----------------------------------------------------------------------------- -- | -- Module : Documentation.SBV.Examples.Uninterpreted.Sort -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer: erkokl@gmail.com -- Stability : experimental -- -- Demonstrates uninterpreted sorts, together with axioms. ----------------------------------------------------------------------------- {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveDataTypeable #-} module Documentation.SBV.Examples.Uninterpreted.Sort where import Data.Generics import Data.SBV -- | A new data-type that we expect to use in an uninterpreted fashion -- in the backend SMT solver. Note the custom @deriving@ clause, which -- takes care of most of the boilerplate. The () field is needed so -- SBV will not translate it to an enumerated data-type newtype Q = Q () deriving (Eq, Ord, Data, Read, Show, SymVal, HasKind) -- | Declare an uninterpreted function that works over Q's f :: SBV Q -> SBV Q f = uninterpret "f" -- | A satisfiable example, stating that there is an element of the domain -- 'Q' such that 'f' returns a different element. Note that this is valid only -- when the domain 'Q' has at least two elements. We have: -- -- >>> t1 -- Satisfiable. Model: -- x = Q!val!0 :: Q -- <BLANKLINE> -- f :: Q -> Q -- f _ = Q!val!1 t1 :: IO SatResult t1 = sat $ do x <- free "x" return $ f x ./= x -- | This is a variant on the first example, except we also add an axiom -- for the sort, stating that the domain 'Q' has only one element. In this case -- the problem naturally becomes unsat. We have: -- -- >>> t2 -- Unsatisfiable t2 :: IO SatResult t2 = sat $ do x <- free "x" addAxiom "Q" ["(assert (forall ((x Q) (y Q)) (= x y)))"] return $ f x ./= x