module Data.SBV.Examples.BitPrecise.BitTricks where
import Data.SBV
fastMinCorrect :: SInt32 -> SInt32 -> SBool
fastMinCorrect x y = m .== fm
where m = ite (x .< y) x y
fm = y `xor` ((x `xor` y) .&. (-(oneIf (x .< y))));
fastMaxCorrect :: SInt32 -> SInt32 -> SBool
fastMaxCorrect x y = m .== fm
where m = ite (x .< y) y x
fm = x `xor` ((x `xor` y) .&. (-(oneIf (x .< y))));
oppositeSignsCorrect :: SInt32 -> SInt32 -> SBool
oppositeSignsCorrect x y = r .== os
where r = (x .< 0 &&& y .>= 0) ||| (x .>= 0 &&& y .< 0)
os = (x `xor` y) .< 0
conditionalSetClearCorrect :: SBool -> SWord32 -> SWord32 -> SBool
conditionalSetClearCorrect f m w = r .== r'
where r = ite f (w .|. m) (w .&. complement m)
r' = w `xor` ((-(oneIf f) `xor` w) .&. m);
powerOfTwoCorrect :: SWord32 -> SBool
powerOfTwoCorrect v = f .== s
where f = (v ./= 0) &&& ((v .&. (v-1)) .== 0);
powers :: [Word32]
powers = map ((2::Word32)^) [(0::Word32) .. 31]
s = bAny (v .==) $ map literal powers
queries :: IO ()
queries =
let check :: Provable a => String -> a -> IO ()
check w t = do putStr $ "Proving " ++ show w ++ ": "
print =<< prove t
in do check "Fast min " fastMinCorrect
check "Fast max " fastMaxCorrect
check "Opposite signs " oppositeSignsCorrect
check "Conditional set/clear" conditionalSetClearCorrect
check "PowerOfTwo " powerOfTwoCorrect