t) .+ r) -> x) -> t -> Rec r -> x
forall (l :: Symbol) t (r :: Row *) x.
KnownSymbol l =>
Label l -> (Rec ((l .== t) .+ r) -> x) -> t -> Rec r -> x
curryRec Label l
l Rec ((l .== t) .+ r) -> x
f (Rec r'
r' Rec r' -> Label l -> r' .! l
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label l
l) Rec r
r
newtype Pair' a = Pair' { Pair' a -> (a, a)
unPair' :: (a,a) }
erase :: forall c ρ b. Forall ρ c => (forall a. c a => a -> b) -> Rec ρ -> [b]
erase :: (forall a. c a => a -> b) -> Rec ρ -> [b]
erase forall a. c a => a -> b
f = ((String, b) -> b) -> [(String, b)] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall b. (String, b) -> b
forall a b. (a, b) -> b
snd @String) ([(String, b)] -> [b]) -> (Rec ρ -> [(String, b)]) -> Rec ρ -> [b]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. c a => a -> b) -> Rec ρ -> [(String, b)]
forall (c :: * -> Constraint) (ρ :: Row *) s b.
(Forall ρ c, IsString s) =>
(forall a. c a => a -> b) -> Rec ρ -> [(s, b)]
eraseWithLabels @c forall a. c a => a -> b
f
eraseWithLabels :: forall c ρ s b. (Forall ρ c, IsString s) => (forall a. c a => a -> b) -> Rec ρ -> [(s,b)]
eraseWithLabels :: (forall a. c a => a -> b) -> Rec ρ -> [(s, b)]
eraseWithLabels forall a. c a => a -> b
f = Const [(s, b)] ρ -> [(s, b)]
forall a k (b :: k). Const a b -> a
getConst (Const [(s, b)] ρ -> [(s, b)])
-> (Rec ρ -> Const [(s, b)] ρ) -> Rec ρ -> [(s, b)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy (Proxy Identity, Proxy (,))
-> (Rec Empty -> Const [(s, b)] Empty)
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), Identity τ))
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ
-> (Const [(s, b)] ρ, Identity τ) -> Const [(s, b)] (Extend ℓ τ ρ))
-> Rec ρ
-> Const [(s, b)] ρ
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @ρ @c @(,) @Rec @(Const [(s,b)]) @Identity Proxy (Proxy Identity, Proxy (,))
forall k (t :: k). Proxy t
Proxy Rec Empty -> Const [(s, b)] Empty
forall k p a (b :: k). p -> Const [a] b
doNil forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), Identity τ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), Identity (r .! l))
doUncons forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ
-> (Const [(s, b)] ρ, Identity τ) -> Const [(s, b)] (Extend ℓ τ ρ)
forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ) =>
Label ℓ
-> (Const [(s, b)] ρ, Identity τ) -> Const [(s, b)] (Extend ℓ τ ρ)
doCons
where doNil :: p -> Const [a] b
doNil p
_ = [a] -> Const [a] b
forall k a (b :: k). a -> Const a b
Const []
doUncons :: Label l -> Rec r -> (Rec (r .- l), Identity (r .! l))
doUncons Label l
l = ((r .! l) -> Identity (r .! l))
-> (Rec (r .- l), r .! l) -> (Rec (r .- l), Identity (r .! l))
forall (p :: * -> * -> *) b c a.
Bifunctor p =>
(b -> c) -> p a b -> p a c
second (r .! l) -> Identity (r .! l)
forall a. a -> Identity a
Identity ((Rec (r .- l), r .! l) -> (Rec (r .- l), Identity (r .! l)))
-> (Rec r -> (Rec (r .- l), r .! l))
-> Rec r
-> (Rec (r .- l), Identity (r .! l))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Label l -> Rec r -> (Rec (r .- l), r .! l)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label l
l
doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ)
=> Label ℓ -> (Const [(s,b)] ρ, Identity τ) -> Const [(s,b)] (Extend ℓ τ ρ)
doCons :: Label ℓ
-> (Const [(s, b)] ρ, Identity τ) -> Const [(s, b)] (Extend ℓ τ ρ)
doCons Label ℓ
l (Const [(s, b)]
c, Identity τ
x) = [(s, b)] -> Const [(s, b)] (Extend ℓ τ ρ)
forall k a (b :: k). a -> Const a b
Const ([(s, b)] -> Const [(s, b)] (Extend ℓ τ ρ))
-> [(s, b)] -> Const [(s, b)] (Extend ℓ τ ρ)
forall a b. (a -> b) -> a -> b
$ (Label ℓ -> s
forall s a. (IsString s, Show a) => a -> s
show' Label ℓ
l, τ -> b
forall a. c a => a -> b
f τ
x) (s, b) -> [(s, b)] -> [(s, b)]
forall a. a -> [a] -> [a]
: [(s, b)]
c
eraseZip :: forall c ρ b. Forall ρ c => (forall a. c a => a -> a -> b) -> Rec ρ -> Rec ρ -> [b]
eraseZip :: (forall a. c a => a -> a -> b) -> Rec ρ -> Rec ρ -> [b]
eraseZip forall a. c a => a -> a -> b
f Rec ρ
x Rec ρ
y = Const [b] ρ -> [b]
forall a k (b :: k). Const a b -> a
getConst (Const [b] ρ -> [b]) -> Const [b] ρ -> [b]
forall a b. (a -> b) -> a -> b
$ Proxy (Proxy Pair', Proxy (,))
-> (Product Rec Rec Empty -> Const [b] Empty)
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ
-> Product Rec Rec ρ -> (Product Rec Rec (ρ .- ℓ), Pair' τ))
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (Const [b] ρ, Pair' τ) -> Const [b] (Extend ℓ τ ρ))
-> Product Rec Rec ρ
-> Const [b] ρ
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @ρ @c @(,) @(Product Rec Rec) @(Const [b]) @Pair' Proxy (Proxy Pair', Proxy (,))
forall k (t :: k). Proxy t
Proxy (Const [b] Empty -> Product Rec Rec Empty -> Const [b] Empty
forall a b. a -> b -> a
const (Const [b] Empty -> Product Rec Rec Empty -> Const [b] Empty)
-> Const [b] Empty -> Product Rec Rec Empty -> Const [b] Empty
forall a b. (a -> b) -> a -> b
$ [b] -> Const [b] Empty
forall k a (b :: k). a -> Const a b
Const []) forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> Product Rec Rec ρ -> (Product Rec Rec (ρ .- ℓ), Pair' τ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l
-> Product Rec Rec r -> (Product Rec Rec (r .- l), Pair' (r .! l))
doUncons forall (ℓ :: Symbol) τ (ρ :: Row *).
c τ =>
Label ℓ -> (Const [b] ρ, Pair' τ) -> Const [b] (Extend ℓ τ ρ)
forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (Const [b] ρ, Pair' τ) -> Const [b] (Extend ℓ τ ρ)
doCons (Rec ρ -> Rec ρ -> Product Rec Rec ρ
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair Rec ρ
x Rec ρ
y)
where doUncons :: Label l
-> Product Rec Rec r -> (Product Rec Rec (r .- l), Pair' (r .! l))
doUncons Label l
l (Pair Rec r
r1 Rec r
r2) = (Rec (r .- l) -> Rec (r .- l) -> Product Rec Rec (r .- l)
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair Rec (r .- l)
r1' Rec (r .- l)
r2', (r .! l, r .! l) -> Pair' (r .! l)
forall a. (a, a) -> Pair' a
Pair' (r .! l
a, r .! l
b))
where (Rec (r .- l)
r1', r .! l
a) = Label l -> Rec r -> (Rec (r .- l), r .! l)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label l
l Rec r
r1
(Rec (r .- l)
r2', r .! l
b) = Label l -> Rec r -> (Rec (r .- l), r .! l)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label l
l Rec r
r2
doCons :: forall ℓ τ ρ. c τ
=> Label ℓ -> (Const [b] ρ, Pair' τ) -> Const [b] (Extend ℓ τ ρ)
doCons :: Label ℓ -> (Const [b] ρ, Pair' τ) -> Const [b] (Extend ℓ τ ρ)
doCons Label ℓ
_ (Const [b]
c, Pair' τ -> (τ, τ)
forall a. Pair' a -> (a, a)
unPair' -> (τ, τ)
x) = [b] -> Const [b] (Extend ℓ τ ρ)
forall k a (b :: k). a -> Const a b
Const ([b] -> Const [b] (Extend ℓ τ ρ))
-> [b] -> Const [b] (Extend ℓ τ ρ)
forall a b. (a -> b) -> a -> b
$ (τ -> τ -> b) -> (τ, τ) -> b
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry τ -> τ -> b
forall a. c a => a -> a -> b
f (τ, τ)
x b -> [b] -> [b]
forall a. a -> [a] -> [a]
: [b]
c
eraseToHashMap :: forall c r s b. (IsString s, Eq s, Hashable s, Forall r c) =>
(forall a . c a => a -> b) -> Rec r -> HashMap s b
eraseToHashMap :: (forall a. c a => a -> b) -> Rec r -> HashMap s b
eraseToHashMap forall a. c a => a -> b
f Rec r
r = [(s, b)] -> HashMap s b
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
M.fromList ([(s, b)] -> HashMap s b) -> [(s, b)] -> HashMap s b
forall a b. (a -> b) -> a -> b
$ (forall a. c a => a -> b) -> Rec r -> [(s, b)]
forall (c :: * -> Constraint) (ρ :: Row *) s b.
(Forall ρ c, IsString s) =>
(forall a. c a => a -> b) -> Rec ρ -> [(s, b)]
eraseWithLabels @c forall a. c a => a -> b
f Rec r
r
newtype RMap f ρ = RMap { RMap f ρ -> Rec (Map f ρ)
unRMap :: Rec (Map f ρ) }
newtype RMap2 f g ρ = RMap2 { RMap2 f g ρ -> Rec (Map f (Map g ρ))
unRMap2 :: Rec (Map f (Map g ρ)) }
map :: forall c f r. Forall r c => (forall a. c a => a -> f a) -> Rec r -> Rec (Map f r)
map :: (forall a. c a => a -> f a) -> Rec r -> Rec (Map f r)
map forall a. c a => a -> f a
f = RMap f r -> Rec (Map f r)
forall a (f :: a -> *) (ρ :: Row a). RMap f ρ -> Rec (Map f ρ)
unRMap (RMap f r -> Rec (Map f r))
-> (Rec r -> RMap f r) -> Rec r -> Rec (Map f r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy (Proxy f, Proxy (,))
-> (Rec Empty -> RMap f Empty)
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), f τ))
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ))
-> Rec r
-> RMap f r
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @r @c @(,) @Rec @(RMap f) @f Proxy (Proxy f, Proxy (,))
forall k (t :: k). Proxy t
Proxy Rec Empty -> RMap f Empty
forall a (f :: a -> *) (ρ :: Row a) p.
(Map f ρ ~ Empty) =>
p -> RMap f ρ
doNil forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), f τ)
doUncons forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ)
forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ) =>
Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ)
doCons
where
doNil :: p -> RMap f ρ
doNil p
_ = Rec (Map f ρ) -> RMap f ρ
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap Rec (Map f ρ)
Rec Empty
empty
doUncons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ, HasType ℓ τ ρ)
=> Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), f τ)
doUncons :: Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), f τ)
doUncons Label ℓ
l = (τ -> f τ) -> (Rec (ρ .- ℓ), τ) -> (Rec (ρ .- ℓ), f τ)
forall (p :: * -> * -> *) b c a.
Bifunctor p =>
(b -> c) -> p a b -> p a c
second τ -> f τ
forall a. c a => a -> f a
f ((Rec (ρ .- ℓ), τ) -> (Rec (ρ .- ℓ), f τ))
-> (Rec ρ -> (Rec (ρ .- ℓ), τ)) -> Rec ρ -> (Rec (ρ .- ℓ), f τ)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Label ℓ -> Rec ρ -> (Rec (ρ .- ℓ), ρ .! ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label ℓ
l
doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ)
=> Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ)
doCons :: Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ)
doCons Label ℓ
l (RMap Rec (Map f ρ)
r, f τ
v) = Rec (Map f (Extend ℓ τ ρ)) -> RMap f (Extend ℓ τ ρ)
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap (Label ℓ -> f τ -> Rec (Map f ρ) -> Rec (Extend ℓ (f τ) (Map f ρ))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l f τ
v Rec (Map f ρ)
r)
((Extend ℓ (f τ) (Map f ρ) ~ Map f (Extend ℓ τ ρ)) =>
RMap f (Extend ℓ τ ρ))
-> Dict (Extend ℓ (f τ) (Map f ρ) ~ Map f (Extend ℓ τ ρ))
-> RMap f (Extend ℓ τ ρ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict (Extend ℓ (f τ) (Map f ρ) ~ Map f (Extend ℓ τ ρ))
forall k b (f :: k -> b) (ℓ :: Symbol) (τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Map f r) ≈ Map f (Extend ℓ τ r))
mapExtendSwap @f @ℓ @τ @ρ
newtype RFMap (g :: k1 -> k2) (ϕ :: Row (k2 -> *)) (ρ :: Row k1) = RFMap { RFMap g ϕ ρ -> Rec (Ap ϕ (Map g ρ))
unRFMap :: Rec (Ap ϕ (Map g ρ)) }
newtype RecAp (ϕ :: Row (k -> *)) (ρ :: Row k) = RecAp (Rec (Ap ϕ ρ))
newtype App (f :: k -> *) (a :: k) = App (f a)
mapF :: forall k c g (ϕ :: Row (k -> *)) (ρ :: Row k). BiForall ϕ ρ c
=> (forall h a. (c h a) => h a -> h (g a))
-> Rec (Ap ϕ ρ)
-> Rec (Ap ϕ (Map g ρ))
mapF :: (forall (h :: k -> *) (a :: k). c h a => h a -> h (g a))
-> Rec (Ap ϕ ρ) -> Rec (Ap ϕ (Map g ρ))
mapF forall (h :: k -> *) (a :: k). c h a => h a -> h (g a)
f = RFMap g ϕ ρ -> Rec (Ap ϕ (Map g ρ))
forall k2 k1 (g :: k1 -> k2) (ϕ :: Row (k2 -> *)) (ρ :: Row k1).
RFMap g ϕ ρ -> Rec (Ap ϕ (Map g ρ))
unRFMap (RFMap g ϕ ρ -> Rec (Ap ϕ (Map g ρ)))
-> (Rec (Ap ϕ ρ) -> RFMap g ϕ ρ)
-> Rec (Ap ϕ ρ)
-> Rec (Ap ϕ (Map g ρ))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy (Proxy App, Proxy (,))
-> (RecAp Empty Empty -> RFMap g Empty Empty)
-> (forall (ℓ :: Symbol) (τ1 :: k -> *) (τ2 :: k)
(ρ1 :: Row (k -> *)) (ρ2 :: Row k).
(KnownSymbol ℓ, c τ1 τ2, HasType ℓ τ1 ρ1, HasType ℓ τ2 ρ2) =>
Label ℓ -> RecAp ρ1 ρ2 -> (RecAp (ρ1 .- ℓ) (ρ2 .- ℓ), App τ1 τ2))
-> (forall (ℓ :: Symbol) (τ1 :: k -> *) (τ2 :: k)
(ρ1 :: Row (k -> *)) (ρ2 :: Row k).
(KnownSymbol ℓ, c τ1 τ2, FrontExtends ℓ τ1 ρ1,
FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1),
AllUniqueLabels (Extend ℓ τ2 ρ2)) =>
Label ℓ
-> (RFMap g ρ1 ρ2, App τ1 τ2)
-> RFMap g (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> RecAp ϕ ρ
-> RFMap g ϕ ρ
forall k1 k2 (r1 :: Row k1) (r2 :: Row k2)
(c :: k1 -> k2 -> Constraint) (p :: * -> * -> *)
(f :: Row k1 -> Row k2 -> *) (g :: Row k1 -> Row k2 -> *)
(h :: k1 -> k2 -> *).
(BiForall r1 r2 c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty Empty -> g Empty Empty)
-> (forall (ℓ :: Symbol) (τ1 :: k1) (τ2 :: k2) (ρ1 :: Row k1)
(ρ2 :: Row k2).
(KnownSymbol ℓ, c τ1 τ2, HasType ℓ τ1 ρ1, HasType ℓ τ2 ρ2) =>
Label ℓ -> f ρ1 ρ2 -> p (f (ρ1 .- ℓ) (ρ2 .- ℓ)) (h τ1 τ2))
-> (forall (ℓ :: Symbol) (τ1 :: k1) (τ2 :: k2) (ρ1 :: Row k1)
(ρ2 :: Row k2).
(KnownSymbol ℓ, c τ1 τ2, FrontExtends ℓ τ1 ρ1,
FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1),
AllUniqueLabels (Extend ℓ τ2 ρ2)) =>
Label ℓ
-> p (g ρ1 ρ2) (h τ1 τ2) -> g (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> f r1 r2
-> g r1 r2
biMetamorph @_ @_ @ϕ @ρ @c @(,) @RecAp @(RFMap g) @App Proxy (Proxy App, Proxy (,))
forall k (t :: k). Proxy t
Proxy RecAp Empty Empty -> RFMap g Empty Empty
forall k2 k1 (ϕ :: Row (k2 -> *)) (g :: k1 -> k2) (ρ :: Row k1) p.
(Ap ϕ (Map g ρ) ~ Empty) =>
p -> RFMap g ϕ ρ
doNil forall (ℓ :: Symbol) (τ1 :: k -> *) (τ2 :: k) (ρ1 :: Row (k -> *))
(ρ2 :: Row k).
(KnownSymbol ℓ, c τ1 τ2, HasType ℓ τ1 ρ1, HasType ℓ τ2 ρ2) =>
Label ℓ -> RecAp ρ1 ρ2 -> (RecAp (ρ1 .- ℓ) (ρ2 .- ℓ), App τ1 τ2)
doUncons forall (ℓ :: Symbol) (τ1 :: k -> *) (τ2 :: k) (ρ1 :: Row (k -> *))
(ρ2 :: Row k).
(KnownSymbol ℓ, c τ1 τ2, FrontExtends ℓ τ1 ρ1,
FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1),
AllUniqueLabels (Extend ℓ τ2 ρ2)) =>
Label ℓ
-> (RFMap g ρ1 ρ2, App τ1 τ2)
-> RFMap g (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
forall (ℓ :: Symbol) (f :: k -> *) (τ :: k) (ϕ :: Row (k -> *))
(ρ :: Row k).
(KnownSymbol ℓ, c f τ) =>
Label ℓ
-> (RFMap g ϕ ρ, App f τ) -> RFMap g (Extend ℓ f ϕ) (Extend ℓ τ ρ)
doCons (RecAp ϕ ρ -> RFMap g ϕ ρ)
-> (Rec (Ap ϕ ρ) -> RecAp ϕ ρ) -> Rec (Ap ϕ ρ) -> RFMap g ϕ ρ
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec (Ap ϕ ρ) -> RecAp ϕ ρ
forall k (ϕ :: Row (k -> *)) (ρ :: Row k).
Rec (Ap ϕ ρ) -> RecAp ϕ ρ
RecAp
where
doNil :: p -> RFMap g ϕ ρ
doNil p
_ = Rec (Ap ϕ (Map g ρ)) -> RFMap g ϕ ρ
forall k1 k2 (g :: k1 -> k2) (ϕ :: Row (k2 -> *)) (ρ :: Row k1).
Rec (Ap ϕ (Map g ρ)) -> RFMap g ϕ ρ
RFMap Rec (Ap ϕ (Map g ρ))
Rec Empty
empty
doUncons :: forall ℓ f τ ϕ ρ. (KnownSymbol ℓ, c f τ, HasType ℓ f ϕ, HasType ℓ τ ρ)
=> Label ℓ -> RecAp ϕ ρ -> (RecAp (ϕ .- ℓ) (ρ .- ℓ), App f τ)
doUncons :: Label ℓ -> RecAp ϕ ρ -> (RecAp (ϕ .- ℓ) (ρ .- ℓ), App f τ)
doUncons Label ℓ
l (RecAp Rec (Ap ϕ ρ)
r) = (Rec (Ap (ϕ .- ℓ) (ρ .- ℓ)) -> RecAp (ϕ .- ℓ) (ρ .- ℓ))
-> (f τ -> App f τ)
-> (Rec (Ap (ϕ .- ℓ) (ρ .- ℓ)), f τ)
-> (RecAp (ϕ .- ℓ) (ρ .- ℓ), App f τ)
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap Rec (Ap (ϕ .- ℓ) (ρ .- ℓ)) -> RecAp (ϕ .- ℓ) (ρ .- ℓ)
forall k (ϕ :: Row (k -> *)) (ρ :: Row k).
Rec (Ap ϕ ρ) -> RecAp ϕ ρ
RecAp f τ -> App f τ
forall k (f :: k -> *) (a :: k). f a -> App f a
App ((Rec (Ap (ϕ .- ℓ) (ρ .- ℓ)), f τ)
-> (RecAp (ϕ .- ℓ) (ρ .- ℓ), App f τ))
-> (Rec (Ap (ϕ .- ℓ) (ρ .- ℓ)), f τ)
-> (RecAp (ϕ .- ℓ) (ρ .- ℓ), App f τ)
forall a b. (a -> b) -> a -> b
$ Label ℓ -> Rec (Ap ϕ ρ) -> (Rec (Ap ϕ ρ .- ℓ), Ap ϕ ρ .! ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label ℓ
l Rec (Ap ϕ ρ)
r
(((Ap ϕ ρ .! ℓ) ≈ f τ, (Ap ϕ ρ .- ℓ) ≈ Ap (ϕ .- ℓ) (ρ .- ℓ)) =>
(Rec (Ap (ϕ .- ℓ) (ρ .- ℓ)), f τ))
-> ((f ≈ f, τ ≈ τ)
:- ((Ap ϕ ρ .! ℓ) ≈ f τ, (Ap ϕ ρ .- ℓ) ≈ Ap (ϕ .- ℓ) (ρ .- ℓ)))
-> (Rec (Ap (ϕ .- ℓ) (ρ .- ℓ)), f τ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ ((ϕ .! ℓ) ≈ f, (ρ .! ℓ) ≈ τ)
:- ((Ap ϕ ρ .! ℓ) ≈ f τ, (Ap ϕ ρ .- ℓ) ≈ Ap (ϕ .- ℓ) (ρ .- ℓ))
forall k b (l :: Symbol) (f :: k -> b) (ϕ :: Row (k -> b)) (t :: k)
(ρ :: Row k).
((ϕ .! l) ≈ f, (ρ .! l) ≈ t)
:- ((Ap ϕ ρ .! l) ≈ f t, (Ap ϕ ρ .- l) ≈ Ap (ϕ .- l) (ρ .- l))
apHas @ℓ @f @ϕ @τ @ρ
doCons :: forall ℓ f τ ϕ ρ. (KnownSymbol ℓ, c f τ)
=> Label ℓ -> (RFMap g ϕ ρ, App f τ) -> RFMap g (Extend ℓ f ϕ) (Extend ℓ τ ρ)
doCons :: Label ℓ
-> (RFMap g ϕ ρ, App f τ) -> RFMap g (Extend ℓ f ϕ) (Extend ℓ τ ρ)
doCons Label ℓ
l (RFMap Rec (Ap ϕ (Map g ρ))
r, App f τ
v) = Rec (Ap (Extend ℓ f ϕ) (Map g (Extend ℓ τ ρ)))
-> RFMap g (Extend ℓ f ϕ) (Extend ℓ τ ρ)
forall k1 k2 (g :: k1 -> k2) (ϕ :: Row (k2 -> *)) (ρ :: Row k1).
Rec (Ap ϕ (Map g ρ)) -> RFMap g ϕ ρ
RFMap (Label ℓ
-> f (g τ)
-> Rec (Ap ϕ (Map g ρ))
-> Rec (Extend ℓ (f (g τ)) (Ap ϕ (Map g ρ)))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l (f τ -> f (g τ)
forall (h :: k -> *) (a :: k). c h a => h a -> h (g a)
f @f @τ f τ
v) Rec (Ap ϕ (Map g ρ))
r)
((Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ)) =>
RFMap g (Extend ℓ f ϕ) (Extend ℓ τ ρ))
-> Dict (Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ))
-> RFMap g (Extend ℓ f ϕ) (Extend ℓ τ ρ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict (Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ))
forall k b (f :: k -> b) (ℓ :: Symbol) (τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Map f r) ≈ Map f (Extend ℓ τ r))
mapExtendSwap @g @ℓ @τ @ρ
((Extend ℓ (f (g τ)) (Ap ϕ (Map g ρ))
~ Ap (Extend ℓ f ϕ) (Extend ℓ (g τ) (Map g ρ))) =>
RFMap g (Extend ℓ f ϕ) (Extend ℓ τ ρ))
-> Dict
(Extend ℓ (f (g τ)) (Ap ϕ (Map g ρ))
~ Ap (Extend ℓ f ϕ) (Extend ℓ (g τ) (Map g ρ)))
-> RFMap g (Extend ℓ f ϕ) (Extend ℓ τ ρ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict
(Extend ℓ (f (g τ)) (Ap ϕ (Map g ρ))
~ Ap (Extend ℓ f ϕ) (Extend ℓ (g τ) (Map g ρ)))
forall k b (ℓ :: Symbol) (f :: k -> b) (fs :: Row (k -> b))
(τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Ap fs r) ≈ Ap (Extend ℓ f fs) (Extend ℓ τ r))
apExtendSwap @ℓ @f @ϕ @(g τ) @(Map g ρ)
map' :: forall f r. FreeForall r => (forall a. a -> f a) -> Rec r -> Rec (Map f r)
map' :: (forall a. a -> f a) -> Rec r -> Rec (Map f r)
map' forall a. a -> f a
f = (forall a. Unconstrained1 a => a -> f a) -> Rec r -> Rec (Map f r)
forall (c :: * -> Constraint) (f :: * -> *) (r :: Row *).
Forall r c =>
(forall a. c a => a -> f a) -> Rec r -> Rec (Map f r)
map @Unconstrained1 forall a. a -> f a
forall a. Unconstrained1 a => a -> f a
f
transform :: forall c r f g. Forall r c => (forall a. c a => f a -> g a) -> Rec (Map f r) -> Rec (Map g r)
transform :: (forall (a :: a). c a => f a -> g a)
-> Rec (Map f r) -> Rec (Map g r)
transform forall (a :: a). c a => f a -> g a
f = RMap g r -> Rec (Map g r)
forall a (f :: a -> *) (ρ :: Row a). RMap f ρ -> Rec (Map f ρ)
unRMap (RMap g r -> Rec (Map g r))
-> (Rec (Map f r) -> RMap g r) -> Rec (Map f r) -> Rec (Map g r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy (Proxy f, Proxy (,))
-> (RMap f Empty -> RMap g Empty)
-> (forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> RMap f ρ -> (RMap f (ρ .- ℓ), f τ))
-> (forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap g ρ, f τ) -> RMap g (Extend ℓ τ ρ))
-> RMap f r
-> RMap g r
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @r @c @(,) @(RMap f) @(RMap g) @f Proxy (Proxy f, Proxy (,))
forall k (t :: k). Proxy t
Proxy RMap f Empty -> RMap g Empty
forall a (f :: a -> *) (ρ :: Row a) p.
(Map f ρ ~ Empty) =>
p -> RMap f ρ
doNil forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> RMap f ρ -> (RMap f (ρ .- ℓ), f τ)
doUncons forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap g ρ, f τ) -> RMap g (Extend ℓ τ ρ)
forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ) =>
Label ℓ -> (RMap g ρ, f τ) -> RMap g (Extend ℓ τ ρ)
doCons (RMap f r -> RMap g r)
-> (Rec (Map f r) -> RMap f r) -> Rec (Map f r) -> RMap g r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec (Map f r) -> RMap f r
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap
where
doNil :: p -> RMap f ρ
doNil p
_ = Rec (Map f ρ) -> RMap f ρ
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap Rec (Map f ρ)
Rec Empty
empty
doUncons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ, HasType ℓ τ ρ)
=> Label ℓ -> RMap f ρ -> (RMap f (ρ .- ℓ), f τ)
doUncons :: Label ℓ -> RMap f ρ -> (RMap f (ρ .- ℓ), f τ)
doUncons Label ℓ
l (RMap Rec (Map f ρ)
r) = (Rec (Map f (ρ .- ℓ)) -> RMap f (ρ .- ℓ))
-> (Rec (Map f (ρ .- ℓ)), f τ) -> (RMap f (ρ .- ℓ), f τ)
forall (p :: * -> * -> *) a b c.
Bifunctor p =>
(a -> b) -> p a c -> p b c
first Rec (Map f (ρ .- ℓ)) -> RMap f (ρ .- ℓ)
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap ((Rec (Map f (ρ .- ℓ)), f τ) -> (RMap f (ρ .- ℓ), f τ))
-> (Rec (Map f (ρ .- ℓ)), f τ) -> (RMap f (ρ .- ℓ), f τ)
forall a b. (a -> b) -> a -> b
$ Label ℓ -> Rec (Map f ρ) -> (Rec (Map f ρ .- ℓ), Map f ρ .! ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label ℓ
l Rec (Map f ρ)
r
(((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ)) =>
(Rec (Map f (ρ .- ℓ)), f τ))
-> ((τ ≈ τ)
:- ((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ)))
-> (Rec (Map f (ρ .- ℓ)), f τ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ ((ρ .! ℓ) ≈ τ)
:- ((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ))
forall k b (f :: k -> b) (l :: Symbol) (t :: k) (r :: Row k).
((r .! l) ≈ t)
:- ((Map f r .! l) ≈ f t, (Map f r .- l) ≈ Map f (r .- l))
mapHas @f @ℓ @τ @ρ
doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ)
=> Label ℓ -> (RMap g ρ, f τ) -> RMap g (Extend ℓ τ ρ)
doCons :: Label ℓ -> (RMap g ρ, f τ) -> RMap g (Extend ℓ τ ρ)
doCons Label ℓ
l (RMap Rec (Map g ρ)
r, f τ
v) = Rec (Map g (Extend ℓ τ ρ)) -> RMap g (Extend ℓ τ ρ)
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap (Label ℓ -> g τ -> Rec (Map g ρ) -> Rec (Extend ℓ (g τ) (Map g ρ))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l (f τ -> g τ
forall (a :: a). c a => f a -> g a
f f τ
v) Rec (Map g ρ)
r)
((Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ)) =>
RMap g (Extend ℓ τ ρ))
-> Dict (Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ))
-> RMap g (Extend ℓ τ ρ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict (Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ))
forall k b (f :: k -> b) (ℓ :: Symbol) (τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Map f r) ≈ Map f (Extend ℓ τ r))
mapExtendSwap @g @ℓ @τ @ρ
transform' :: forall r f g. FreeForall r => (forall a. f a -> g a) -> Rec (Map f r) -> Rec (Map g r)
transform' :: (forall (a :: a). f a -> g a) -> Rec (Map f r) -> Rec (Map g r)
transform' forall (a :: a). f a -> g a
f = (forall (a :: a). Unconstrained1 a => f a -> g a)
-> Rec (Map f r) -> Rec (Map g r)
forall a (c :: a -> Constraint) (r :: Row a) (f :: a -> *)
(g :: a -> *).
Forall r c =>
(forall (a :: a). c a => f a -> g a)
-> Rec (Map f r) -> Rec (Map g r)
transform @Unconstrained1 @r forall (a :: a). f a -> g a
forall (a :: a). Unconstrained1 a => f a -> g a
f
data RecMapPair f g ρ = RecMapPair (Rec (Map f ρ)) (Rec (Map g ρ))
zipTransform :: forall c r f g h .
Forall r c => (forall a. c a => f a -> g a -> h a) -> Rec (Map f r) -> Rec (Map g r) -> Rec (Map h r)
zipTransform :: (forall (a :: a). c a => f a -> g a -> h a)
-> Rec (Map f r) -> Rec (Map g r) -> Rec (Map h r)
zipTransform forall (a :: a). c a => f a -> g a -> h a
f Rec (Map f r)
x Rec (Map g r)
y = RMap h r -> Rec (Map h r)
forall a (f :: a -> *) (ρ :: Row a). RMap f ρ -> Rec (Map f ρ)
unRMap (RMap h r -> Rec (Map h r)) -> RMap h r -> Rec (Map h r)
forall a b. (a -> b) -> a -> b
$ Proxy (Proxy h, Proxy (,))
-> (RecMapPair f g Empty -> RMap h Empty)
-> (forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> RecMapPair f g ρ -> (RecMapPair f g (ρ .- ℓ), h τ))
-> (forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap h ρ, h τ) -> RMap h (Extend ℓ τ ρ))
-> RecMapPair f g r
-> RMap h r
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @r @c @(,) @(RecMapPair f g) @(RMap h) @h Proxy (Proxy h, Proxy (,))
forall k (t :: k). Proxy t
Proxy RecMapPair f g Empty -> RMap h Empty
forall a (f :: a -> *) (ρ :: Row a) p.
(Map f ρ ~ Empty) =>
p -> RMap f ρ
doNil forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> RecMapPair f g ρ -> (RecMapPair f g (ρ .- ℓ), h τ)
doUncons forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap h ρ, h τ) -> RMap h (Extend ℓ τ ρ)
forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ) =>
Label ℓ -> (RMap h ρ, h τ) -> RMap h (Extend ℓ τ ρ)
doCons (RecMapPair f g r -> RMap h r) -> RecMapPair f g r -> RMap h r
forall a b. (a -> b) -> a -> b
$ Rec (Map f r) -> Rec (Map g r) -> RecMapPair f g r
forall a (f :: a -> *) (g :: a -> *) (ρ :: Row a).
Rec (Map f ρ) -> Rec (Map g ρ) -> RecMapPair f g ρ
RecMapPair Rec (Map f r)
x Rec (Map g r)
y
where
doNil :: p -> RMap f ρ
doNil p
_ = Rec (Map f ρ) -> RMap f ρ
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap Rec (Map f ρ)
Rec Empty
empty
doUncons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ, HasType ℓ τ ρ)
=> Label ℓ -> RecMapPair f g ρ -> (RecMapPair f g (ρ .- ℓ), h τ)
doUncons :: Label ℓ -> RecMapPair f g ρ -> (RecMapPair f g (ρ .- ℓ), h τ)
doUncons Label ℓ
l (RecMapPair Rec (Map f ρ)
x Rec (Map g ρ)
y) = (Rec (Map f (ρ .- ℓ))
-> Rec (Map g (ρ .- ℓ)) -> RecMapPair f g (ρ .- ℓ)
forall a (f :: a -> *) (g :: a -> *) (ρ :: Row a).
Rec (Map f ρ) -> Rec (Map g ρ) -> RecMapPair f g ρ
RecMapPair (Label ℓ -> Rec (Map f ρ) -> Rec (Map f ρ .- ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> Rec (r .- l)
lazyRemove Label ℓ
l Rec (Map f ρ)
x) (Label ℓ -> Rec (Map g ρ) -> Rec (Map g ρ .- ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> Rec (r .- l)
lazyRemove Label ℓ
l Rec (Map g ρ)
y), f τ -> g τ -> h τ
forall (a :: a). c a => f a -> g a -> h a
f (Rec (Map f ρ)
x Rec (Map f ρ) -> Label ℓ -> Map f ρ .! ℓ
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label ℓ
l) (Rec (Map g ρ)
y Rec (Map g ρ) -> Label ℓ -> Map g ρ .! ℓ
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label ℓ
l))
(((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ)) =>
(RecMapPair f g (ρ .- ℓ), h τ))
-> ((τ ≈ τ)
:- ((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ)))
-> (RecMapPair f g (ρ .- ℓ), h τ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ ((ρ .! ℓ) ≈ τ)
:- ((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ))
forall k b (f :: k -> b) (l :: Symbol) (t :: k) (r :: Row k).
((r .! l) ≈ t)
:- ((Map f r .! l) ≈ f t, (Map f r .- l) ≈ Map f (r .- l))
mapHas @f @ℓ @τ @ρ
(((Map g ρ .! ℓ) ≈ g τ, (Map g ρ .- ℓ) ≈ Map g (ρ .- ℓ)) =>
(RecMapPair f g (ρ .- ℓ), h τ))
-> ((τ ≈ τ)
:- ((Map g ρ .! ℓ) ≈ g τ, (Map g ρ .- ℓ) ≈ Map g (ρ .- ℓ)))
-> (RecMapPair f g (ρ .- ℓ), h τ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ ((ρ .! ℓ) ≈ τ)
:- ((Map g ρ .! ℓ) ≈ g τ, (Map g ρ .- ℓ) ≈ Map g (ρ .- ℓ))
forall k b (f :: k -> b) (l :: Symbol) (t :: k) (r :: Row k).
((r .! l) ≈ t)
:- ((Map f r .! l) ≈ f t, (Map f r .- l) ≈ Map f (r .- l))
mapHas @g @ℓ @τ @ρ
doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ)
=> Label ℓ -> (RMap h ρ, h τ) -> RMap h (Extend ℓ τ ρ)
doCons :: Label ℓ -> (RMap h ρ, h τ) -> RMap h (Extend ℓ τ ρ)
doCons Label ℓ
l (RMap Rec (Map h ρ)
r, h τ
h) = Rec (Map h (Extend ℓ τ ρ)) -> RMap h (Extend ℓ τ ρ)
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap (Label ℓ -> h τ -> Rec (Map h ρ) -> Rec (Extend ℓ (h τ) (Map h ρ))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l h τ
h Rec (Map h ρ)
r)
((Extend ℓ (h τ) (Map h ρ) ~ Map h (Extend ℓ τ ρ)) =>
RMap h (Extend ℓ τ ρ))
-> Dict (Extend ℓ (h τ) (Map h ρ) ~ Map h (Extend ℓ τ ρ))
-> RMap h (Extend ℓ τ ρ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict (Extend ℓ (h τ) (Map h ρ) ~ Map h (Extend ℓ τ ρ))
forall k b (f :: k -> b) (ℓ :: Symbol) (τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Map f r) ≈ Map f (Extend ℓ τ r))
mapExtendSwap @h @ℓ @τ @ρ
zipTransform' :: forall r f g h .
FreeForall r => (forall a. f a -> g a -> h a) -> Rec (Map f r) -> Rec (Map g r) -> Rec (Map h r)
zipTransform' :: (forall (a :: a). f a -> g a -> h a)
-> Rec (Map f r) -> Rec (Map g r) -> Rec (Map h r)
zipTransform' forall (a :: a). f a -> g a -> h a
f = (forall (a :: a). Unconstrained1 a => f a -> g a -> h a)
-> Rec (Map f r) -> Rec (Map g r) -> Rec (Map h r)
forall a (c :: a -> Constraint) (r :: Row a) (f :: a -> *)
(g :: a -> *) (h :: a -> *).
Forall r c =>
(forall (a :: a). c a => f a -> g a -> h a)
-> Rec (Map f r) -> Rec (Map g r) -> Rec (Map h r)
zipTransform @Unconstrained1 @r forall (a :: a). f a -> g a -> h a
forall (a :: a). Unconstrained1 a => f a -> g a -> h a
f
traverse :: forall c f r. (Forall r c, Applicative f) => (forall a. c a => a -> f a) -> Rec r -> f (Rec r)
traverse :: (forall a. c a => a -> f a) -> Rec r -> f (Rec r)
traverse forall a. c a => a -> f a
f = (Forall r c, Applicative f) => Rec (Map f r) -> f (Rec r)
forall (f :: * -> *) (r :: Row *) (c :: * -> Constraint).
(Forall r c, Applicative f) =>
Rec (Map f r) -> f (Rec r)
sequence' @f @r @c (Rec (Map f r) -> f (Rec r))
-> (Rec r -> Rec (Map f r)) -> Rec r -> f (Rec r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. c a => a -> f a) -> Rec r -> Rec (Map f r)
forall (c :: * -> Constraint) (f :: * -> *) (r :: Row *).
Forall r c =>
(forall a. c a => a -> f a) -> Rec r -> Rec (Map f r)
map @c @f @r forall a. c a => a -> f a
f
traverseMap :: forall c f g h r.
(Forall r c, Applicative f) => (forall a. c a => g a -> f (h a)) -> Rec (Map g r) -> f (Rec (Map h r))
traverseMap :: (forall (a :: a). c a => g a -> f (h a))
-> Rec (Map g r) -> f (Rec (Map h r))
traverseMap forall (a :: a). c a => g a -> f (h a)
f =
(Forall (Map h r) (IsA c h), Applicative f) =>
Rec (Map f (Map h r)) -> f (Rec (Map h r))
forall (f :: * -> *) (r :: Row *) (c :: * -> Constraint).
(Forall r c, Applicative f) =>
Rec (Map f r) -> f (Rec r)
sequence' @f @(Map h r) @(IsA c h) (Rec (Map f (Map h r)) -> f (Rec (Map h r)))
-> (Rec (Map g r) -> Rec (Map f (Map h r)))
-> Rec (Map g r)
-> f (Rec (Map h r))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Forall r c => Rec (Map (Compose f h) r) -> Rec (Map f (Map h r))
forall a b (c :: a -> Constraint) (f :: b -> *) (g :: a -> b)
(r :: Row a).
Forall r c =>
Rec (Map (Compose f g) r) -> Rec (Map f (Map g r))
uncompose' @c @f @h @r (Rec (Map (Compose f h) r) -> Rec (Map f (Map h r)))
-> (Rec (Map g r) -> Rec (Map (Compose f h) r))
-> Rec (Map g r)
-> Rec (Map f (Map h r))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
(forall (a :: a). c a => g a -> Compose f h a)
-> Rec (Map g r) -> Rec (Map (Compose f h) r)
forall a (c :: a -> Constraint) (r :: Row a) (f :: a -> *)
(g :: a -> *).
Forall r c =>
(forall (a :: a). c a => f a -> g a)
-> Rec (Map f r) -> Rec (Map g r)
transform @c @r @g @(Compose f h) (f (h a) -> Compose f h a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (h a) -> Compose f h a)
-> (g a -> f (h a)) -> g a -> Compose f h a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. g a -> f (h a)
forall (a :: a). c a => g a -> f (h a)
f)
(Forall (Map h r) (IsA c h) => Rec (Map g r) -> f (Rec (Map h r)))
-> (Forall r c :- Forall (Map h r) (IsA c h))
-> Rec (Map g r)
-> f (Rec (Map h r))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Forall r c :- Forall (Map h r) (IsA c h)
forall k1 k2 (f :: k1 -> k2) (ρ :: Row k1) (c :: k1 -> Constraint).
Forall ρ c :- Forall (Map f ρ) (IsA c f)
mapForall @h @r @c
sequence' :: forall f r c. (Forall r c, Applicative f)
=> Rec (Map f r) -> f (Rec r)
sequence' :: Rec (Map f r) -> f (Rec r)
sequence' = Compose f Rec r -> f (Rec r)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose (Compose f Rec r -> f (Rec r))
-> (Rec (Map f r) -> Compose f Rec r) -> Rec (Map f r) -> f (Rec r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy (Proxy f, Proxy (,))
-> (RMap f Empty -> Compose f Rec Empty)
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> RMap f ρ -> (RMap f (ρ .- ℓ), f τ))
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (Compose f Rec ρ, f τ) -> Compose f Rec (Extend ℓ τ ρ))
-> RMap f r
-> Compose f Rec r
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @r @c @(,) @(RMap f) @(Compose f Rec) @f Proxy (Proxy f, Proxy (,))
forall k (t :: k). Proxy t
Proxy RMap f Empty -> Compose f Rec Empty
forall (f :: * -> *) p. Applicative f => p -> Compose f Rec Empty
doNil forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> RMap f ρ -> (RMap f (ρ .- ℓ), f τ)
doUncons forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (Compose f Rec ρ, f τ) -> Compose f Rec (Extend ℓ τ ρ)
forall (f :: * -> *) (l :: Symbol) (a :: Row *) a.
(Applicative f, KnownSymbol l) =>
Label l -> (Compose f Rec a, f a) -> Compose f Rec (Extend l a a)
doCons (RMap f r -> Compose f Rec r)
-> (Rec (Map f r) -> RMap f r) -> Rec (Map f r) -> Compose f Rec r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec (Map f r) -> RMap f r
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap
where
doNil :: p -> Compose f Rec Empty
doNil p
_ = f (Rec Empty) -> Compose f Rec Empty
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (Rec Empty -> f (Rec Empty)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Rec Empty
empty)
doUncons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ, HasType ℓ τ ρ)
=> Label ℓ -> RMap f ρ -> (RMap f (ρ .- ℓ), f τ)
doUncons :: Label ℓ -> RMap f ρ -> (RMap f (ρ .- ℓ), f τ)
doUncons Label ℓ
l (RMap Rec (Map f ρ)
r) = (Rec (Map f (ρ .- ℓ)) -> RMap f (ρ .- ℓ))
-> (Rec (Map f (ρ .- ℓ)), f τ) -> (RMap f (ρ .- ℓ), f τ)
forall (p :: * -> * -> *) a b c.
Bifunctor p =>
(a -> b) -> p a c -> p b c
first Rec (Map f (ρ .- ℓ)) -> RMap f (ρ .- ℓ)
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap ((Rec (Map f (ρ .- ℓ)), f τ) -> (RMap f (ρ .- ℓ), f τ))
-> (Rec (Map f (ρ .- ℓ)), f τ) -> (RMap f (ρ .- ℓ), f τ)
forall a b. (a -> b) -> a -> b
$ Label ℓ -> Rec (Map f ρ) -> (Rec (Map f ρ .- ℓ), Map f ρ .! ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label ℓ
l Rec (Map f ρ)
r
(((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ)) =>
(Rec (Map f (ρ .- ℓ)), f τ))
-> ((τ ≈ τ)
:- ((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ)))
-> (Rec (Map f (ρ .- ℓ)), f τ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ ((ρ .! ℓ) ≈ τ)
:- ((Map f ρ .! ℓ) ≈ f τ, (Map f ρ .- ℓ) ≈ Map f (ρ .- ℓ))
forall k b (f :: k -> b) (l :: Symbol) (t :: k) (r :: Row k).
((r .! l) ≈ t)
:- ((Map f r .! l) ≈ f t, (Map f r .- l) ≈ Map f (r .- l))
mapHas @f @ℓ @τ @ρ
doCons :: Label l -> (Compose f Rec a, f a) -> Compose f Rec (Extend l a a)
doCons Label l
l (Compose f (Rec a)
fr, f a
fv) = f (Rec (Extend l a a)) -> Compose f Rec (Extend l a a)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (Rec (Extend l a a)) -> Compose f Rec (Extend l a a))
-> f (Rec (Extend l a a)) -> Compose f Rec (Extend l a a)
forall a b. (a -> b) -> a -> b
$ Label l -> a -> Rec a -> Rec (Extend l a a)
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label l
l (a -> Rec a -> Rec (Extend l a a))
-> f a -> f (Rec a -> Rec (Extend l a a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
fv f (Rec a -> Rec (Extend l a a))
-> f (Rec a) -> f (Rec (Extend l a a))
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f (Rec a)
fr
sequence :: forall f r. (Applicative f, FreeForall r)
=> Rec (Map f r) -> f (Rec r)
sequence :: Rec (Map f r) -> f (Rec r)
sequence = (Forall r Unconstrained1, Applicative f) =>
Rec (Map f r) -> f (Rec r)
forall (f :: * -> *) (r :: Row *) (c :: * -> Constraint).
(Forall r c, Applicative f) =>
Rec (Map f r) -> f (Rec r)
sequence' @_ @_ @Unconstrained1
distribute :: forall f r. (FreeForall r, Functor f) => f (Rec r) -> Rec (Map f r)
distribute :: f (Rec r) -> Rec (Map f r)
distribute = RMap f r -> Rec (Map f r)
forall a (f :: a -> *) (ρ :: Row a). RMap f ρ -> Rec (Map f ρ)
unRMap (RMap f r -> Rec (Map f r))
-> (f (Rec r) -> RMap f r) -> f (Rec r) -> Rec (Map f r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy (Proxy f, Proxy (,))
-> (Compose f Rec Empty -> RMap f Empty)
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, Unconstrained1 τ, HasType ℓ τ ρ) =>
Label ℓ -> Compose f Rec ρ -> (Compose f Rec (ρ .- ℓ), f τ))
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, Unconstrained1 τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ))
-> Compose f Rec r
-> RMap f r
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @r @Unconstrained1 @(,) @(Compose f Rec) @(RMap f) @f Proxy (Proxy f, Proxy (,))
forall k (t :: k). Proxy t
Proxy Compose f Rec Empty -> RMap f Empty
forall a (f :: a -> *) (ρ :: Row a) p.
(Map f ρ ~ Empty) =>
p -> RMap f ρ
doNil forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, Unconstrained1 τ, HasType ℓ τ ρ) =>
Label ℓ -> Compose f Rec ρ -> (Compose f Rec (ρ .- ℓ), f τ)
forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, HasType ℓ τ ρ) =>
Label ℓ -> Compose f Rec ρ -> (Compose f Rec (ρ .- ℓ), f τ)
doUncons forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, Unconstrained1 τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ)
forall (ℓ :: Symbol) τ (ρ :: Row *).
KnownSymbol ℓ =>
Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ)
doCons (Compose f Rec r -> RMap f r)
-> (f (Rec r) -> Compose f Rec r) -> f (Rec r) -> RMap f r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (Rec r) -> Compose f Rec r
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose
where
doNil :: p -> RMap f ρ
doNil p
_ = Rec (Map f ρ) -> RMap f ρ
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap Rec (Map f ρ)
Rec Empty
empty
doUncons :: forall ℓ τ ρ. (KnownSymbol ℓ, HasType ℓ τ ρ)
=> Label ℓ -> Compose f Rec ρ -> (Compose f Rec (ρ .- ℓ), f τ)
doUncons :: Label ℓ -> Compose f Rec ρ -> (Compose f Rec (ρ .- ℓ), f τ)
doUncons Label ℓ
l (Compose f (Rec ρ)
fr) = (f (Rec (ρ .- ℓ)) -> Compose f Rec (ρ .- ℓ)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (Rec (ρ .- ℓ)) -> Compose f Rec (ρ .- ℓ))
-> f (Rec (ρ .- ℓ)) -> Compose f Rec (ρ .- ℓ)
forall a b. (a -> b) -> a -> b
$ Label ℓ -> Rec ρ -> Rec (ρ .- ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> Rec (r .- l)
lazyRemove Label ℓ
l (Rec ρ -> Rec (ρ .- ℓ)) -> f (Rec ρ) -> f (Rec (ρ .- ℓ))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Rec ρ)
fr, (Rec ρ -> Label ℓ -> ρ .! ℓ
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label ℓ
l) (Rec ρ -> τ) -> f (Rec ρ) -> f τ
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Rec ρ)
fr)
doCons :: forall ℓ τ ρ. (KnownSymbol ℓ)
=> Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ)
doCons :: Label ℓ -> (RMap f ρ, f τ) -> RMap f (Extend ℓ τ ρ)
doCons Label ℓ
l (RMap Rec (Map f ρ)
r, f τ
fv) = Rec (Map f (Extend ℓ τ ρ)) -> RMap f (Extend ℓ τ ρ)
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap (Label ℓ -> f τ -> Rec (Map f ρ) -> Rec (Extend ℓ (f τ) (Map f ρ))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l f τ
fv Rec (Map f ρ)
r)
((Extend ℓ (f τ) (Map f ρ) ~ Map f (Extend ℓ τ ρ)) =>
RMap f (Extend ℓ τ ρ))
-> Dict (Extend ℓ (f τ) (Map f ρ) ~ Map f (Extend ℓ τ ρ))
-> RMap f (Extend ℓ τ ρ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict (Extend ℓ (f τ) (Map f ρ) ~ Map f (Extend ℓ τ ρ))
forall k b (f :: k -> b) (ℓ :: Symbol) (τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Map f r) ≈ Map f (Extend ℓ τ r))
mapExtendSwap @f @ℓ @τ @ρ
compose' :: forall c f g r . Forall r c
=> Rec (Map f (Map g r)) -> Rec (Map (Compose f g) r)
compose' :: Rec (Map f (Map g r)) -> Rec (Map (Compose f g) r)
compose' = RMap (Compose f g) r -> Rec (Map (Compose f g) r)
forall a (f :: a -> *) (ρ :: Row a). RMap f ρ -> Rec (Map f ρ)
unRMap (RMap (Compose f g) r -> Rec (Map (Compose f g) r))
-> (Rec (Map f (Map g r)) -> RMap (Compose f g) r)
-> Rec (Map f (Map g r))
-> Rec (Map (Compose f g) r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy (Proxy (Compose f g), Proxy (,))
-> (RMap2 f g Empty -> RMap (Compose f g) Empty)
-> (forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> RMap2 f g ρ -> (RMap2 f g (ρ .- ℓ), Compose f g τ))
-> (forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ
-> (RMap (Compose f g) ρ, Compose f g τ)
-> RMap (Compose f g) (Extend ℓ τ ρ))
-> RMap2 f g r
-> RMap (Compose f g) r
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @r @c @(,) @(RMap2 f g) @(RMap (Compose f g)) @(Compose f g) Proxy (Proxy (Compose f g), Proxy (,))
forall k (t :: k). Proxy t
Proxy RMap2 f g Empty -> RMap (Compose f g) Empty
forall a (f :: a -> *) (ρ :: Row a) p.
(Map f ρ ~ Empty) =>
p -> RMap f ρ
doNil forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> RMap2 f g ρ -> (RMap2 f g (ρ .- ℓ), Compose f g τ)
doUncons forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ
-> (RMap (Compose f g) ρ, Compose f g τ)
-> RMap (Compose f g) (Extend ℓ τ ρ)
forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ) =>
Label ℓ
-> (RMap (Compose f g) ρ, Compose f g τ)
-> RMap (Compose f g) (Extend ℓ τ ρ)
doCons (RMap2 f g r -> RMap (Compose f g) r)
-> (Rec (Map f (Map g r)) -> RMap2 f g r)
-> Rec (Map f (Map g r))
-> RMap (Compose f g) r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec (Map f (Map g r)) -> RMap2 f g r
forall a a (f :: a -> *) (g :: a -> a) (ρ :: Row a).
Rec (Map f (Map g ρ)) -> RMap2 f g ρ
RMap2
where
doNil :: p -> RMap f ρ
doNil p
_ = Rec (Map f ρ) -> RMap f ρ
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap Rec (Map f ρ)
Rec Empty
empty
doUncons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ, HasType ℓ τ ρ)
=> Label ℓ -> RMap2 f g ρ -> (RMap2 f g (ρ .- ℓ), Compose f g τ)
doUncons :: Label ℓ -> RMap2 f g ρ -> (RMap2 f g (ρ .- ℓ), Compose f g τ)
doUncons Label ℓ
l (RMap2 Rec (Map f (Map g ρ))
r) = (Rec (Map f (Map g (ρ .- ℓ))) -> RMap2 f g (ρ .- ℓ))
-> (f (g τ) -> Compose f g τ)
-> (Rec (Map f (Map g (ρ .- ℓ))), f (g τ))
-> (RMap2 f g (ρ .- ℓ), Compose f g τ)
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap Rec (Map f (Map g (ρ .- ℓ))) -> RMap2 f g (ρ .- ℓ)
forall a a (f :: a -> *) (g :: a -> a) (ρ :: Row a).
Rec (Map f (Map g ρ)) -> RMap2 f g ρ
RMap2 f (g τ) -> Compose f g τ
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose ((Rec (Map f (Map g (ρ .- ℓ))), f (g τ))
-> (RMap2 f g (ρ .- ℓ), Compose f g τ))
-> (Rec (Map f (Map g (ρ .- ℓ))), f (g τ))
-> (RMap2 f g (ρ .- ℓ), Compose f g τ)
forall a b. (a -> b) -> a -> b
$ Label ℓ
-> Rec (Map f (Map g ρ))
-> (Rec (Map f (Map g ρ) .- ℓ), Map f (Map g ρ) .! ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label ℓ
l Rec (Map f (Map g ρ))
r
(((Map f (Map g ρ) .! ℓ) ≈ f (g τ),
(Map f (Map g ρ) .- ℓ) ≈ Map f (Map g (ρ .- ℓ))) =>
(Rec (Map f (Map g (ρ .- ℓ))), f (g τ)))
-> ((g τ ≈ g τ)
:- ((Map f (Map g ρ) .! ℓ) ≈ f (g τ),
(Map f (Map g ρ) .- ℓ) ≈ Map f (Map g (ρ .- ℓ))))
-> (Rec (Map f (Map g (ρ .- ℓ))), f (g τ))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ ((Map g ρ .! ℓ) ≈ g τ)
:- ((Map f (Map g ρ) .! ℓ) ≈ f (g τ),
(Map f (Map g ρ) .- ℓ) ≈ Map f (Map g ρ .- ℓ))
forall k b (f :: k -> b) (l :: Symbol) (t :: k) (r :: Row k).
((r .! l) ≈ t)
:- ((Map f r .! l) ≈ f t, (Map f r .- l) ≈ Map f (r .- l))
mapHas @f @ℓ @(g τ) @(Map g ρ)
(((Map g ρ .! ℓ) ≈ g τ, (Map g ρ .- ℓ) ≈ Map g (ρ .- ℓ)) =>
(Rec (Map f (Map g (ρ .- ℓ))), f (g τ)))
-> ((τ ≈ τ)
:- ((Map g ρ .! ℓ) ≈ g τ, (Map g ρ .- ℓ) ≈ Map g (ρ .- ℓ)))
-> (Rec (Map f (Map g (ρ .- ℓ))), f (g τ))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ ((ρ .! ℓ) ≈ τ)
:- ((Map g ρ .! ℓ) ≈ g τ, (Map g ρ .- ℓ) ≈ Map g (ρ .- ℓ))
forall k b (f :: k -> b) (l :: Symbol) (t :: k) (r :: Row k).
((r .! l) ≈ t)
:- ((Map f r .! l) ≈ f t, (Map f r .- l) ≈ Map f (r .- l))
mapHas @g @ℓ @τ @ρ
doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ)
=> Label ℓ -> (RMap (Compose f g) ρ, Compose f g τ) -> RMap (Compose f g) (Extend ℓ τ ρ)
doCons :: Label ℓ
-> (RMap (Compose f g) ρ, Compose f g τ)
-> RMap (Compose f g) (Extend ℓ τ ρ)
doCons Label ℓ
l (RMap Rec (Map (Compose f g) ρ)
r, Compose f g τ
v) = Rec (Map (Compose f g) (Extend ℓ τ ρ))
-> RMap (Compose f g) (Extend ℓ τ ρ)
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap (Rec (Map (Compose f g) (Extend ℓ τ ρ))
-> RMap (Compose f g) (Extend ℓ τ ρ))
-> Rec (Map (Compose f g) (Extend ℓ τ ρ))
-> RMap (Compose f g) (Extend ℓ τ ρ)
forall a b. (a -> b) -> a -> b
$ Label ℓ
-> Compose f g τ
-> Rec (Map (Compose f g) ρ)
-> Rec (Extend ℓ (Compose f g τ) (Map (Compose f g) ρ))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l Compose f g τ
v Rec (Map (Compose f g) ρ)
r
((Extend ℓ (Compose f g τ) (Map (Compose f g) ρ)
~ Map (Compose f g) (Extend ℓ τ ρ)) =>
Rec (Map (Compose f g) (Extend ℓ τ ρ)))
-> Dict
(Extend ℓ (Compose f g τ) (Map (Compose f g) ρ)
~ Map (Compose f g) (Extend ℓ τ ρ))
-> Rec (Map (Compose f g) (Extend ℓ τ ρ))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict
(Extend ℓ (Compose f g τ) (Map (Compose f g) ρ)
~ Map (Compose f g) (Extend ℓ τ ρ))
forall k b (f :: k -> b) (ℓ :: Symbol) (τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Map f r) ≈ Map f (Extend ℓ τ r))
mapExtendSwap @(Compose f g) @ℓ @τ @ρ
compose :: forall f g r . FreeForall r
=> Rec (Map f (Map g r)) -> Rec (Map (Compose f g) r)
compose :: Rec (Map f (Map g r)) -> Rec (Map (Compose f g) r)
compose = Forall r Unconstrained1 =>
Rec (Map f (Map g r)) -> Rec (Map (Compose f g) r)
forall a k (c :: a -> Constraint) (f :: k -> *) (g :: a -> k)
(r :: Row a).
Forall r c =>
Rec (Map f (Map g r)) -> Rec (Map (Compose f g) r)
compose' @Unconstrained1 @f @g @r
uncompose' :: forall c f g r . Forall r c
=> Rec (Map (Compose f g) r) -> Rec (Map f (Map g r))
uncompose' :: Rec (Map (Compose f g) r) -> Rec (Map f (Map g r))
uncompose' = RMap2 f g r -> Rec (Map f (Map g r))
forall a (f :: a -> *) a (g :: a -> a) (ρ :: Row a).
RMap2 f g ρ -> Rec (Map f (Map g ρ))
unRMap2 (RMap2 f g r -> Rec (Map f (Map g r)))
-> (Rec (Map (Compose f g) r) -> RMap2 f g r)
-> Rec (Map (Compose f g) r)
-> Rec (Map f (Map g r))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Proxy (Proxy (Compose f g), Proxy (,))
-> (RMap (Compose f g) Empty -> RMap2 f g Empty)
-> (forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ
-> RMap (Compose f g) ρ
-> (RMap (Compose f g) (ρ .- ℓ), Compose f g τ))
-> (forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ
-> (RMap2 f g ρ, Compose f g τ) -> RMap2 f g (Extend ℓ τ ρ))
-> RMap (Compose f g) r
-> RMap2 f g r
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @r @c @(,) @(RMap (Compose f g)) @(RMap2 f g) @(Compose f g) Proxy (Proxy (Compose f g), Proxy (,))
forall k (t :: k). Proxy t
Proxy RMap (Compose f g) Empty -> RMap2 f g Empty
forall a a (f :: a -> *) (g :: a -> a) (ρ :: Row a) p.
(Map f (Map g ρ) ~ Empty) =>
p -> RMap2 f g ρ
doNil forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ
-> RMap (Compose f g) ρ
-> (RMap (Compose f g) (ρ .- ℓ), Compose f g τ)
doUncons forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> (RMap2 f g ρ, Compose f g τ) -> RMap2 f g (Extend ℓ τ ρ)
forall (ℓ :: Symbol) (τ :: a) (ρ :: Row a).
(KnownSymbol ℓ, c τ) =>
Label ℓ -> (RMap2 f g ρ, Compose f g τ) -> RMap2 f g (Extend ℓ τ ρ)
doCons (RMap (Compose f g) r -> RMap2 f g r)
-> (Rec (Map (Compose f g) r) -> RMap (Compose f g) r)
-> Rec (Map (Compose f g) r)
-> RMap2 f g r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec (Map (Compose f g) r) -> RMap (Compose f g) r
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap
where
doNil :: p -> RMap2 f g ρ
doNil p
_ = Rec (Map f (Map g ρ)) -> RMap2 f g ρ
forall a a (f :: a -> *) (g :: a -> a) (ρ :: Row a).
Rec (Map f (Map g ρ)) -> RMap2 f g ρ
RMap2 Rec (Map f (Map g ρ))
Rec Empty
empty
doUncons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ, HasType ℓ τ ρ)
=> Label ℓ -> RMap (Compose f g) ρ -> (RMap (Compose f g) (ρ .- ℓ), Compose f g τ)
doUncons :: Label ℓ
-> RMap (Compose f g) ρ
-> (RMap (Compose f g) (ρ .- ℓ), Compose f g τ)
doUncons Label ℓ
l (RMap Rec (Map (Compose f g) ρ)
r) = (Rec (Map (Compose f g) (ρ .- ℓ)) -> RMap (Compose f g) (ρ .- ℓ))
-> (Rec (Map (Compose f g) (ρ .- ℓ)), Compose f g τ)
-> (RMap (Compose f g) (ρ .- ℓ), Compose f g τ)
forall (p :: * -> * -> *) a b c.
Bifunctor p =>
(a -> b) -> p a c -> p b c
first Rec (Map (Compose f g) (ρ .- ℓ)) -> RMap (Compose f g) (ρ .- ℓ)
forall a (f :: a -> *) (ρ :: Row a). Rec (Map f ρ) -> RMap f ρ
RMap ((Rec (Map (Compose f g) (ρ .- ℓ)), Compose f g τ)
-> (RMap (Compose f g) (ρ .- ℓ), Compose f g τ))
-> (Rec (Map (Compose f g) (ρ .- ℓ)), Compose f g τ)
-> (RMap (Compose f g) (ρ .- ℓ), Compose f g τ)
forall a b. (a -> b) -> a -> b
$ Label ℓ
-> Rec (Map (Compose f g) ρ)
-> (Rec (Map (Compose f g) ρ .- ℓ), Map (Compose f g) ρ .! ℓ)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> (Rec (r .- l), r .! l)
lazyUncons Label ℓ
l Rec (Map (Compose f g) ρ)
r
(((Map (Compose f g) ρ .! ℓ) ≈ Compose f g τ,
(Map (Compose f g) ρ .- ℓ) ≈ Map (Compose f g) (ρ .- ℓ)) =>
(Rec (Map (Compose f g) (ρ .- ℓ)), Compose f g τ))
-> ((τ ≈ τ)
:- ((Map (Compose f g) ρ .! ℓ) ≈ Compose f g τ,
(Map (Compose f g) ρ .- ℓ) ≈ Map (Compose f g) (ρ .- ℓ)))
-> (Rec (Map (Compose f g) (ρ .- ℓ)), Compose f g τ)
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ ((ρ .! ℓ) ≈ τ)
:- ((Map (Compose f g) ρ .! ℓ) ≈ Compose f g τ,
(Map (Compose f g) ρ .- ℓ) ≈ Map (Compose f g) (ρ .- ℓ))
forall k b (f :: k -> b) (l :: Symbol) (t :: k) (r :: Row k).
((r .! l) ≈ t)
:- ((Map f r .! l) ≈ f t, (Map f r .- l) ≈ Map f (r .- l))
mapHas @(Compose f g) @ℓ @τ @ρ
doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ)
=> Label ℓ -> (RMap2 f g ρ, Compose f g τ) -> RMap2 f g (Extend ℓ τ ρ)
doCons :: Label ℓ -> (RMap2 f g ρ, Compose f g τ) -> RMap2 f g (Extend ℓ τ ρ)
doCons Label ℓ
l (RMap2 Rec (Map f (Map g ρ))
r, Compose f (g τ)
v) = Rec (Map f (Map g (Extend ℓ τ ρ))) -> RMap2 f g (Extend ℓ τ ρ)
forall a a (f :: a -> *) (g :: a -> a) (ρ :: Row a).
Rec (Map f (Map g ρ)) -> RMap2 f g ρ
RMap2 (Rec (Map f (Map g (Extend ℓ τ ρ))) -> RMap2 f g (Extend ℓ τ ρ))
-> Rec (Map f (Map g (Extend ℓ τ ρ))) -> RMap2 f g (Extend ℓ τ ρ)
forall a b. (a -> b) -> a -> b
$ Label ℓ
-> f (g τ)
-> Rec (Map f (Map g ρ))
-> Rec (Extend ℓ (f (g τ)) (Map f (Map g ρ)))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l f (g τ)
v Rec (Map f (Map g ρ))
r
((Extend ℓ (f (g τ)) (Map f (Map g ρ))
~ Map f (Map g (Extend ℓ τ ρ))) =>
Rec (Map f (Map g (Extend ℓ τ ρ))))
-> Dict
(Extend ℓ (f (g τ)) (Map f (Map g ρ))
~ Map f (Map g (Extend ℓ τ ρ)))
-> Rec (Map f (Map g (Extend ℓ τ ρ)))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict
(Extend ℓ (f (g τ)) (Map f (Map g ρ))
≈ Map f (Extend ℓ (g τ) (Map g ρ)))
forall k b (f :: k -> b) (ℓ :: Symbol) (τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Map f r) ≈ Map f (Extend ℓ τ r))
mapExtendSwap @f @ℓ @(g τ) @(Map g ρ)
((Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ)) =>
Rec (Map f (Map g (Extend ℓ τ ρ))))
-> Dict (Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ))
-> Rec (Map f (Map g (Extend ℓ τ ρ)))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict (Extend ℓ (g τ) (Map g ρ) ~ Map g (Extend ℓ τ ρ))
forall k b (f :: k -> b) (ℓ :: Symbol) (τ :: k) (r :: Row k).
Dict (Extend ℓ (f τ) (Map f r) ≈ Map f (Extend ℓ τ r))
mapExtendSwap @g @ℓ @τ @ρ
uncompose :: forall f g r . FreeForall r
=> Rec (Map (Compose f g) r) -> Rec (Map f (Map g r))
uncompose :: Rec (Map (Compose f g) r) -> Rec (Map f (Map g r))
uncompose = Forall r Unconstrained1 =>
Rec (Map (Compose f g) r) -> Rec (Map f (Map g r))
forall a b (c :: a -> Constraint) (f :: b -> *) (g :: a -> b)
(r :: Row a).
Forall r c =>
Rec (Map (Compose f g) r) -> Rec (Map f (Map g r))
uncompose' @Unconstrained1 @f @g @r
coerceRec :: forall r1 r2. BiForall r1 r2 Coercible => Rec r1 -> Rec r2
coerceRec :: Rec r1 -> Rec r2
coerceRec = Rec r1 -> Rec r2
forall a b. a -> b
unsafeCoerce
newtype RecPair (ρ1 :: Row *) (ρ2 :: Row *) = RecPair (Rec ρ1, Rec ρ2)
newtype RZipPair (ρ1 :: Row *) (ρ2 :: Row *) = RZipPair { RZipPair ρ1 ρ2 -> Rec (Zip ρ1 ρ2)
unRZipPair :: Rec (Zip ρ1 ρ2) }
zip :: forall r1 r2. FreeBiForall r1 r2 => Rec r1 -> Rec r2 -> Rec (Zip r1 r2)
zip :: Rec r1 -> Rec r2 -> Rec (Zip r1 r2)
zip Rec r1
r1 Rec r2
r2 = RZipPair r1 r2 -> Rec (Zip r1 r2)
forall (ρ1 :: Row *) (ρ2 :: Row *).
RZipPair ρ1 ρ2 -> Rec (Zip ρ1 ρ2)
unRZipPair (RZipPair r1 r2 -> Rec (Zip r1 r2))
-> RZipPair r1 r2 -> Rec (Zip r1 r2)
forall a b. (a -> b) -> a -> b
$ Proxy (Proxy (,), Proxy (,))
-> (RecPair Empty Empty -> RZipPair Empty Empty)
-> (forall (ℓ :: Symbol) τ1 τ2 (ρ1 :: Row *) (ρ2 :: Row *).
(KnownSymbol ℓ, Unconstrained2 τ1 τ2, HasType ℓ τ1 ρ1,
HasType ℓ τ2 ρ2) =>
Label ℓ
-> RecPair ρ1 ρ2 -> (RecPair (ρ1 .- ℓ) (ρ2 .- ℓ), (τ1, τ2)))
-> (forall (ℓ :: Symbol) τ1 τ2 (ρ1 :: Row *) (ρ2 :: Row *).
(KnownSymbol ℓ, Unconstrained2 τ1 τ2, FrontExtends ℓ τ1 ρ1,
FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1),
AllUniqueLabels (Extend ℓ τ2 ρ2)) =>
Label ℓ
-> (RZipPair ρ1 ρ2, (τ1, τ2))
-> RZipPair (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> RecPair r1 r2
-> RZipPair r1 r2
forall k1 k2 (r1 :: Row k1) (r2 :: Row k2)
(c :: k1 -> k2 -> Constraint) (p :: * -> * -> *)
(f :: Row k1 -> Row k2 -> *) (g :: Row k1 -> Row k2 -> *)
(h :: k1 -> k2 -> *).
(BiForall r1 r2 c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty Empty -> g Empty Empty)
-> (forall (ℓ :: Symbol) (τ1 :: k1) (τ2 :: k2) (ρ1 :: Row k1)
(ρ2 :: Row k2).
(KnownSymbol ℓ, c τ1 τ2, HasType ℓ τ1 ρ1, HasType ℓ τ2 ρ2) =>
Label ℓ -> f ρ1 ρ2 -> p (f (ρ1 .- ℓ) (ρ2 .- ℓ)) (h τ1 τ2))
-> (forall (ℓ :: Symbol) (τ1 :: k1) (τ2 :: k2) (ρ1 :: Row k1)
(ρ2 :: Row k2).
(KnownSymbol ℓ, c τ1 τ2, FrontExtends ℓ τ1 ρ1,
FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1),
AllUniqueLabels (Extend ℓ τ2 ρ2)) =>
Label ℓ
-> p (g ρ1 ρ2) (h τ1 τ2) -> g (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> f r1 r2
-> g r1 r2
biMetamorph @_ @_ @r1 @r2 @Unconstrained2 @(,) @RecPair @RZipPair @(,) Proxy (Proxy (,), Proxy (,))
forall k (t :: k). Proxy t
Proxy RecPair Empty Empty -> RZipPair Empty Empty
forall (ρ1 :: Row *) (ρ2 :: Row *) p.
(Zip ρ1 ρ2 ~ Empty) =>
p -> RZipPair ρ1 ρ2
doNil forall (ℓ :: Symbol) τ1 τ2 (ρ1 :: Row *) (ρ2 :: Row *).
(KnownSymbol ℓ, Unconstrained2 τ1 τ2, HasType ℓ τ1 ρ1,
HasType ℓ τ2 ρ2) =>
Label ℓ -> RecPair ρ1 ρ2 -> (RecPair (ρ1 .- ℓ) (ρ2 .- ℓ), (τ1, τ2))
forall (l :: Symbol) (r :: Row *) (r :: Row *).
KnownSymbol l =>
Label l
-> RecPair r r -> (RecPair (r .- l) (r .- l), (r .! l, r .! l))
doUncons forall (ℓ :: Symbol) τ1 τ2 (ρ1 :: Row *) (ρ2 :: Row *).
(KnownSymbol ℓ, Unconstrained2 τ1 τ2, FrontExtends ℓ τ1 ρ1,
FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1),
AllUniqueLabels (Extend ℓ τ2 ρ2)) =>
Label ℓ
-> (RZipPair ρ1 ρ2, (τ1, τ2))
-> RZipPair (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
forall (ℓ :: Symbol) τ1 τ2 (ρ1 :: Row *) (ρ2 :: Row *).
KnownSymbol ℓ =>
Label ℓ
-> (RZipPair ρ1 ρ2, (τ1, τ2))
-> RZipPair (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
doCons (RecPair r1 r2 -> RZipPair r1 r2)
-> RecPair r1 r2 -> RZipPair r1 r2
forall a b. (a -> b) -> a -> b
$ (Rec r1, Rec r2) -> RecPair r1 r2
forall (ρ1 :: Row *) (ρ2 :: Row *).
(Rec ρ1, Rec ρ2) -> RecPair ρ1 ρ2
RecPair (Rec r1
r1, Rec r2
r2)
where
doNil :: p -> RZipPair ρ1 ρ2
doNil p
_ = Rec (Zip ρ1 ρ2) -> RZipPair ρ1 ρ2
forall (ρ1 :: Row *) (ρ2 :: Row *).
Rec (Zip ρ1 ρ2) -> RZipPair ρ1 ρ2
RZipPair Rec (Zip ρ1 ρ2)
Rec Empty
empty
doUncons :: Label l
-> RecPair r r -> (RecPair (r .- l) (r .- l), (r .! l, r .! l))
doUncons Label l
l (RecPair (Rec r
r1, Rec r
r2)) = ((Rec (r .- l), Rec (r .- l)) -> RecPair (r .- l) (r .- l)
forall (ρ1 :: Row *) (ρ2 :: Row *).
(Rec ρ1, Rec ρ2) -> RecPair ρ1 ρ2
RecPair (Label l -> Rec r -> Rec (r .- l)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> Rec (r .- l)
lazyRemove Label l
l Rec r
r1, Label l -> Rec r -> Rec (r .- l)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> Rec (r .- l)
lazyRemove Label l
l Rec r
r2), (Rec r
r1 Rec r -> Label l -> r .! l
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label l
l, Rec r
r2 Rec r -> Label l -> r .! l
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label l
l))
doCons :: forall ℓ τ1 τ2 ρ1 ρ2. (KnownSymbol ℓ)
=> Label ℓ -> (RZipPair ρ1 ρ2, (τ1, τ2)) -> RZipPair (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
doCons :: Label ℓ
-> (RZipPair ρ1 ρ2, (τ1, τ2))
-> RZipPair (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
doCons Label ℓ
l (RZipPair Rec (Zip ρ1 ρ2)
r, (τ1, τ2)
vs) = Rec (Zip (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> RZipPair (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
forall (ρ1 :: Row *) (ρ2 :: Row *).
Rec (Zip ρ1 ρ2) -> RZipPair ρ1 ρ2
RZipPair (Rec (Zip (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> RZipPair (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> Rec (Zip (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> RZipPair (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)
forall a b. (a -> b) -> a -> b
$ Label ℓ
-> (τ1, τ2)
-> Rec (Zip ρ1 ρ2)
-> Rec (Extend ℓ (τ1, τ2) (Zip ρ1 ρ2))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l (τ1, τ2)
vs Rec (Zip ρ1 ρ2)
r
((Extend ℓ (τ1, τ2) (Zip ρ1 ρ2)
~ Zip (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)) =>
Rec (Zip (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)))
-> Dict
(Extend ℓ (τ1, τ2) (Zip ρ1 ρ2)
~ Zip (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
-> Rec (Zip (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict
(Extend ℓ (τ1, τ2) (Zip ρ1 ρ2)
~ Zip (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2))
forall (ℓ :: Symbol) τ1 (r1 :: Row *) τ2 (r2 :: Row *).
Dict
(Extend ℓ (τ1, τ2) (Zip r1 r2)
≈ Zip (Extend ℓ τ1 r1) (Extend ℓ τ2 r2))
zipExtendSwap @ℓ @τ1 @ρ1 @τ2 @ρ2
default' :: forall c ρ. (Forall ρ c, AllUniqueLabels ρ) => (forall a. c a => a) -> Rec ρ
default' :: (forall a. c a => a) -> Rec ρ
default' forall a. c a => a
v = Identity (Rec ρ) -> Rec ρ
forall a. Identity a -> a
runIdentity (Identity (Rec ρ) -> Rec ρ) -> Identity (Rec ρ) -> Rec ρ
forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ c, AllUniqueLabels ρ) =>
(forall a. c a => f a) -> f (Rec ρ)
forall (c :: * -> Constraint) (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ c, AllUniqueLabels ρ) =>
(forall a. c a => f a) -> f (Rec ρ)
defaultA @c ((forall a. c a => Identity a) -> Identity (Rec ρ))
-> (forall a. c a => Identity a) -> Identity (Rec ρ)
forall a b. (a -> b) -> a -> b
$ a -> Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
forall a. c a => a
v
defaultA :: forall c f ρ. (Applicative f, Forall ρ c, AllUniqueLabels ρ)
=> (forall a. c a => f a) -> f (Rec ρ)
defaultA :: (forall a. c a => f a) -> f (Rec ρ)
defaultA forall a. c a => f a
v = forall (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ c, AllUniqueLabels ρ) =>
(forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ)
forall (c :: * -> Constraint) (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ c, AllUniqueLabels ρ) =>
(forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ)
fromLabelsA @c ((forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ))
-> (forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ)
forall a b. (a -> b) -> a -> b
$ f a -> Label l -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure f a
forall a. c a => f a
v
fromLabels :: forall c ρ. (Forall ρ c, AllUniqueLabels ρ)
=> (forall l a. (KnownSymbol l, c a) => Label l -> a) -> Rec ρ
fromLabels :: (forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> a)
-> Rec ρ
fromLabels forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> a
f = Identity (Rec ρ) -> Rec ρ
forall a. Identity a -> a
runIdentity (Identity (Rec ρ) -> Rec ρ) -> Identity (Rec ρ) -> Rec ρ
forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ c, AllUniqueLabels ρ) =>
(forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ)
forall (c :: * -> Constraint) (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ c, AllUniqueLabels ρ) =>
(forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ)
fromLabelsA @c ((forall (l :: Symbol) a.
(KnownSymbol l, c a) =>
Label l -> Identity a)
-> Identity (Rec ρ))
-> (forall (l :: Symbol) a.
(KnownSymbol l, c a) =>
Label l -> Identity a)
-> Identity (Rec ρ)
forall a b. (a -> b) -> a -> b
$ (a -> Identity a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (a -> Identity a) -> (Label l -> a) -> Label l -> Identity a
forall b c a. (b -> c) -> (a -> b) -> a -> c
.) Label l -> a
forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> a
f
fromLabelsA :: forall c f ρ. (Applicative f, Forall ρ c, AllUniqueLabels ρ)
=> (forall l a. (KnownSymbol l, c a) => Label l -> f a) -> f (Rec ρ)
fromLabelsA :: (forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ)
fromLabelsA forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a
mk = Compose f Rec ρ -> f (Rec ρ)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose (Compose f Rec ρ -> f (Rec ρ)) -> Compose f Rec ρ -> f (Rec ρ)
forall a b. (a -> b) -> a -> b
$ Proxy (Proxy Proxy, Proxy Const)
-> (Const () Empty -> Compose f Rec Empty)
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> Const () ρ -> Const (Const () (ρ .- ℓ)) (Proxy τ))
-> (forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ
-> Const (Compose f Rec ρ) (Proxy τ)
-> Compose f Rec (Extend ℓ τ ρ))
-> Const () ρ
-> Compose f Rec ρ
forall k (r :: Row k) (c :: k -> Constraint) (p :: * -> * -> *)
(f :: Row k -> *) (g :: Row k -> *) (h :: k -> *).
(Forall r c, Bifunctor p) =>
Proxy (Proxy h, Proxy p)
-> (f Empty -> g Empty)
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ))
-> (forall (ℓ :: Symbol) (τ :: k) (ρ :: Row k).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ))
-> f r
-> g r
metamorph @_ @ρ @c @Const @(Const ()) @(Compose f Rec) @Proxy Proxy (Proxy Proxy, Proxy Const)
forall k (t :: k). Proxy t
Proxy Const () Empty -> Compose f Rec Empty
forall (f :: * -> *) p. Applicative f => p -> Compose f Rec Empty
doNil forall k k p p (b :: k) (b :: k). p -> p -> Const (Const () b) b
forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, HasType ℓ τ ρ) =>
Label ℓ -> Const () ρ -> Const (Const () (ρ .- ℓ)) (Proxy τ)
doUncons forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ,
AllUniqueLabels (Extend ℓ τ ρ)) =>
Label ℓ
-> Const (Compose f Rec ρ) (Proxy τ)
-> Compose f Rec (Extend ℓ τ ρ)
forall (ℓ :: Symbol) τ (ρ :: Row *).
(KnownSymbol ℓ, c τ) =>
Label ℓ
-> Const (Compose f Rec ρ) (Proxy τ)
-> Compose f Rec (Extend ℓ τ ρ)
doCons (() -> Const () ρ
forall k a (b :: k). a -> Const a b
Const ())
where doNil :: p -> Compose f Rec Empty
doNil p
_ = f (Rec Empty) -> Compose f Rec Empty
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (Rec Empty) -> Compose f Rec Empty)
-> f (Rec Empty) -> Compose f Rec Empty
forall a b. (a -> b) -> a -> b
$ Rec Empty -> f (Rec Empty)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Rec Empty
empty
doUncons :: p -> p -> Const (Const () b) b
doUncons p
_ p
_ = Const () b -> Const (Const () b) b
forall k a (b :: k). a -> Const a b
Const (Const () b -> Const (Const () b) b)
-> Const () b -> Const (Const () b) b
forall a b. (a -> b) -> a -> b
$ () -> Const () b
forall k a (b :: k). a -> Const a b
Const ()
doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ)
=> Label ℓ -> Const (Compose f Rec ρ) (Proxy τ) -> Compose f Rec (Extend ℓ τ ρ)
doCons :: Label ℓ
-> Const (Compose f Rec ρ) (Proxy τ)
-> Compose f Rec (Extend ℓ τ ρ)
doCons Label ℓ
l (Const (Compose f (Rec ρ)
r)) = f (Rec (Extend ℓ τ ρ)) -> Compose f Rec (Extend ℓ τ ρ)
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (f (Rec (Extend ℓ τ ρ)) -> Compose f Rec (Extend ℓ τ ρ))
-> f (Rec (Extend ℓ τ ρ)) -> Compose f Rec (Extend ℓ τ ρ)
forall a b. (a -> b) -> a -> b
$ Label ℓ -> τ -> Rec ρ -> Rec (Extend ℓ τ ρ)
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend Label ℓ
l (τ -> Rec ρ -> Rec (Extend ℓ τ ρ))
-> f τ -> f (Rec ρ -> Rec (Extend ℓ τ ρ))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Label ℓ -> f τ
forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a
mk @ℓ @τ Label ℓ
l f (Rec ρ -> Rec (Extend ℓ τ ρ))
-> f (Rec ρ) -> f (Rec (Extend ℓ τ ρ))
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f (Rec ρ)
r
fromLabelsMapA :: forall c f g ρ. (Applicative f, Forall ρ c, AllUniqueLabels ρ)
=> (forall l a. (KnownSymbol l, c a) => Label l -> f (g a)) -> f (Rec (Map g ρ))
fromLabelsMapA :: (forall (l :: Symbol) (a :: a).
(KnownSymbol l, c a) =>
Label l -> f (g a))
-> f (Rec (Map g ρ))
fromLabelsMapA forall (l :: Symbol) (a :: a).
(KnownSymbol l, c a) =>
Label l -> f (g a)
f = (forall (l :: Symbol) a.
(KnownSymbol l, IsA c g a) =>
Label l -> f a)
-> f (Rec (Map g ρ))
forall (c :: * -> Constraint) (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ c, AllUniqueLabels ρ) =>
(forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ)
fromLabelsA @(IsA c g) @f @(Map g ρ) forall (l :: Symbol) a.
(KnownSymbol l, IsA c g a) =>
Label l -> f a
inner
(Forall (Map g ρ) (IsA c g) => f (Rec (Map g ρ)))
-> (Forall ρ c :- Forall (Map g ρ) (IsA c g)) -> f (Rec (Map g ρ))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Forall ρ c :- Forall (Map g ρ) (IsA c g)
forall k1 k2 (f :: k1 -> k2) (ρ :: Row k1) (c :: k1 -> Constraint).
Forall ρ c :- Forall (Map f ρ) (IsA c f)
mapForall @g @ρ @c
((AllUniqueLabels (Map g ρ) ~ AllUniqueLabels ρ) =>
f (Rec (Map g ρ)))
-> Dict (AllUniqueLabels (Map g ρ) ~ AllUniqueLabels ρ)
-> f (Rec (Map g ρ))
forall (c :: Constraint) e r. HasDict c e => (c => r) -> e -> r
\\ Dict (AllUniqueLabels (Map g ρ) ~ AllUniqueLabels ρ)
forall k1 k2 (f :: k1 -> k2) (r :: Row k1).
Dict (AllUniqueLabels (Map f r) ≈ AllUniqueLabels r)
uniqueMap @g @ρ
where inner :: forall l a. (KnownSymbol l, IsA c g a) => Label l -> f a
inner :: Label l -> f a
inner Label l
l = case IsA c g a => As c g a
forall k k (c :: k -> Constraint) (f :: k -> k) (a :: k).
IsA c f a =>
As c f a
as @c @g @a of As c g a
As -> Label l -> f (g t)
forall (l :: Symbol) (a :: a).
(KnownSymbol l, c a) =>
Label l -> f (g a)
f Label l
l
toDynamicMap :: Forall r Typeable => Rec r -> HashMap Text Dynamic
toDynamicMap :: Rec r -> HashMap Text Dynamic
toDynamicMap = (forall a. Typeable a => a -> Dynamic)
-> Rec r -> HashMap Text Dynamic
forall (c :: * -> Constraint) (r :: Row *) s b.
(IsString s, Eq s, Hashable s, Forall r c) =>
(forall a. c a => a -> b) -> Rec r -> HashMap s b
eraseToHashMap @Typeable @_ @Text @Dynamic forall a. Typeable a => a -> Dynamic
toDyn
fromDynamicMap :: (AllUniqueLabels r, Forall r Typeable)
=> HashMap Text Dynamic -> Maybe (Rec r)
fromDynamicMap :: HashMap Text Dynamic -> Maybe (Rec r)
fromDynamicMap HashMap Text Dynamic
m = forall (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ Typeable, AllUniqueLabels ρ) =>
(forall (l :: Symbol) a.
(KnownSymbol l, Typeable a) =>
Label l -> f a)
-> f (Rec ρ)
forall (c :: * -> Constraint) (f :: * -> *) (ρ :: Row *).
(Applicative f, Forall ρ c, AllUniqueLabels ρ) =>
(forall (l :: Symbol) a. (KnownSymbol l, c a) => Label l -> f a)
-> f (Rec ρ)
fromLabelsA @Typeable
((forall (l :: Symbol) a.
(KnownSymbol l, Typeable a) =>
Label l -> Maybe a)
-> Maybe (Rec r))
-> (forall (l :: Symbol) a.
(KnownSymbol l, Typeable a) =>
Label l -> Maybe a)
-> Maybe (Rec r)
forall a b. (a -> b) -> a -> b
$ \ (Label l -> Text
forall (s :: Symbol). KnownSymbol s => Label s -> Text
toKey -> Text
k) -> Text -> HashMap Text Dynamic -> Maybe Dynamic
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
M.lookup Text
k HashMap Text Dynamic
m Maybe Dynamic -> (Dynamic -> Maybe a) -> Maybe a
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Dynamic -> Maybe a
forall a. Typeable a => Dynamic -> Maybe a
fromDynamic
instance GenericRec r => G.Generic (Rec r) where
type Rep (Rec r) =
G.D1 ('G.MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(G.C1 ('G.MetaCons "Rec" 'G.PrefixI 'True)
(RepRec r))
from :: Rec r -> Rep (Rec r) x
from = M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x
-> M1
D
('MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r))
x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x
-> M1
D
('MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r))
x)
-> (Rec r -> M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x)
-> Rec r
-> M1
D
('MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r))
x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RepRec r x -> M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (RepRec r x -> M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x)
-> (Rec r -> RepRec r x)
-> Rec r
-> M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec r -> RepRec r x
forall (r :: Row *) x. GenericRec r => Rec r -> RepRec r x
fromRec
to :: Rep (Rec r) x -> Rec r
to = RepRec r x -> Rec r
forall (r :: Row *) x. GenericRec r => RepRec r x -> Rec r
toRec (RepRec r x -> Rec r)
-> (M1
D
('MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r))
x
-> RepRec r x)
-> M1
D
('MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r))
x
-> Rec r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x -> RepRec r x
forall i (c :: Meta) k (f :: k -> *) (p :: k). M1 i c f p -> f p
G.unM1 (M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x -> RepRec r x)
-> (M1
D
('MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r))
x
-> M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x)
-> M1
D
('MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r))
x
-> RepRec r x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. M1
D
('MetaData "Rec" "Data.Row.Records" "row-types" 'False)
(M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r))
x
-> M1 C ('MetaCons "Rec" 'PrefixI 'True) (RepRec r) x
forall i (c :: Meta) k (f :: k -> *) (p :: k). M1 i c f p -> f p
G.unM1
class GenericRec r where
type RepRec (r :: Row *) :: * -> *
fromRec :: Rec r -> RepRec r x
toRec :: RepRec r x -> Rec r
instance GenericRec Empty where
type RepRec (R '[]) = G.U1
fromRec :: Rec Empty -> RepRec Empty x
fromRec Rec Empty
_ = RepRec Empty x
forall k (p :: k). U1 p
G.U1
toRec :: RepRec Empty x -> Rec Empty
toRec RepRec Empty x
_ = Rec Empty
empty
instance KnownSymbol name => GenericRec (R '[name :-> t]) where
type RepRec (R (name :-> t ': '[])) = G.S1
('G.MetaSel ('Just name) 'G.NoSourceUnpackedness 'G.NoSourceStrictness 'G.DecidedLazy)
(G.Rec0 t)
fromRec :: Rec ('R '[ name ':-> t]) -> RepRec ('R '[ name ':-> t]) x
fromRec (_ :== a) = K1 R t x
-> M1
S
('MetaSel
('Just name)
'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)
(K1 R t)
x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (t -> K1 R t x
forall k i c (p :: k). c -> K1 i c p
G.K1 t
a)
toRec :: RepRec ('R '[ name ':-> t]) x -> Rec ('R '[ name ':-> t])
toRec (G.M1 (G.K1 a)) = (Label name
forall (s :: Symbol). Label s
Label @name) Label name -> t -> Rec (name .== t)
forall (l :: Symbol) a.
KnownSymbol l =>
Label l -> a -> Rec (l .== a)
:== t
a
instance
( r ~ (name' :-> t' ': r'), GenericRec (R r)
, KnownSymbol name, Extend name t ('R r) ≈ 'R (name :-> t ': r)
) => GenericRec (R (name :-> t ': (name' :-> t' ': r'))) where
type RepRec (R (name :-> t ': (name' :-> t' ': r'))) = (G.S1
('G.MetaSel ('Just name) 'G.NoSourceUnpackedness 'G.NoSourceStrictness 'G.DecidedLazy)
(G.Rec0 t)) G.:*: RepRec (R (name' :-> t' ': r'))
fromRec :: Rec ('R ((name ':-> t) : (name' ':-> t') : r'))
-> RepRec ('R ((name ':-> t) : (name' ':-> t') : r')) x
fromRec Rec ('R ((name ':-> t) : (name' ':-> t') : r'))
r = K1 R t x
-> M1
S
('MetaSel
('Just name)
'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)
(K1 R t)
x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (t -> K1 R t x
forall k i c (p :: k). c -> K1 i c p
G.K1 (Rec ('R ((name ':-> t) : (name' ':-> t') : r'))
r Rec ('R ((name ':-> t) : (name' ':-> t') : r'))
-> Label name -> 'R ((name ':-> t) : (name' ':-> t') : r') .! name
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! Label name
forall (s :: Symbol). Label s
Label @name)) M1
S
('MetaSel
('Just name)
'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)
(K1 R t)
x
-> RepRec ('R ((name' ':-> t') : r')) x
-> (:*:)
(M1
S
('MetaSel
('Just name)
'NoSourceUnpackedness
'NoSourceStrictness
'DecidedLazy)
(K1 R t))
(RepRec ('R ((name' ':-> t') : r')))
x
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
G.:*: Rec ('R ((name' ':-> t') : r'))
-> RepRec ('R ((name' ':-> t') : r')) x
forall (r :: Row *) x. GenericRec r => Rec r -> RepRec r x
fromRec (Label name
-> Rec ('R ((name ':-> t) : (name' ':-> t') : r'))
-> Rec ('R ((name ':-> t) : (name' ':-> t') : r') .- name)
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> Rec r -> Rec (r .- l)
lazyRemove @name Label name
forall (s :: Symbol). Label s
Label Rec ('R ((name ':-> t) : (name' ':-> t') : r'))
r)
toRec :: RepRec ('R ((name ':-> t) : (name' ':-> t') : r')) x
-> Rec ('R ((name ':-> t) : (name' ':-> t') : r'))
toRec (G.M1 (G.K1 a) G.:*: r) = Label name
-> t
-> Rec ('R ((name' ':-> t') : r'))
-> Rec (Extend name t ('R ((name' ':-> t') : r')))
forall a (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Label l -> a -> Rec r -> Rec (Extend l a r)
extend @_ @name @('R (name' :-> t' ': r')) Label name
forall (s :: Symbol). Label s
Label t
a (RepRec ('R ((name' ':-> t') : r')) x
-> Rec ('R ((name' ':-> t') : r'))
forall (r :: Row *) x. GenericRec r => RepRec r x -> Rec r
toRec RepRec ('R ((name' ':-> t') : r')) x
r)
type family NativeRow t where
NativeRow t = NativeRowG (G.Rep t)
type family NativeRowG t where
NativeRowG (G.M1 G.D m cs) = NativeRowG cs
NativeRowG (G.M1 G.C m cs) = NativeRowG cs
NativeRowG G.U1 = Empty
NativeRowG (l G.:*: r) = NativeRowG l .+ NativeRowG r
NativeRowG (G.M1 G.S ('G.MetaSel ('Just name) p s l) (G.Rec0 t)) = name .== t
class FromNativeG a where
fromNative' :: a x -> Rec (NativeRowG a)
instance FromNativeG cs => FromNativeG (G.D1 m cs) where
fromNative' :: D1 m cs x -> Rec (NativeRowG (D1 m cs))
fromNative' (G.M1 cs x
xs) = cs x -> Rec (NativeRowG cs)
forall k (a :: k -> *) (x :: k).
FromNativeG a =>
a x -> Rec (NativeRowG a)
fromNative' cs x
xs
instance FromNativeG cs => FromNativeG (G.C1 m cs) where
fromNative' :: C1 m cs x -> Rec (NativeRowG (C1 m cs))
fromNative' (G.M1 cs x
xs) = cs x -> Rec (NativeRowG cs)
forall k (a :: k -> *) (x :: k).
FromNativeG a =>
a x -> Rec (NativeRowG a)
fromNative' cs x
xs
instance FromNativeG G.U1 where
fromNative' :: U1 x -> Rec (NativeRowG U1)
fromNative' U1 x
G.U1 = Rec Empty
Rec (NativeRowG U1)
empty
instance KnownSymbol name => FromNativeG (G.S1 ('G.MetaSel ('Just name) p s l) (G.Rec0 t)) where
fromNative' :: S1 ('MetaSel ('Just name) p s l) (Rec0 t) x
-> Rec (NativeRowG (S1 ('MetaSel ('Just name) p s l) (Rec0 t)))
fromNative' (G.M1 (G.K1 t
x)) = (Label name
forall (s :: Symbol). Label s
Label @name) Label name -> t -> Rec (name .== t)
forall (l :: Symbol) a.
KnownSymbol l =>
Label l -> a -> Rec (l .== a)
.== t
x
instance (FromNativeG l, FromNativeG r, FreeForall (NativeRowG l)) => FromNativeG (l G.:*: r) where
fromNative' :: (:*:) l r x -> Rec (NativeRowG (l :*: r))
fromNative' (l x
x G.:*: r x
y) = l x -> Rec (NativeRowG l)
forall k (a :: k -> *) (x :: k).
FromNativeG a =>
a x -> Rec (NativeRowG a)
fromNative' @l l x
x Rec (NativeRowG l)
-> Rec (NativeRowG r) -> Rec (NativeRowG l .+ NativeRowG r)
forall (l :: Row *) (r :: Row *).
FreeForall l =>
Rec l -> Rec r -> Rec (l .+ r)
.+ r x -> Rec (NativeRowG r)
forall k (a :: k -> *) (x :: k).
FromNativeG a =>
a x -> Rec (NativeRowG a)
fromNative' @r r x
y
type FromNative t = (G.Generic t, FromNativeG (G.Rep t))
fromNative :: FromNative t => t -> Rec (NativeRow t)
fromNative :: t -> Rec (NativeRow t)
fromNative = Rep t Any -> Rec (NativeRowG (Rep t))
forall k (a :: k -> *) (x :: k).
FromNativeG a =>
a x -> Rec (NativeRowG a)
fromNative' (Rep t Any -> Rec (NativeRowG (Rep t)))
-> (t -> Rep t Any) -> t -> Rec (NativeRowG (Rep t))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. t -> Rep t Any
forall a x. Generic a => a -> Rep a x
G.from
class ToNativeG a where
toNative' :: Rec (NativeRowG a) -> a x
instance ToNativeG cs => ToNativeG (G.D1 m cs) where
toNative' :: Rec (NativeRowG (D1 m cs)) -> D1 m cs x
toNative' Rec (NativeRowG (D1 m cs))
xs = cs x -> D1 m cs x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (cs x -> D1 m cs x) -> cs x -> D1 m cs x
forall a b. (a -> b) -> a -> b
$ Rec (NativeRowG cs) -> cs x
forall k (a :: k -> *) (x :: k).
ToNativeG a =>
Rec (NativeRowG a) -> a x
toNative' Rec (NativeRowG cs)
Rec (NativeRowG (D1 m cs))
xs
instance ToNativeG cs => ToNativeG (G.C1 m cs) where
toNative' :: Rec (NativeRowG (C1 m cs)) -> C1 m cs x
toNative' Rec (NativeRowG (C1 m cs))
xs = cs x -> C1 m cs x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (cs x -> C1 m cs x) -> cs x -> C1 m cs x
forall a b. (a -> b) -> a -> b
$ Rec (NativeRowG cs) -> cs x
forall k (a :: k -> *) (x :: k).
ToNativeG a =>
Rec (NativeRowG a) -> a x
toNative' Rec (NativeRowG cs)
Rec (NativeRowG (C1 m cs))
xs
instance ToNativeG G.U1 where
toNative' :: Rec (NativeRowG U1) -> U1 x
toNative' Rec (NativeRowG U1)
_ = U1 x
forall k (p :: k). U1 p
G.U1
instance (KnownSymbol name) => ToNativeG (G.S1 ('G.MetaSel ('Just name) p s l) (G.Rec0 t)) where
toNative' :: Rec (NativeRowG (S1 ('MetaSel ('Just name) p s l) (Rec0 t)))
-> S1 ('MetaSel ('Just name) p s l) (Rec0 t) x
toNative' Rec (NativeRowG (S1 ('MetaSel ('Just name) p s l) (Rec0 t)))
r = K1 R t x -> S1 ('MetaSel ('Just name) p s l) (Rec0 t) x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (K1 R t x -> S1 ('MetaSel ('Just name) p s l) (Rec0 t) x)
-> K1 R t x -> S1 ('MetaSel ('Just name) p s l) (Rec0 t) x
forall a b. (a -> b) -> a -> b
$ t -> K1 R t x
forall k i c (p :: k). c -> K1 i c p
G.K1 (t -> K1 R t x) -> t -> K1 R t x
forall a b. (a -> b) -> a -> b
$ Rec ('R '[ name ':-> t])
Rec (NativeRowG (S1 ('MetaSel ('Just name) p s l) (Rec0 t)))
r Rec ('R '[ name ':-> t])
-> Label name -> 'R '[ name ':-> t] .! name
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! (Label name
forall (s :: Symbol). Label s
Label @name)
instance (ToNativeG l, ToNativeG r, Disjoint (NativeRowG l) (NativeRowG r))
=> ToNativeG (l G.:*: r) where
toNative' :: Rec (NativeRowG (l :*: r)) -> (:*:) l r x
toNative' Rec (NativeRowG (l :*: r))
r = Rec (NativeRowG l) -> l x
forall k (a :: k -> *) (x :: k).
ToNativeG a =>
Rec (NativeRowG a) -> a x
toNative' Rec (NativeRowG l)
r1 l x -> r x -> (:*:) l r x
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
G.:*: Rec (NativeRowG r) -> r x
forall k (a :: k -> *) (x :: k).
ToNativeG a =>
Rec (NativeRowG a) -> a x
toNative' Rec (NativeRowG r)
r2
where
(r1 :: Rec (NativeRowG l)) :+ (r2 :: Rec (NativeRowG r)) = Rec (NativeRowG l .+ NativeRowG r)
Rec (NativeRowG (l :*: r))
r
type ToNative t = (G.Generic t, ToNativeG (G.Rep t))
toNative :: ToNative t => Rec (NativeRow t) -> t
toNative :: Rec (NativeRow t) -> t
toNative = Rep t Any -> t
forall a x. Generic a => Rep a x -> a
G.to (Rep t Any -> t)
-> (Rec (NativeRowG (Rep t)) -> Rep t Any)
-> Rec (NativeRowG (Rep t))
-> t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec (NativeRowG (Rep t)) -> Rep t Any
forall k (a :: k -> *) (x :: k).
ToNativeG a =>
Rec (NativeRowG a) -> a x
toNative'
class ToNativeGeneralG a ρ where
toNativeGeneral' :: Rec ρ -> a x
instance ToNativeGeneralG cs ρ => ToNativeGeneralG (G.D1 m cs) ρ where
toNativeGeneral' :: Rec ρ -> D1 m cs x
toNativeGeneral' Rec ρ
xs = cs x -> D1 m cs x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (cs x -> D1 m cs x) -> cs x -> D1 m cs x
forall a b. (a -> b) -> a -> b
$ Rec ρ -> cs x
forall k (a :: k -> *) (ρ :: Row *) (x :: k).
ToNativeGeneralG a ρ =>
Rec ρ -> a x
toNativeGeneral' Rec ρ
xs
instance ToNativeGeneralG cs ρ => ToNativeGeneralG (G.C1 m cs) ρ where
toNativeGeneral' :: Rec ρ -> C1 m cs x
toNativeGeneral' Rec ρ
xs = cs x -> C1 m cs x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (cs x -> C1 m cs x) -> cs x -> C1 m cs x
forall a b. (a -> b) -> a -> b
$ Rec ρ -> cs x
forall k (a :: k -> *) (ρ :: Row *) (x :: k).
ToNativeGeneralG a ρ =>
Rec ρ -> a x
toNativeGeneral' Rec ρ
xs
instance ToNativeGeneralG G.U1 ρ where
toNativeGeneral' :: Rec ρ -> U1 x
toNativeGeneral' Rec ρ
_ = U1 x
forall k (p :: k). U1 p
G.U1
instance (KnownSymbol name, ρ .! name ≈ t)
=> ToNativeGeneralG (G.S1 ('G.MetaSel ('Just name) p s l) (G.Rec0 t)) ρ where
toNativeGeneral' :: Rec ρ -> S1 ('MetaSel ('Just name) p s l) (Rec0 t) x
toNativeGeneral' Rec ρ
r = K1 R t x -> S1 ('MetaSel ('Just name) p s l) (Rec0 t) x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
G.M1 (K1 R t x -> S1 ('MetaSel ('Just name) p s l) (Rec0 t) x)
-> K1 R t x -> S1 ('MetaSel ('Just name) p s l) (Rec0 t) x
forall a b. (a -> b) -> a -> b
$ t -> K1 R t x
forall k i c (p :: k). c -> K1 i c p
G.K1 (t -> K1 R t x) -> t -> K1 R t x
forall a b. (a -> b) -> a -> b
$ Rec ρ
r Rec ρ -> Label name -> ρ .! name
forall (l :: Symbol) (r :: Row *).
KnownSymbol l =>
Rec r -> Label l -> r .! l
.! (Label name
forall (s :: Symbol). Label s
Label @name)
instance (ToNativeGeneralG l ρ, ToNativeGeneralG r ρ)
=> ToNativeGeneralG (l G.:*: r) ρ where
toNativeGeneral' :: Rec ρ -> (:*:) l r x
toNativeGeneral' Rec ρ
r = Rec ρ -> l x
forall k (a :: k -> *) (ρ :: Row *) (x :: k).
ToNativeGeneralG a ρ =>
Rec ρ -> a x
toNativeGeneral' Rec ρ
r l x -> r x -> (:*:) l r x
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
G.:*: Rec ρ -> r x
forall k (a :: k -> *) (ρ :: Row *) (x :: k).
ToNativeGeneralG a ρ =>
Rec ρ -> a x
toNativeGeneral' Rec ρ
r
type ToNativeGeneral t ρ = (G.Generic t, ToNativeGeneralG (G.Rep t) ρ)
toNativeGeneral :: ToNativeGeneral t ρ => Rec ρ -> t
toNativeGeneral :: Rec ρ -> t
toNativeGeneral = Rep t Any -> t
forall a x. Generic a => Rep a x -> a
G.to (Rep t Any -> t) -> (Rec ρ -> Rep t Any) -> Rec ρ -> t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rec ρ -> Rep t Any
forall k (a :: k -> *) (ρ :: Row *) (x :: k).
ToNativeGeneralG a ρ =>
Rec ρ -> a x
toNativeGeneral'
instance {-# OVERLAPPING #-}
( KnownSymbol name
, r' .! name ≈ b
, r .! name ≈ a
, r' ~ Modify name b r
, r ~ Modify name a r')
=> HasField name (Rec r) (Rec r') a b where
field :: (a -> f b) -> Rec r -> f (Rec r')
field = Label name -> (a -> f b) -> Rec r -> f (Rec r')
forall (l :: Symbol) (r' :: Row *) b (r :: Row *) a (f :: * -> *).
(KnownSymbol l, (r' .! l) ≈ b, (r .! l) ≈ a, r' ~ Modify l b r,
r ~ Modify l a r', Functor f) =>
Label l -> (a -> f b) -> Rec r -> f (Rec r')
focus (Label name
forall (s :: Symbol). Label s
Label @name)
{-# INLINE field #-}
instance {-# OVERLAPPING #-}
( KnownSymbol name
, r .! name ≈ a
, r ~ Modify name a r)
=> HasField' name (Rec r) a where
field' :: (a -> f a) -> Rec r -> f (Rec r)
field' = Label name -> (a -> f a) -> Rec r -> f (Rec r)
forall (l :: Symbol) (r' :: Row *) b (r :: Row *) a (f :: * -> *).
(KnownSymbol l, (r' .! l) ≈ b, (r .! l) ≈ a, r' ~ Modify l b r,
r ~ Modify l a r', Functor f) =>
Label l -> (a -> f b) -> Rec r -> f (Rec r')
focus (Label name
forall (s :: Symbol). Label s
Label @name)
{-# INLINE field' #-}