----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Examples.BitPrecise.PrefixSum -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- -- The PrefixSum algorithm over power-lists and proof of -- the Ladner-Fischer implementation. -- See <http://dl.acm.org/citation.cfm?id=197356> -- and <http://www.cs.utexas.edu/~plaxton/c/337/05f/slides/ParallelRecursion-4.pdf>. ----------------------------------------------------------------------------- {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} module Data.SBV.Examples.BitPrecise.PrefixSum where import Data.SBV import Data.SBV.Internals (runSymbolic) ---------------------------------------------------------------------- -- * Formalizing power-lists ---------------------------------------------------------------------- -- | A poor man's representation of powerlists and -- basic operations on them: <http://dl.acm.org/citation.cfm?id=197356> -- We merely represent power-lists by ordinary lists. type PowerList a = [a] -- | The tie operator, concatenation. tiePL :: PowerList a -> PowerList a -> PowerList a tiePL = (++) -- | The zip operator, zips the power-lists of the same size, returns -- a powerlist of double the size. zipPL :: PowerList a -> PowerList a -> PowerList a zipPL [] [] = [] zipPL (x:xs) (y:ys) = x : y : zipPL xs ys zipPL _ _ = error "zipPL: nonsimilar powerlists received" -- | Inverse of zipping. unzipPL :: PowerList a -> (PowerList a, PowerList a) unzipPL = unzip . chunk2 where chunk2 [] = [] chunk2 (x:y:xs) = (x,y) : chunk2 xs chunk2 _ = error "unzipPL: malformed powerlist" ---------------------------------------------------------------------- -- * Reference prefix-sum implementation ---------------------------------------------------------------------- -- | Reference prefix sum (@ps@) is simply Haskell's @scanl1@ function. ps :: (a, a -> a -> a) -> PowerList a -> PowerList a ps (_, f) = scanl1 f ---------------------------------------------------------------------- -- * The Ladner-Fischer parallel version ---------------------------------------------------------------------- -- | The Ladner-Fischer (@lf@) implementation of prefix-sum. See <http://www.cs.utexas.edu/~plaxton/c/337/05f/slides/ParallelRecursion-4.pdf> -- or pg. 16 of <http://dl.acm.org/citation.cfm?id=197356> lf :: (a, a -> a -> a) -> PowerList a -> PowerList a lf _ [] = error "lf: malformed (empty) powerlist" lf _ [x] = [x] lf (zero, f) pl = zipPL (zipWith f (rsh lfpq) p) lfpq where (p, q) = unzipPL pl pq = zipWith f p q lfpq = lf (zero, f) pq rsh xs = zero : init xs ---------------------------------------------------------------------- -- * Sample proofs for concrete operators ---------------------------------------------------------------------- -- | Correctness theorem, for a powerlist of given size, an associative operator, and its left-unit element. flIsCorrect :: Int -> (forall a. (OrdSymbolic a, Num a, Bits a) => (a, a -> a -> a)) -> Symbolic SBool flIsCorrect n zf = do args :: PowerList SWord32 <- mkForallVars n return $ ps zf args .== lf zf args -- | Proves Ladner-Fischer is equivalent to reference specification for addition. -- @0@ is the left-unit element, and we use a power-list of size @8@. thm1 :: IO ThmResult thm1 = prove $ flIsCorrect 8 (0, (+)) -- | Proves Ladner-Fischer is equivalent to reference specification for the function @max@. -- @0@ is the left-unit element, and we use a power-list of size @16@. thm2 :: IO ThmResult thm2 = prove $ flIsCorrect 16 (0, smax) ---------------------------------------------------------------------- -- * Inspecting symbolic traces ---------------------------------------------------------------------- -- | A symbolic trace can help illustrate the action of Ladner-Fischer. This -- generator produces the actions of Ladner-Fischer for addition, showing how -- the computation proceeds: -- -- >>> ladnerFischerTrace 8 -- INPUTS -- s0 :: SWord8 -- s1 :: SWord8 -- s2 :: SWord8 -- s3 :: SWord8 -- s4 :: SWord8 -- s5 :: SWord8 -- s6 :: SWord8 -- s7 :: SWord8 -- CONSTANTS -- s_2 = False :: Bool -- s_1 = True :: Bool -- TABLES -- ARRAYS -- UNINTERPRETED CONSTANTS -- USER GIVEN CODE SEGMENTS -- AXIOMS -- TACTICS -- GOALS -- DEFINE -- s8 :: SWord8 = s0 + s1 -- s9 :: SWord8 = s2 + s8 -- s10 :: SWord8 = s2 + s3 -- s11 :: SWord8 = s8 + s10 -- s12 :: SWord8 = s4 + s11 -- s13 :: SWord8 = s4 + s5 -- s14 :: SWord8 = s11 + s13 -- s15 :: SWord8 = s6 + s14 -- s16 :: SWord8 = s6 + s7 -- s17 :: SWord8 = s13 + s16 -- s18 :: SWord8 = s11 + s17 -- CONSTRAINTS -- ASSERTIONS -- OUTPUTS -- s0 -- s8 -- s9 -- s11 -- s12 -- s14 -- s15 -- s18 ladnerFischerTrace :: Int -> IO () ladnerFischerTrace n = gen >>= print where gen = runSymbolic (True, defaultSMTCfg) $ do args :: [SWord8] <- mkForallVars n mapM_ output $ lf (0, (+)) args -- | Trace generator for the reference spec. It clearly demonstrates that the reference -- implementation fewer operations, but is not parallelizable at all: -- -- >>> scanlTrace 8 -- INPUTS -- s0 :: SWord8 -- s1 :: SWord8 -- s2 :: SWord8 -- s3 :: SWord8 -- s4 :: SWord8 -- s5 :: SWord8 -- s6 :: SWord8 -- s7 :: SWord8 -- CONSTANTS -- s_2 = False :: Bool -- s_1 = True :: Bool -- TABLES -- ARRAYS -- UNINTERPRETED CONSTANTS -- USER GIVEN CODE SEGMENTS -- AXIOMS -- TACTICS -- GOALS -- DEFINE -- s8 :: SWord8 = s0 + s1 -- s9 :: SWord8 = s2 + s8 -- s10 :: SWord8 = s3 + s9 -- s11 :: SWord8 = s4 + s10 -- s12 :: SWord8 = s5 + s11 -- s13 :: SWord8 = s6 + s12 -- s14 :: SWord8 = s7 + s13 -- CONSTRAINTS -- ASSERTIONS -- OUTPUTS -- s0 -- s8 -- s9 -- s10 -- s11 -- s12 -- s13 -- s14 -- scanlTrace :: Int -> IO () scanlTrace n = gen >>= print where gen = runSymbolic (True, defaultSMTCfg) $ do args :: [SWord8] <- mkForallVars n mapM_ output $ ps (0, (+)) args {-# ANN module ("HLint: ignore Reduce duplication" :: String) #-}