{-# LANGUAGE FlexibleInstances #-}
{-# OPTIONS_GHC -Wall -Werror -fno-warn-orphans #-}
module Data.SBV.Core.AlgReals (
AlgReal(..)
, AlgRealPoly(..)
, RationalCV(..)
, RealPoint(..), realPoint
, mkPolyReal
, algRealToSMTLib2
, algRealToHaskell
, algRealToRational
, mergeAlgReals
, isExactRational
, algRealStructuralEqual
, algRealStructuralCompare
)
where
import Data.Char (isDigit)
import Data.List (sortBy, isPrefixOf, partition)
import Data.Ratio ((%), numerator, denominator)
import Data.Function (on)
import System.Random
import Test.QuickCheck (Arbitrary(..))
import Numeric (readSigned, readFloat)
data RealPoint a = OpenPoint a
| ClosedPoint a
deriving (Int -> RealPoint a -> ShowS
[RealPoint a] -> ShowS
RealPoint a -> String
(Int -> RealPoint a -> ShowS)
-> (RealPoint a -> String)
-> ([RealPoint a] -> ShowS)
-> Show (RealPoint a)
forall a. Show a => Int -> RealPoint a -> ShowS
forall a. Show a => [RealPoint a] -> ShowS
forall a. Show a => RealPoint a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [RealPoint a] -> ShowS
$cshowList :: forall a. Show a => [RealPoint a] -> ShowS
show :: RealPoint a -> String
$cshow :: forall a. Show a => RealPoint a -> String
showsPrec :: Int -> RealPoint a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> RealPoint a -> ShowS
Show, RealPoint a -> RealPoint a -> Bool
(RealPoint a -> RealPoint a -> Bool)
-> (RealPoint a -> RealPoint a -> Bool) -> Eq (RealPoint a)
forall a. Eq a => RealPoint a -> RealPoint a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: RealPoint a -> RealPoint a -> Bool
$c/= :: forall a. Eq a => RealPoint a -> RealPoint a -> Bool
== :: RealPoint a -> RealPoint a -> Bool
$c== :: forall a. Eq a => RealPoint a -> RealPoint a -> Bool
Eq, Eq (RealPoint a)
Eq (RealPoint a)
-> (RealPoint a -> RealPoint a -> Ordering)
-> (RealPoint a -> RealPoint a -> Bool)
-> (RealPoint a -> RealPoint a -> Bool)
-> (RealPoint a -> RealPoint a -> Bool)
-> (RealPoint a -> RealPoint a -> Bool)
-> (RealPoint a -> RealPoint a -> RealPoint a)
-> (RealPoint a -> RealPoint a -> RealPoint a)
-> Ord (RealPoint a)
RealPoint a -> RealPoint a -> Bool
RealPoint a -> RealPoint a -> Ordering
RealPoint a -> RealPoint a -> RealPoint a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall a. Ord a => Eq (RealPoint a)
forall a. Ord a => RealPoint a -> RealPoint a -> Bool
forall a. Ord a => RealPoint a -> RealPoint a -> Ordering
forall a. Ord a => RealPoint a -> RealPoint a -> RealPoint a
min :: RealPoint a -> RealPoint a -> RealPoint a
$cmin :: forall a. Ord a => RealPoint a -> RealPoint a -> RealPoint a
max :: RealPoint a -> RealPoint a -> RealPoint a
$cmax :: forall a. Ord a => RealPoint a -> RealPoint a -> RealPoint a
>= :: RealPoint a -> RealPoint a -> Bool
$c>= :: forall a. Ord a => RealPoint a -> RealPoint a -> Bool
> :: RealPoint a -> RealPoint a -> Bool
$c> :: forall a. Ord a => RealPoint a -> RealPoint a -> Bool
<= :: RealPoint a -> RealPoint a -> Bool
$c<= :: forall a. Ord a => RealPoint a -> RealPoint a -> Bool
< :: RealPoint a -> RealPoint a -> Bool
$c< :: forall a. Ord a => RealPoint a -> RealPoint a -> Bool
compare :: RealPoint a -> RealPoint a -> Ordering
$ccompare :: forall a. Ord a => RealPoint a -> RealPoint a -> Ordering
$cp1Ord :: forall a. Ord a => Eq (RealPoint a)
Ord)
realPoint :: RealPoint a -> a
realPoint :: RealPoint a -> a
realPoint (OpenPoint a
a) = a
a
realPoint (ClosedPoint a
a) = a
a
data AlgReal = AlgRational Bool Rational
| AlgPolyRoot (Integer, AlgRealPoly) (Maybe String)
| AlgInterval (RealPoint Rational) (RealPoint Rational)
isExactRational :: AlgReal -> Bool
isExactRational :: AlgReal -> Bool
isExactRational (AlgRational Bool
True Rational
_) = Bool
True
isExactRational AlgReal
_ = Bool
False
newtype AlgRealPoly = AlgRealPoly [(Integer, Integer)]
deriving (AlgRealPoly -> AlgRealPoly -> Bool
(AlgRealPoly -> AlgRealPoly -> Bool)
-> (AlgRealPoly -> AlgRealPoly -> Bool) -> Eq AlgRealPoly
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: AlgRealPoly -> AlgRealPoly -> Bool
$c/= :: AlgRealPoly -> AlgRealPoly -> Bool
== :: AlgRealPoly -> AlgRealPoly -> Bool
$c== :: AlgRealPoly -> AlgRealPoly -> Bool
Eq, Eq AlgRealPoly
Eq AlgRealPoly
-> (AlgRealPoly -> AlgRealPoly -> Ordering)
-> (AlgRealPoly -> AlgRealPoly -> Bool)
-> (AlgRealPoly -> AlgRealPoly -> Bool)
-> (AlgRealPoly -> AlgRealPoly -> Bool)
-> (AlgRealPoly -> AlgRealPoly -> Bool)
-> (AlgRealPoly -> AlgRealPoly -> AlgRealPoly)
-> (AlgRealPoly -> AlgRealPoly -> AlgRealPoly)
-> Ord AlgRealPoly
AlgRealPoly -> AlgRealPoly -> Bool
AlgRealPoly -> AlgRealPoly -> Ordering
AlgRealPoly -> AlgRealPoly -> AlgRealPoly
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: AlgRealPoly -> AlgRealPoly -> AlgRealPoly
$cmin :: AlgRealPoly -> AlgRealPoly -> AlgRealPoly
max :: AlgRealPoly -> AlgRealPoly -> AlgRealPoly
$cmax :: AlgRealPoly -> AlgRealPoly -> AlgRealPoly
>= :: AlgRealPoly -> AlgRealPoly -> Bool
$c>= :: AlgRealPoly -> AlgRealPoly -> Bool
> :: AlgRealPoly -> AlgRealPoly -> Bool
$c> :: AlgRealPoly -> AlgRealPoly -> Bool
<= :: AlgRealPoly -> AlgRealPoly -> Bool
$c<= :: AlgRealPoly -> AlgRealPoly -> Bool
< :: AlgRealPoly -> AlgRealPoly -> Bool
$c< :: AlgRealPoly -> AlgRealPoly -> Bool
compare :: AlgRealPoly -> AlgRealPoly -> Ordering
$ccompare :: AlgRealPoly -> AlgRealPoly -> Ordering
$cp1Ord :: Eq AlgRealPoly
Ord)
mkPolyReal :: Either (Bool, String) (Integer, [(Integer, Integer)]) -> AlgReal
mkPolyReal :: Either (Bool, String) (Integer, [(Integer, Integer)]) -> AlgReal
mkPolyReal (Left (Bool
exact, String
str))
= case (String
str, (Char -> Bool) -> String -> (String, String)
forall a. (a -> Bool) -> [a] -> ([a], [a])
break (Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
== Char
'.') String
str) of
(String
"", (String, String)
_) -> Bool -> Rational -> AlgReal
AlgRational Bool
exact Rational
0
(String
_, (String
x, Char
'.':String
y)) | (Char -> Bool) -> String -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Char -> Bool
isDigit (String
x String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
y) -> Bool -> Rational -> AlgReal
AlgRational Bool
exact (String -> Integer
forall a. Read a => String -> a
read (String
xString -> ShowS
forall a. [a] -> [a] -> [a]
++String
y) Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% (Integer
10 Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ String -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length String
y))
(String
_, (String
x, String
"")) | (Char -> Bool) -> String -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Char -> Bool
isDigit String
x -> Bool -> Rational -> AlgReal
AlgRational Bool
exact (String -> Integer
forall a. Read a => String -> a
read String
x Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% Integer
1)
(String, (String, String))
_ -> String -> AlgReal
forall a. HasCallStack => String -> a
error (String -> AlgReal) -> String -> AlgReal
forall a b. (a -> b) -> a -> b
$ [String] -> String
unlines [ String
"*** Data.SBV.mkPolyReal: Unable to read a number from:"
, String
"***"
, String
"*** " String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
str
, String
"***"
, String
"*** Please report this as a bug."
]
mkPolyReal (Right (Integer
k, [(Integer, Integer)]
coeffs))
= (Integer, AlgRealPoly) -> Maybe String -> AlgReal
AlgPolyRoot (Integer
k, [(Integer, Integer)] -> AlgRealPoly
AlgRealPoly ([(Integer, Integer)] -> [(Integer, Integer)]
normalize [(Integer, Integer)]
coeffs)) Maybe String
forall a. Maybe a
Nothing
where normalize :: [(Integer, Integer)] -> [(Integer, Integer)]
normalize :: [(Integer, Integer)] -> [(Integer, Integer)]
normalize = [(Integer, Integer)] -> [(Integer, Integer)]
forall b a. (Eq b, Num a) => [(a, b)] -> [(a, b)]
merge ([(Integer, Integer)] -> [(Integer, Integer)])
-> ([(Integer, Integer)] -> [(Integer, Integer)])
-> [(Integer, Integer)]
-> [(Integer, Integer)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Integer, Integer) -> (Integer, Integer) -> Ordering)
-> [(Integer, Integer)] -> [(Integer, Integer)]
forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy ((Integer -> Integer -> Ordering) -> Integer -> Integer -> Ordering
forall a b c. (a -> b -> c) -> b -> a -> c
flip Integer -> Integer -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Integer -> Integer -> Ordering)
-> ((Integer, Integer) -> Integer)
-> (Integer, Integer)
-> (Integer, Integer)
-> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` (Integer, Integer) -> Integer
forall a b. (a, b) -> b
snd)
merge :: [(a, b)] -> [(a, b)]
merge [] = []
merge [(a, b)
x] = [(a, b)
x]
merge ((a
a, b
b):r :: [(a, b)]
r@((a
c, b
d):[(a, b)]
xs))
| b
b b -> b -> Bool
forall a. Eq a => a -> a -> Bool
== b
d = [(a, b)] -> [(a, b)]
merge ((a
aa -> a -> a
forall a. Num a => a -> a -> a
+a
c, b
b)(a, b) -> [(a, b)] -> [(a, b)]
forall a. a -> [a] -> [a]
:[(a, b)]
xs)
| Bool
True = (a
a, b
b) (a, b) -> [(a, b)] -> [(a, b)]
forall a. a -> [a] -> [a]
: [(a, b)] -> [(a, b)]
merge [(a, b)]
r
instance Show AlgRealPoly where
show :: AlgRealPoly -> String
show (AlgRealPoly [(Integer, Integer)]
xs) = ShowS
chkEmpty ([String] -> String
join ([[String]] -> [String]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [(Integer, Integer) -> [String]
forall a a.
(Eq a, Eq a, Num a, Num a, Show a, Show a) =>
(a, a) -> [String]
term (Integer, Integer)
p | p :: (Integer, Integer)
p@(Integer
_, Integer
x) <- [(Integer, Integer)]
xs, Integer
x Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
0])) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
" = " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> String
forall a. Show a => a -> String
show Integer
c
where c :: Integer
c = -Integer
1 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* [Integer] -> Integer
forall a. [a] -> a
head ([Integer
k | (Integer
k, Integer
0) <- [(Integer, Integer)]
xs] [Integer] -> [Integer] -> [Integer]
forall a. [a] -> [a] -> [a]
++ [Integer
0])
term :: (a, a) -> [String]
term ( a
0, a
_) = []
term ( a
1, a
1) = [ String
"x"]
term ( a
1, a
p) = [ String
"x^" String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show a
p]
term (-1, a
1) = [String
"-x"]
term (-1, a
p) = [String
"-x^" String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show a
p]
term (a
k, a
1) = [a -> String
forall a. Show a => a -> String
show a
k String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"x"]
term (a
k, a
p) = [a -> String
forall a. Show a => a -> String
show a
k String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"x^" String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show a
p]
join :: [String] -> String
join [] = String
""
join (String
k:[String]
ks) = String
k String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
s String -> ShowS
forall a. [a] -> [a] -> [a]
++ [String] -> String
join [String]
ks
where s :: String
s = case [String]
ks of
[] -> String
""
(String
y:[String]
_) | String
"-" String -> String -> Bool
forall a. Eq a => [a] -> [a] -> Bool
`isPrefixOf` String
y -> String
""
| String
"+" String -> String -> Bool
forall a. Eq a => [a] -> [a] -> Bool
`isPrefixOf` String
y -> String
""
| Bool
True -> String
"+"
chkEmpty :: ShowS
chkEmpty String
s = if String -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null String
s then String
"0" else String
s
instance Show AlgReal where
show :: AlgReal -> String
show (AlgRational Bool
exact Rational
a) = Bool -> Rational -> String
showRat Bool
exact Rational
a
show (AlgPolyRoot (Integer
i, AlgRealPoly
p) Maybe String
mbApprox) = String
"root(" String -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> String
forall a. Show a => a -> String
show Integer
i String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
", " String -> ShowS
forall a. [a] -> [a] -> [a]
++ AlgRealPoly -> String
forall a. Show a => a -> String
show AlgRealPoly
p String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
")" String -> ShowS
forall a. [a] -> [a] -> [a]
++ String -> ShowS -> Maybe String -> String
forall b a. b -> (a -> b) -> Maybe a -> b
maybe String
"" ShowS
app Maybe String
mbApprox
where app :: ShowS
app String
v | String -> Char
forall a. [a] -> a
last String
v Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
== Char
'?' = String
" = " String -> ShowS
forall a. [a] -> [a] -> [a]
++ ShowS
forall a. [a] -> [a]
init String
v String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"..."
| Bool
True = String
" = " String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
v
show (AlgInterval RealPoint Rational
a RealPoint Rational
b) = case (RealPoint Rational
a, RealPoint Rational
b) of
(OpenPoint Rational
l, OpenPoint Rational
h) -> String
"(" String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
l String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
", " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
h String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
")"
(OpenPoint Rational
l, ClosedPoint Rational
h) -> String
"(" String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
l String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
", " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
h String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"]"
(ClosedPoint Rational
l, OpenPoint Rational
h) -> String
"[" String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
l String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
", " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
h String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
")"
(ClosedPoint Rational
l, ClosedPoint Rational
h) -> String
"[" String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
l String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
", " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
h String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"]"
lift1 :: String -> (Rational -> Rational) -> AlgReal -> AlgReal
lift1 :: String -> (Rational -> Rational) -> AlgReal -> AlgReal
lift1 String
_ Rational -> Rational
o (AlgRational Bool
e Rational
a) = Bool -> Rational -> AlgReal
AlgRational Bool
e (Rational -> Rational
o Rational
a)
lift1 String
nm Rational -> Rational
_ AlgReal
a = String -> AlgReal
forall a. HasCallStack => String -> a
error (String -> AlgReal) -> String -> AlgReal
forall a b. (a -> b) -> a -> b
$ String
"AlgReal." String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
nm String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
": unsupported argument: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ AlgReal -> String
forall a. Show a => a -> String
show AlgReal
a
lift2 :: String -> (Rational -> Rational -> Rational) -> AlgReal -> AlgReal -> AlgReal
lift2 :: String
-> (Rational -> Rational -> Rational)
-> AlgReal
-> AlgReal
-> AlgReal
lift2 String
_ Rational -> Rational -> Rational
o (AlgRational Bool
True Rational
a) (AlgRational Bool
True Rational
b) = Bool -> Rational -> AlgReal
AlgRational Bool
True (Rational
a Rational -> Rational -> Rational
`o` Rational
b)
lift2 String
nm Rational -> Rational -> Rational
_ AlgReal
a AlgReal
b = String -> AlgReal
forall a. HasCallStack => String -> a
error (String -> AlgReal) -> String -> AlgReal
forall a b. (a -> b) -> a -> b
$ String
"AlgReal." String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
nm String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
": unsupported arguments: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ (AlgReal, AlgReal) -> String
forall a. Show a => a -> String
show (AlgReal
a, AlgReal
b)
instance Eq AlgReal where
AlgRational Bool
True Rational
a == :: AlgReal -> AlgReal -> Bool
== AlgRational Bool
True Rational
b = Rational
a Rational -> Rational -> Bool
forall a. Eq a => a -> a -> Bool
== Rational
b
AlgReal
a == AlgReal
b = String -> Bool
forall a. HasCallStack => String -> a
error (String -> Bool) -> String -> Bool
forall a b. (a -> b) -> a -> b
$ String
"AlgReal.==: unsupported arguments: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ (AlgReal, AlgReal) -> String
forall a. Show a => a -> String
show (AlgReal
a, AlgReal
b)
instance Ord AlgReal where
AlgRational Bool
True Rational
a compare :: AlgReal -> AlgReal -> Ordering
`compare` AlgRational Bool
True Rational
b = Rational
a Rational -> Rational -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` Rational
b
AlgReal
a `compare` AlgReal
b = String -> Ordering
forall a. HasCallStack => String -> a
error (String -> Ordering) -> String -> Ordering
forall a b. (a -> b) -> a -> b
$ String
"AlgReal.compare: unsupported arguments: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ (AlgReal, AlgReal) -> String
forall a. Show a => a -> String
show (AlgReal
a, AlgReal
b)
algRealStructuralEqual :: AlgReal -> AlgReal -> Bool
AlgRational Bool
a Rational
b algRealStructuralEqual :: AlgReal -> AlgReal -> Bool
`algRealStructuralEqual` AlgRational Bool
c Rational
d = (Bool
a, Rational
b) (Bool, Rational) -> (Bool, Rational) -> Bool
forall a. Eq a => a -> a -> Bool
== (Bool
c, Rational
d)
AlgPolyRoot (Integer, AlgRealPoly)
a Maybe String
b `algRealStructuralEqual` AlgPolyRoot (Integer, AlgRealPoly)
c Maybe String
d = ((Integer, AlgRealPoly)
a, Maybe String
b) ((Integer, AlgRealPoly), Maybe String)
-> ((Integer, AlgRealPoly), Maybe String) -> Bool
forall a. Eq a => a -> a -> Bool
== ((Integer, AlgRealPoly)
c, Maybe String
d)
AlgReal
_ `algRealStructuralEqual` AlgReal
_ = Bool
False
algRealStructuralCompare :: AlgReal -> AlgReal -> Ordering
AlgRational Bool
a Rational
b algRealStructuralCompare :: AlgReal -> AlgReal -> Ordering
`algRealStructuralCompare` AlgRational Bool
c Rational
d = (Bool
a, Rational
b) (Bool, Rational) -> (Bool, Rational) -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` (Bool
c, Rational
d)
AlgRational Bool
_ Rational
_ `algRealStructuralCompare` AlgPolyRoot (Integer, AlgRealPoly)
_ Maybe String
_ = Ordering
LT
AlgRational Bool
_ Rational
_ `algRealStructuralCompare` AlgInterval RealPoint Rational
_ RealPoint Rational
_ = Ordering
LT
AlgPolyRoot (Integer, AlgRealPoly)
_ Maybe String
_ `algRealStructuralCompare` AlgRational Bool
_ Rational
_ = Ordering
GT
AlgPolyRoot (Integer, AlgRealPoly)
a Maybe String
b `algRealStructuralCompare` AlgPolyRoot (Integer, AlgRealPoly)
c Maybe String
d = ((Integer, AlgRealPoly)
a, Maybe String
b) ((Integer, AlgRealPoly), Maybe String)
-> ((Integer, AlgRealPoly), Maybe String) -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` ((Integer, AlgRealPoly)
c, Maybe String
d)
AlgPolyRoot (Integer, AlgRealPoly)
_ Maybe String
_ `algRealStructuralCompare` AlgInterval RealPoint Rational
_ RealPoint Rational
_ = Ordering
LT
AlgInterval RealPoint Rational
_ RealPoint Rational
_ `algRealStructuralCompare` AlgRational Bool
_ Rational
_ = Ordering
GT
AlgInterval RealPoint Rational
_ RealPoint Rational
_ `algRealStructuralCompare` AlgPolyRoot (Integer, AlgRealPoly)
_ Maybe String
_ = Ordering
GT
AlgInterval RealPoint Rational
a RealPoint Rational
b `algRealStructuralCompare` AlgInterval RealPoint Rational
c RealPoint Rational
d = (RealPoint Rational
a, RealPoint Rational
b) (RealPoint Rational, RealPoint Rational)
-> (RealPoint Rational, RealPoint Rational) -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` (RealPoint Rational
c, RealPoint Rational
d)
instance Num AlgReal where
+ :: AlgReal -> AlgReal -> AlgReal
(+) = String
-> (Rational -> Rational -> Rational)
-> AlgReal
-> AlgReal
-> AlgReal
lift2 String
"+" Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
(+)
* :: AlgReal -> AlgReal -> AlgReal
(*) = String
-> (Rational -> Rational -> Rational)
-> AlgReal
-> AlgReal
-> AlgReal
lift2 String
"*" Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
(*)
(-) = String
-> (Rational -> Rational -> Rational)
-> AlgReal
-> AlgReal
-> AlgReal
lift2 String
"-" (-)
negate :: AlgReal -> AlgReal
negate = String -> (Rational -> Rational) -> AlgReal -> AlgReal
lift1 String
"negate" Rational -> Rational
forall a. Num a => a -> a
negate
abs :: AlgReal -> AlgReal
abs = String -> (Rational -> Rational) -> AlgReal -> AlgReal
lift1 String
"abs" Rational -> Rational
forall a. Num a => a -> a
abs
signum :: AlgReal -> AlgReal
signum = String -> (Rational -> Rational) -> AlgReal -> AlgReal
lift1 String
"signum" Rational -> Rational
forall a. Num a => a -> a
signum
fromInteger :: Integer -> AlgReal
fromInteger = Bool -> Rational -> AlgReal
AlgRational Bool
True (Rational -> AlgReal)
-> (Integer -> Rational) -> Integer -> AlgReal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Rational
forall a. Num a => Integer -> a
fromInteger
instance Fractional AlgReal where
(AlgRational Bool
True Rational
_) / :: AlgReal -> AlgReal -> AlgReal
/ (AlgRational Bool
True Rational
b) | Rational
b Rational -> Rational -> Bool
forall a. Eq a => a -> a -> Bool
== Rational
0 = AlgReal
0
AlgReal
a / AlgReal
b = String
-> (Rational -> Rational -> Rational)
-> AlgReal
-> AlgReal
-> AlgReal
lift2 String
"/" Rational -> Rational -> Rational
forall a. Fractional a => a -> a -> a
(/) AlgReal
a AlgReal
b
fromRational :: Rational -> AlgReal
fromRational = Bool -> Rational -> AlgReal
AlgRational Bool
True
instance Real AlgReal where
toRational :: AlgReal -> Rational
toRational (AlgRational Bool
True Rational
v) = Rational
v
toRational AlgReal
x = String -> Rational
forall a. HasCallStack => String -> a
error (String -> Rational) -> String -> Rational
forall a b. (a -> b) -> a -> b
$ String
"AlgReal.toRational: Argument cannot be represented as a rational value: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ AlgReal -> String
algRealToHaskell AlgReal
x
instance Random Rational where
random :: g -> (Rational, g)
random g
g = (Integer
a Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% Integer
b', g
g'')
where (Integer
a, g
g') = g -> (Integer, g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g
(Integer
b, g
g'') = g -> (Integer, g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g'
b' :: Integer
b' = if Integer
0 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
b then Integer
b else Integer
1 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
b
randomR :: (Rational, Rational) -> g -> (Rational, g)
randomR (Rational
l, Rational
h) g
g = (Rational
r Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
* Rational
d Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
+ Rational
l, g
g'')
where (Integer
b, g
g') = g -> (Integer, g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g
b' :: Integer
b' = if Integer
0 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
b then Integer
b else Integer
1 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
b
(Integer
a, g
g'') = (Integer, Integer) -> g -> (Integer, g)
forall a g. (Random a, RandomGen g) => (a, a) -> g -> (a, g)
randomR (Integer
0, Integer
b') g
g'
r :: Rational
r = Integer
a Integer -> Integer -> Rational
forall a. Integral a => a -> a -> Ratio a
% Integer
b'
d :: Rational
d = Rational
h Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
- Rational
l
instance Random AlgReal where
random :: g -> (AlgReal, g)
random g
g = let (Rational
a, g
g') = g -> (Rational, g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g in (Bool -> Rational -> AlgReal
AlgRational Bool
True Rational
a, g
g')
randomR :: (AlgReal, AlgReal) -> g -> (AlgReal, g)
randomR (AlgRational Bool
True Rational
l, AlgRational Bool
True Rational
h) g
g = let (Rational
a, g
g') = (Rational, Rational) -> g -> (Rational, g)
forall a g. (Random a, RandomGen g) => (a, a) -> g -> (a, g)
randomR (Rational
l, Rational
h) g
g in (Bool -> Rational -> AlgReal
AlgRational Bool
True Rational
a, g
g')
randomR (AlgReal, AlgReal)
lh g
_ = String -> (AlgReal, g)
forall a. HasCallStack => String -> a
error (String -> (AlgReal, g)) -> String -> (AlgReal, g)
forall a b. (a -> b) -> a -> b
$ String
"AlgReal.randomR: unsupported bounds: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ (AlgReal, AlgReal) -> String
forall a. Show a => a -> String
show (AlgReal, AlgReal)
lh
algRealToSMTLib2 :: AlgReal -> String
algRealToSMTLib2 :: AlgReal -> String
algRealToSMTLib2 (AlgRational Bool
True Rational
r)
| Integer
m Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 = String
"0.0"
| Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0 = String
"(- (/ " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> String
forall a. Show a => a -> String
show (Integer -> Integer
forall a. Num a => a -> a
abs Integer
m) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
".0 " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> String
forall a. Show a => a -> String
show Integer
n String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
".0))"
| Bool
True = String
"(/ " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> String
forall a. Show a => a -> String
show Integer
m String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
".0 " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> String
forall a. Show a => a -> String
show Integer
n String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
".0)"
where (Integer
m, Integer
n) = (Rational -> Integer
forall a. Ratio a -> a
numerator Rational
r, Rational -> Integer
forall a. Ratio a -> a
denominator Rational
r)
algRealToSMTLib2 r :: AlgReal
r@(AlgRational Bool
False Rational
_)
= ShowS
forall a. HasCallStack => String -> a
error ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String
"SBV: Unexpected inexact rational to be converted to SMTLib2: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ AlgReal -> String
forall a. Show a => a -> String
show AlgReal
r
algRealToSMTLib2 (AlgPolyRoot (Integer
i, AlgRealPoly [(Integer, Integer)]
xs) Maybe String
_) = String
"(root-obj (+ " String -> ShowS
forall a. [a] -> [a] -> [a]
++ [String] -> String
unwords (((Integer, Integer) -> [String])
-> [(Integer, Integer)] -> [String]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Integer, Integer) -> [String]
forall a a.
(Eq a, Num a, Num a, Ord a, Show a, Show a) =>
(a, a) -> [String]
term [(Integer, Integer)]
xs) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
") " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Integer -> String
forall a. Show a => a -> String
show Integer
i String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
")"
where term :: (a, a) -> [String]
term (a
0, a
_) = []
term (a
k, a
0) = [a -> String
forall a. (Ord a, Num a, Show a) => a -> String
coeff a
k]
term (a
1, a
1) = [String
"x"]
term (a
1, a
p) = [String
"(^ x " String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show a
p String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
")"]
term (a
k, a
1) = [String
"(* " String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. (Ord a, Num a, Show a) => a -> String
coeff a
k String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
" x)"]
term (a
k, a
p) = [String
"(* " String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. (Ord a, Num a, Show a) => a -> String
coeff a
k String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
" (^ x " String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show a
p String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"))"]
coeff :: a -> String
coeff a
n | a
n a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< a
0 = String
"(- " String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show (a -> a
forall a. Num a => a -> a
abs a
n) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
")"
| Bool
True = a -> String
forall a. Show a => a -> String
show a
n
algRealToSMTLib2 r :: AlgReal
r@AlgInterval{}
= ShowS
forall a. HasCallStack => String -> a
error ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String
"SBV: Unexpected inexact rational to be converted to SMTLib2: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ AlgReal -> String
forall a. Show a => a -> String
show AlgReal
r
algRealToHaskell :: AlgReal -> String
algRealToHaskell :: AlgReal -> String
algRealToHaskell (AlgRational Bool
True Rational
r) = String
"((" String -> ShowS
forall a. [a] -> [a] -> [a]
++ Rational -> String
forall a. Show a => a -> String
show Rational
r String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
") :: Rational)"
algRealToHaskell AlgReal
r = ShowS
forall a. HasCallStack => String -> a
error ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ [String] -> String
unlines [ String
""
, String
"SBV.algRealToHaskell: Unsupported argument:"
, String
""
, String
" " String -> ShowS
forall a. [a] -> [a] -> [a]
++ AlgReal -> String
forall a. Show a => a -> String
show AlgReal
r
, String
""
, String
"represents an irrational number, and cannot be converted to a Haskell value."
]
data RationalCV = RatIrreducible AlgReal
| RatExact Rational
| RatApprox Rational
| RatInterval (RealPoint Rational) (RealPoint Rational)
deriving Int -> RationalCV -> ShowS
[RationalCV] -> ShowS
RationalCV -> String
(Int -> RationalCV -> ShowS)
-> (RationalCV -> String)
-> ([RationalCV] -> ShowS)
-> Show RationalCV
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [RationalCV] -> ShowS
$cshowList :: [RationalCV] -> ShowS
show :: RationalCV -> String
$cshow :: RationalCV -> String
showsPrec :: Int -> RationalCV -> ShowS
$cshowsPrec :: Int -> RationalCV -> ShowS
Show
algRealToRational :: AlgReal -> RationalCV
algRealToRational :: AlgReal -> RationalCV
algRealToRational AlgReal
a = case AlgReal
a of
AlgRational Bool
True Rational
r -> Rational -> RationalCV
RatExact Rational
r
AlgRational Bool
False Rational
r -> Rational -> RationalCV
RatExact Rational
r
AlgPolyRoot (Integer, AlgRealPoly)
_ Maybe String
Nothing -> AlgReal -> RationalCV
RatIrreducible AlgReal
a
AlgPolyRoot (Integer, AlgRealPoly)
_ (Just String
s) -> let trimmed :: String
trimmed = case ShowS
forall a. [a] -> [a]
reverse String
s of
Char
'.':Char
'.':Char
'.':String
rest -> ShowS
forall a. [a] -> [a]
reverse String
rest
String
_ -> String
s
in case ReadS Rational -> ReadS Rational
forall a. Real a => ReadS a -> ReadS a
readSigned ReadS Rational
forall a. RealFrac a => ReadS a
readFloat String
trimmed of
[(Rational
v, String
"")] -> Rational -> RationalCV
RatApprox Rational
v
[(Rational, String)]
_ -> String -> RationalCV
forall a. String -> a
bad String
"represents a value that cannot be converted to a rational"
AlgInterval RealPoint Rational
lo RealPoint Rational
hi -> RealPoint Rational -> RealPoint Rational -> RationalCV
RatInterval RealPoint Rational
lo RealPoint Rational
hi
where bad :: String -> a
bad String
w = String -> a
forall a. HasCallStack => String -> a
error (String -> a) -> String -> a
forall a b. (a -> b) -> a -> b
$ [String] -> String
unlines [ String
""
, String
"SBV.algRealToRational: Unsupported argument:"
, String
""
, String
" " String -> ShowS
forall a. [a] -> [a] -> [a]
++ AlgReal -> String
forall a. Show a => a -> String
show AlgReal
a
, String
""
, String
w
]
showRat :: Bool -> Rational -> String
showRat :: Bool -> Rational -> String
showRat Bool
exact Rational
r = ShowS
p ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ case Integer -> [Integer] -> Maybe (Int, String)
f25 (Rational -> Integer
forall a. Ratio a -> a
denominator Rational
r) [] of
Maybe (Int, String)
Nothing -> Rational -> String
forall a. Show a => a -> String
show Rational
r
Just (Int
noOfZeros, String
num) -> let present :: Int
present = String -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length String
num
in ShowS
neg ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ case Int
noOfZeros Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` Int
present of
Ordering
LT -> let (String
b, String
a) = Int -> String -> (String, String)
forall a. Int -> [a] -> ([a], [a])
splitAt (Int
present Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
noOfZeros) String
num in String
b String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"." String -> ShowS
forall a. [a] -> [a] -> [a]
++ if String -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null String
a then String
"0" else String
a
Ordering
EQ -> String
"0." String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
num
Ordering
GT -> String
"0." String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> Char -> String
forall a. Int -> a -> [a]
replicate (Int
noOfZeros Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
present) Char
'0' String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
num
where p :: ShowS
p = if Bool
exact then ShowS
forall a. a -> a
id else (String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"...")
neg :: ShowS
neg = if Rational
r Rational -> Rational -> Bool
forall a. Ord a => a -> a -> Bool
< Rational
0 then (Char
'-'Char -> ShowS
forall a. a -> [a] -> [a]
:) else ShowS
forall a. a -> a
id
f25 :: Integer -> [Integer] -> Maybe (Int, String)
f25 :: Integer -> [Integer] -> Maybe (Int, String)
f25 Integer
1 [Integer]
sofar = let ([Integer]
ts, [Integer]
fs) = (Integer -> Bool) -> [Integer] -> ([Integer], [Integer])
forall a. (a -> Bool) -> [a] -> ([a], [a])
partition (Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
2) [Integer]
sofar
lts :: Int
lts = [Integer] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Integer]
ts
lfs :: Int
lfs = [Integer] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Integer]
fs
noOfZeros :: Int
noOfZeros = Int
lts Int -> Int -> Int
forall a. Ord a => a -> a -> a
`max` Int
lfs
in (Int, String) -> Maybe (Int, String)
forall a. a -> Maybe a
Just (Int
noOfZeros, Integer -> String
forall a. Show a => a -> String
show (Integer -> Integer
forall a. Num a => a -> a
abs (Rational -> Integer
forall a. Ratio a -> a
numerator Rational
r) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* [Integer] -> [Integer] -> Integer
forall p t t. Num p => [t] -> [t] -> p
factor [Integer]
ts [Integer]
fs))
f25 Integer
v [Integer]
sofar = let (Integer
q2, Integer
r2) = Integer
v Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` Integer
2
(Integer
q5, Integer
r5) = Integer
v Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`quotRem` Integer
5
in case (Integer
r2, Integer
r5) of
(Integer
0, Integer
_) -> Integer -> [Integer] -> Maybe (Int, String)
f25 Integer
q2 (Integer
2 Integer -> [Integer] -> [Integer]
forall a. a -> [a] -> [a]
: [Integer]
sofar)
(Integer
_, Integer
0) -> Integer -> [Integer] -> Maybe (Int, String)
f25 Integer
q5 (Integer
5 Integer -> [Integer] -> [Integer]
forall a. a -> [a] -> [a]
: [Integer]
sofar)
(Integer, Integer)
_ -> Maybe (Int, String)
forall a. Maybe a
Nothing
factor :: [t] -> [t] -> p
factor [] [t]
fs = [p] -> p
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [p
2 | t
_ <- [t]
fs]
factor [t]
ts [] = [p] -> p
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
product [p
5 | t
_ <- [t]
ts]
factor (t
_:[t]
ts) (t
_:[t]
fs) = [t] -> [t] -> p
factor [t]
ts [t]
fs
mergeAlgReals :: String -> AlgReal -> AlgReal -> AlgReal
mergeAlgReals :: String -> AlgReal -> AlgReal -> AlgReal
mergeAlgReals String
_ f :: AlgReal
f@(AlgRational Bool
exact Rational
r) (AlgPolyRoot (Integer, AlgRealPoly)
kp Maybe String
Nothing)
| Bool
exact = AlgReal
f
| Bool
True = (Integer, AlgRealPoly) -> Maybe String -> AlgReal
AlgPolyRoot (Integer, AlgRealPoly)
kp (String -> Maybe String
forall a. a -> Maybe a
Just (Bool -> Rational -> String
showRat Bool
False Rational
r))
mergeAlgReals String
_ (AlgPolyRoot (Integer, AlgRealPoly)
kp Maybe String
Nothing) f :: AlgReal
f@(AlgRational Bool
exact Rational
r)
| Bool
exact = AlgReal
f
| Bool
True = (Integer, AlgRealPoly) -> Maybe String -> AlgReal
AlgPolyRoot (Integer, AlgRealPoly)
kp (String -> Maybe String
forall a. a -> Maybe a
Just (Bool -> Rational -> String
showRat Bool
False Rational
r))
mergeAlgReals String
_ f :: AlgReal
f@(AlgRational Bool
e1 Rational
r1) s :: AlgReal
s@(AlgRational Bool
e2 Rational
r2)
| (Bool
e1, Rational
r1) (Bool, Rational) -> (Bool, Rational) -> Bool
forall a. Eq a => a -> a -> Bool
== (Bool
e2, Rational
r2) = AlgReal
f
| Bool
e1 = AlgReal
f
| Bool
e2 = AlgReal
s
mergeAlgReals String
m AlgReal
_ AlgReal
_ = String -> AlgReal
forall a. HasCallStack => String -> a
error String
m
instance Arbitrary AlgReal where
arbitrary :: Gen AlgReal
arbitrary = Bool -> Rational -> AlgReal
AlgRational Bool
True (Rational -> AlgReal) -> Gen Rational -> Gen AlgReal
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` Gen Rational
forall a. Arbitrary a => Gen a
arbitrary