----------------------------------------------------------------------------- -- | -- Module : Documentation.SBV.Examples.BitPrecise.BrokenSearch -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer: erkokl@gmail.com -- Stability : experimental -- -- The classic "binary-searches are broken" example: -- <http://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html> ----------------------------------------------------------------------------- module Documentation.SBV.Examples.BitPrecise.BrokenSearch where import Data.SBV import Data.SBV.Tools.Overflow -- | Model the mid-point computation of the binary search, which is broken due to arithmetic overflow. -- Note how we use the overflow checking variants of the arithmetic operators. We have: -- -- >>> checkArithOverflow midPointBroken -- Documentation/SBV/Examples/BitPrecise/BrokenSearch.hs:33:28:+!: SInt32 addition overflows: Violated. Model: -- low = 2147483583 :: Int32 -- high = 2147483647 :: Int32 -- -- Indeed: -- -- >>> (2147483583 + 2147483647) `div` (2::Int32) -- -33 -- -- giving us a negative mid-point value! midPointBroken :: SInt32 -> SInt32 -> SInt32 midPointBroken low high = (low +! high) /! 2 -- | The correct version of how to compute the mid-point. As expected, this version doesn't have any -- underflow or overflow issues: -- -- >>> checkArithOverflow midPointFixed -- No violations detected. -- -- As expected, the value is computed correctly too: -- -- >>> checkCorrectMidValue midPointFixed -- Q.E.D. midPointFixed :: SInt32 -> SInt32 -> SInt32 midPointFixed low high = low +! ((high -! low) /! 2) -- | Show that the variant suggested by the blog post is good as well: -- -- @mid = ((unsigned int)low + (unsigned int)high) >> 1;@ -- -- In this case the overflow is eliminated by doing the computation at a wider -- range: -- -- >>> checkArithOverflow midPointAlternative -- No violations detected. -- -- And the value computed is indeed correct: -- -- >>> checkCorrectMidValue midPointAlternative -- Q.E.D. midPointAlternative :: SInt32 -> SInt32 -> SInt32 midPointAlternative low high = sFromIntegral ((low' +! high') `shiftR` 1) where low', high' :: SWord32 low' = sFromIntegralChecked low high' = sFromIntegralChecked high ------------------------------------------------------------------------------------- -- * Helpers ------------------------------------------------------------------------------------- -- | A helper predicate to check safety under the conditions that @low@ is at least 0 -- and @high@ is at least @low@. checkArithOverflow :: (SInt32 -> SInt32 -> SInt32) -> IO () checkArithOverflow f = do sr <- safe $ do low <- sInt32 "low" high <- sInt32 "high" constrain $ low .>= 0 constrain $ low .<= high output $ f low high case filter (not . isSafe) sr of [] -> putStrLn "No violations detected." xs -> mapM_ print xs -- | Another helper to show that the result is actually the correct value, if it was done over -- 64-bit integers, which is sufficiently large enough. checkCorrectMidValue :: (SInt32 -> SInt32 -> SInt32) -> IO ThmResult checkCorrectMidValue f = prove $ do low <- sInt32 "low" high <- sInt32 "high" constrain $ low .>= 0 constrain $ low .<= high let low', high' :: SInt64 low' = sFromIntegral low high' = sFromIntegral high mid' = (low' + high') `sDiv` 2 mid = f low high return $ sFromIntegral mid .== mid' {-# ANN module ("HLint: ignore Reduce duplication" :: String) #-}