----------------------------------------------------------------------------- -- | -- Module : Documentation.SBV.Examples.Uninterpreted.Deduce -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer: erkokl@gmail.com -- Stability : experimental -- -- Demonstrates uninterpreted sorts and how they can be used for deduction. -- This example is inspired by the discussion at <http://stackoverflow.com/questions/10635783/using-axioms-for-deductions-in-z3>, -- essentially showing how to show the required deduction using SBV. ----------------------------------------------------------------------------- {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveDataTypeable #-} {-# OPTIONS_GHC -Wall -Werror #-} module Documentation.SBV.Examples.Uninterpreted.Deduce where import Data.Generics import Data.SBV -- we will have our own "uninterpreted" functions corresponding -- to not/or/and, so hide their Prelude counterparts. import Prelude hiding (not, or, and) ----------------------------------------------------------------------------- -- * Representing uninterpreted booleans ----------------------------------------------------------------------------- -- | The uninterpreted sort 'B', corresponding to the carrier. -- To prevent SBV from translating it to an enumerated type, we simply attach an unused field newtype B = B () deriving (Eq, Ord, Show, Read, Data, SymVal, HasKind) -- | Handy shortcut for the type of symbolic values over 'B' type SB = SBV B ----------------------------------------------------------------------------- -- * Uninterpreted connectives over 'B' ----------------------------------------------------------------------------- -- | Uninterpreted logical connective 'and' and :: SB -> SB -> SB and = uninterpret "AND" -- | Uninterpreted logical connective 'or' or :: SB -> SB -> SB or = uninterpret "OR" -- | Uninterpreted logical connective 'not' not :: SB -> SB not = uninterpret "NOT" ----------------------------------------------------------------------------- -- * Axioms of the logical system ----------------------------------------------------------------------------- -- | Distributivity of OR over AND, as an axiom in terms of -- the uninterpreted functions we have introduced. Note how -- variables range over the uninterpreted sort 'B'. ax1 :: [String] ax1 = [ "(assert (forall ((p B) (q B) (r B))" , " (= (AND (OR p q) (OR p r))" , " (OR p (AND q r)))))" ] -- | One of De Morgan's laws, again as an axiom in terms -- of our uninterpeted logical connectives. ax2 :: [String] ax2 = [ "(assert (forall ((p B) (q B))" , " (= (NOT (OR p q))" , " (AND (NOT p) (NOT q)))))" ] -- | Double negation axiom, similar to the above. ax3 :: [String] ax3 = ["(assert (forall ((p B)) (= (NOT (NOT p)) p)))"] ----------------------------------------------------------------------------- -- * Demonstrated deduction ----------------------------------------------------------------------------- -- | Proves the equivalence @NOT (p OR (q AND r)) == (NOT p AND NOT q) OR (NOT p AND NOT r)@, -- following from the axioms we have specified above. We have: -- -- >>> test -- Q.E.D. test :: IO ThmResult test = prove $ do addAxiom "OR distributes over AND" ax1 addAxiom "de Morgan" ax2 addAxiom "double negation" ax3 p <- free "p" q <- free "q" r <- free "r" return $ not (p `or` (q `and` r)) .== (not p `and` not q) `or` (not p `and` not r)