{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.List (
length, null
, head, tail, uncons, init, singleton, listToListAt, elemAt, (!!), implode, concat, (.:), snoc, nil, (++)
, elem, notElem, isInfixOf, isSuffixOf, isPrefixOf
, take, drop, subList, replace, indexOf, offsetIndexOf
, reverse
) where
import Prelude hiding (head, tail, init, length, take, drop, concat, null, elem, notElem, reverse, (++), (!!))
import qualified Prelude as P
import Data.SBV.Core.Data hiding (StrOp(..))
import Data.SBV.Core.Model
import Data.List (genericLength, genericIndex, genericDrop, genericTake)
import qualified Data.List as L (tails, isSuffixOf, isPrefixOf, isInfixOf)
import Data.Proxy
length :: SymVal a => SList a -> SInteger
length :: forall a. SymVal a => SList a -> SInteger
length = forall a b.
(SymVal a, SymVal b) =>
SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 SeqOp
SeqLen (forall a. a -> Maybe a
Just (forall a b. (Integral a, Num b) => a -> b
fromIntegral forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable t => t a -> Int
P.length))
null :: SymVal a => SList a -> SBool
null :: forall a. SymVal a => SList a -> SBool
null SList a
l
| Just [a]
cs <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
= forall a. SymVal a => a -> SBV a
literal (forall (t :: * -> *) a. Foldable t => t a -> Bool
P.null [a]
cs)
| Bool
True
= forall a. SymVal a => SList a -> SInteger
length SList a
l forall a. EqSymbolic a => a -> a -> SBool
.== SInteger
0
head :: SymVal a => SList a -> SBV a
head :: forall a. SymVal a => SList a -> SBV a
head = (forall a. SymVal a => SList a -> SInteger -> SBV a
`elemAt` SInteger
0)
tail :: SymVal a => SList a -> SList a
tail :: forall a. SymVal a => SList a -> SList a
tail SList a
l
| Just (a
_:[a]
cs) <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
= forall a. SymVal a => a -> SBV a
literal [a]
cs
| Bool
True
= forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
l SInteger
1 (forall a. SymVal a => SList a -> SInteger
length SList a
l forall a. Num a => a -> a -> a
- SInteger
1)
uncons :: SymVal a => SList a -> (SBV a, SList a)
uncons :: forall a. SymVal a => SList a -> (SBV a, SList a)
uncons SList a
l = (forall a. SymVal a => SList a -> SBV a
head SList a
l, forall a. SymVal a => SList a -> SList a
tail SList a
l)
init :: SymVal a => SList a -> SList a
init :: forall a. SymVal a => SList a -> SList a
init SList a
l
| Just cs :: [a]
cs@(a
_:[a]
_) <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
= forall a. SymVal a => a -> SBV a
literal forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
P.init [a]
cs
| Bool
True
= forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
l SInteger
0 (forall a. SymVal a => SList a -> SInteger
length SList a
l forall a. Num a => a -> a -> a
- SInteger
1)
singleton :: SymVal a => SBV a -> SList a
singleton :: forall a. SymVal a => SBV a -> SList a
singleton = forall a b.
(SymVal a, SymVal b) =>
SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 SeqOp
SeqUnit (forall a. a -> Maybe a
Just (forall a. a -> [a] -> [a]
: []))
listToListAt :: SymVal a => SList a -> SInteger -> SList a
listToListAt :: forall a. SymVal a => SList a -> SInteger -> SList a
listToListAt SList a
s SInteger
offset = forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
s SInteger
offset SInteger
1
elemAt :: forall a. SymVal a => SList a -> SInteger -> SBV a
elemAt :: forall a. SymVal a => SList a -> SInteger -> SBV a
elemAt SList a
l SInteger
i
| Just [a]
xs <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l, Just Integer
ci <- forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
i, Integer
ci forall a. Ord a => a -> a -> Bool
>= Integer
0, Integer
ci forall a. Ord a => a -> a -> Bool
< forall i a. Num i => [a] -> i
genericLength [a]
xs, let x :: a
x = [a]
xs forall i a. Integral i => [a] -> i -> a
`genericIndex` Integer
ci
= forall a. SymVal a => a -> SBV a
literal a
x
| Bool
True
= forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqNth forall a. Maybe a
Nothing SList a
l SInteger
i
(!!) :: SymVal a => SList a -> SInteger -> SBV a
!! :: forall a. SymVal a => SList a -> SInteger -> SBV a
(!!) = forall a. SymVal a => SList a -> SInteger -> SBV a
elemAt
implode :: SymVal a => [SBV a] -> SList a
implode :: forall a. SymVal a => [SBV a] -> SList a
implode = forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (forall a. SymVal a => SList a -> SList a -> SList a
(++) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. SymVal a => SBV a -> SList a
singleton) (forall a. SymVal a => a -> SBV a
literal [])
concat :: SymVal a => SList a -> SList a -> SList a
concat :: forall a. SymVal a => SList a -> SList a -> SList a
concat SList a
x SList a
y | forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
x = SList a
y
| forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
y = SList a
x
| Bool
True = forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqConcat (forall a. a -> Maybe a
Just forall a. [a] -> [a] -> [a]
(P.++)) SList a
x SList a
y
infixr 5 .:
(.:) :: SymVal a => SBV a -> SList a -> SList a
SBV a
a .: :: forall a. SymVal a => SBV a -> SList a -> SList a
.: SList a
as = forall a. SymVal a => SBV a -> SList a
singleton SBV a
a forall a. SymVal a => SList a -> SList a -> SList a
++ SList a
as
snoc :: SymVal a => SList a -> SBV a -> SList a
SList a
as snoc :: forall a. SymVal a => SList a -> SBV a -> SList a
`snoc` SBV a
a = SList a
as forall a. SymVal a => SList a -> SList a -> SList a
++ forall a. SymVal a => SBV a -> SList a
singleton SBV a
a
nil :: SymVal a => SList a
nil :: forall a. SymVal a => SList a
nil = []
infixr 5 ++
(++) :: SymVal a => SList a -> SList a -> SList a
++ :: forall a. SymVal a => SList a -> SList a -> SList a
(++) = forall a. SymVal a => SList a -> SList a -> SList a
concat
elem :: (Eq a, SymVal a) => SBV a -> SList a -> SBool
SBV a
e elem :: forall a. (Eq a, SymVal a) => SBV a -> SList a -> SBool
`elem` SList a
l = forall a. SymVal a => SBV a -> SList a
singleton SBV a
e forall a. (Eq a, SymVal a) => SList a -> SList a -> SBool
`isInfixOf` SList a
l
notElem :: (Eq a, SymVal a) => SBV a -> SList a -> SBool
SBV a
e notElem :: forall a. (Eq a, SymVal a) => SBV a -> SList a -> SBool
`notElem` SList a
l = SBool -> SBool
sNot (SBV a
e forall a. (Eq a, SymVal a) => SBV a -> SList a -> SBool
`elem` SList a
l)
isInfixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
SList a
sub isInfixOf :: forall a. (Eq a, SymVal a) => SList a -> SList a -> SBool
`isInfixOf` SList a
l
| forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
sub
= forall a. SymVal a => a -> SBV a
literal Bool
True
| Bool
True
= forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqContains (forall a. a -> Maybe a
Just (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. Eq a => [a] -> [a] -> Bool
L.isInfixOf)) SList a
l SList a
sub
isPrefixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
SList a
pre isPrefixOf :: forall a. (Eq a, SymVal a) => SList a -> SList a -> SBool
`isPrefixOf` SList a
l
| forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
pre
= forall a. SymVal a => a -> SBV a
literal Bool
True
| Bool
True
= forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqPrefixOf (forall a. a -> Maybe a
Just forall a. Eq a => [a] -> [a] -> Bool
L.isPrefixOf) SList a
pre SList a
l
isSuffixOf :: (Eq a, SymVal a) => SList a -> SList a -> SBool
SList a
suf isSuffixOf :: forall a. (Eq a, SymVal a) => SList a -> SList a -> SBool
`isSuffixOf` SList a
l
| forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
suf
= forall a. SymVal a => a -> SBV a
literal Bool
True
| Bool
True
= forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
SeqSuffixOf (forall a. a -> Maybe a
Just forall a. Eq a => [a] -> [a] -> Bool
L.isSuffixOf) SList a
suf SList a
l
take :: SymVal a => SInteger -> SList a -> SList a
take :: forall a. SymVal a => SInteger -> SList a -> SList a
take SInteger
i SList a
l = forall a. Mergeable a => SBool -> a -> a -> a
ite (SInteger
i forall a. OrdSymbolic a => a -> a -> SBool
.<= SInteger
0) (forall a. SymVal a => a -> SBV a
literal [])
forall a b. (a -> b) -> a -> b
$ forall a. Mergeable a => SBool -> a -> a -> a
ite (SInteger
i forall a. OrdSymbolic a => a -> a -> SBool
.>= forall a. SymVal a => SList a -> SInteger
length SList a
l) SList a
l
forall a b. (a -> b) -> a -> b
$ forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
l SInteger
0 SInteger
i
drop :: SymVal a => SInteger -> SList a -> SList a
drop :: forall a. SymVal a => SInteger -> SList a -> SList a
drop SInteger
i SList a
s = forall a. Mergeable a => SBool -> a -> a -> a
ite (SInteger
i forall a. OrdSymbolic a => a -> a -> SBool
.>= SInteger
ls) (forall a. SymVal a => a -> SBV a
literal [])
forall a b. (a -> b) -> a -> b
$ forall a. Mergeable a => SBool -> a -> a -> a
ite (SInteger
i forall a. OrdSymbolic a => a -> a -> SBool
.<= SInteger
0) SList a
s
forall a b. (a -> b) -> a -> b
$ forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
s SInteger
i (SInteger
ls forall a. Num a => a -> a -> a
- SInteger
i)
where ls :: SInteger
ls = forall a. SymVal a => SList a -> SInteger
length SList a
s
subList :: SymVal a => SList a -> SInteger -> SInteger -> SList a
subList :: forall a. SymVal a => SList a -> SInteger -> SInteger -> SList a
subList SList a
l SInteger
offset SInteger
len
| Just [a]
c <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
, Just Integer
o <- forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
offset
, Just Integer
sz <- forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
len
, let lc :: Integer
lc = forall i a. Num i => [a] -> i
genericLength [a]
c
, let valid :: Integer -> Bool
valid Integer
x = Integer
x forall a. Ord a => a -> a -> Bool
>= Integer
0 Bool -> Bool -> Bool
&& Integer
x forall a. Ord a => a -> a -> Bool
<= Integer
lc
, Integer -> Bool
valid Integer
o
, Integer
sz forall a. Ord a => a -> a -> Bool
>= Integer
0
, Integer -> Bool
valid forall a b. (a -> b) -> a -> b
$ Integer
o forall a. Num a => a -> a -> a
+ Integer
sz
= forall a. SymVal a => a -> SBV a
literal forall a b. (a -> b) -> a -> b
$ forall i a. Integral i => i -> [a] -> [a]
genericTake Integer
sz forall a b. (a -> b) -> a -> b
$ forall i a. Integral i => i -> [a] -> [a]
genericDrop Integer
o [a]
c
| Bool
True
= forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
SeqOp
-> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 SeqOp
SeqSubseq forall a. Maybe a
Nothing SList a
l SInteger
offset SInteger
len
replace :: (Eq a, SymVal a) => SList a -> SList a -> SList a -> SList a
replace :: forall a.
(Eq a, SymVal a) =>
SList a -> SList a -> SList a -> SList a
replace SList a
l SList a
src SList a
dst
| Just [a]
b <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
src, forall (t :: * -> *) a. Foldable t => t a -> Bool
P.null [a]
b
= SList a
dst forall a. SymVal a => SList a -> SList a -> SList a
++ SList a
l
| Just [a]
a <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
, Just [a]
b <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
src
, Just [a]
c <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
dst
= forall a. SymVal a => a -> SBV a
literal forall a b. (a -> b) -> a -> b
$ forall {a}. Eq a => [a] -> [a] -> [a] -> [a]
walk [a]
a [a]
b [a]
c
| Bool
True
= forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
SeqOp
-> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 SeqOp
SeqReplace forall a. Maybe a
Nothing SList a
l SList a
src SList a
dst
where walk :: [a] -> [a] -> [a] -> [a]
walk [a]
haystack [a]
needle [a]
newNeedle = [a] -> [a]
go [a]
haystack
where go :: [a] -> [a]
go [] = []
go i :: [a]
i@(a
c:[a]
cs)
| [a]
needle forall a. Eq a => [a] -> [a] -> Bool
`L.isPrefixOf` [a]
i = [a]
newNeedle forall a. [a] -> [a] -> [a]
P.++ forall i a. Integral i => i -> [a] -> [a]
genericDrop (forall i a. Num i => [a] -> i
genericLength [a]
needle :: Integer) [a]
i
| Bool
True = a
c forall a. a -> [a] -> [a]
: [a] -> [a]
go [a]
cs
indexOf :: (Eq a, SymVal a) => SList a -> SList a -> SInteger
indexOf :: forall a. (Eq a, SymVal a) => SList a -> SList a -> SInteger
indexOf SList a
s SList a
sub = forall a.
(Eq a, SymVal a) =>
SList a -> SList a -> SInteger -> SInteger
offsetIndexOf SList a
s SList a
sub SInteger
0
offsetIndexOf :: (Eq a, SymVal a) => SList a -> SList a -> SInteger -> SInteger
offsetIndexOf :: forall a.
(Eq a, SymVal a) =>
SList a -> SList a -> SInteger -> SInteger
offsetIndexOf SList a
s SList a
sub SInteger
offset
| Just [a]
c <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
s
, Just [a]
n <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
sub
, Just Integer
o <- forall a. SymVal a => SBV a -> Maybe a
unliteral SInteger
offset
, Integer
o forall a. Ord a => a -> a -> Bool
>= Integer
0, Integer
o forall a. Ord a => a -> a -> Bool
<= forall i a. Num i => [a] -> i
genericLength [a]
c
= case [Integer
i | (Integer
i, [a]
t) <- forall a b. [a] -> [b] -> [(a, b)]
zip [Integer
o ..] (forall a. [a] -> [[a]]
L.tails (forall i a. Integral i => i -> [a] -> [a]
genericDrop Integer
o [a]
c)), [a]
n forall a. Eq a => [a] -> [a] -> Bool
`L.isPrefixOf` [a]
t] of
(Integer
i:[Integer]
_) -> forall a. SymVal a => a -> SBV a
literal Integer
i
[Integer]
_ -> -SInteger
1
| Bool
True
= forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
SeqOp
-> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 SeqOp
SeqIndexOf forall a. Maybe a
Nothing SList a
s SList a
sub SInteger
offset
reverse :: SymVal a => SList a -> SList a
reverse :: forall a. SymVal a => SList a -> SList a
reverse SList a
l
| Just [a]
l' <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
l
= forall a. SymVal a => a -> SBV a
literal (forall a. [a] -> [a]
P.reverse [a]
l')
| Bool
True
= forall a. SVal -> SBV a
SBV forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k forall a b. (a -> b) -> a -> b
$ forall a b. b -> Either a b
Right forall a b. (a -> b) -> a -> b
$ forall a. (State -> IO a) -> Cached a
cache State -> IO SV
r
where k :: Kind
k = forall a. HasKind a => a -> Kind
kindOf SList a
l
r :: State -> IO SV
r State
st = do SV
sva <- forall a. State -> SBV a -> IO SV
sbvToSV State
st SList a
l
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
k (Op -> [SV] -> SBVExpr
SBVApp (SeqOp -> Op
SeqOp (Kind -> SeqOp
SBVReverse Kind
k)) [SV
sva])
lift1 :: forall a b. (SymVal a, SymVal b) => SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 :: forall a b.
(SymVal a, SymVal b) =>
SeqOp -> Maybe (a -> b) -> SBV a -> SBV b
lift1 SeqOp
w Maybe (a -> b)
mbOp SBV a
a
| Just SBV b
cv <- forall a b.
(SymVal a, SymVal b) =>
Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 Maybe (a -> b)
mbOp SBV a
a
= SBV b
cv
| Bool
True
= forall a. SVal -> SBV a
SBV forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k forall a b. (a -> b) -> a -> b
$ forall a b. b -> Either a b
Right forall a b. (a -> b) -> a -> b
$ forall a. (State -> IO a) -> Cached a
cache State -> IO SV
r
where k :: Kind
k = forall a. HasKind a => a -> Kind
kindOf (forall {k} (t :: k). Proxy t
Proxy @b)
r :: State -> IO SV
r State
st = do SV
sva <- forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV a
a
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
k (Op -> [SV] -> SBVExpr
SBVApp (SeqOp -> Op
SeqOp SeqOp
w) [SV
sva])
lift2 :: forall a b c. (SymVal a, SymVal b, SymVal c) => SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 :: forall a b c.
(SymVal a, SymVal b, SymVal c) =>
SeqOp -> Maybe (a -> b -> c) -> SBV a -> SBV b -> SBV c
lift2 SeqOp
w Maybe (a -> b -> c)
mbOp SBV a
a SBV b
b
| Just SBV c
cv <- forall a b c.
(SymVal a, SymVal b, SymVal c) =>
Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c)
concEval2 Maybe (a -> b -> c)
mbOp SBV a
a SBV b
b
= SBV c
cv
| Bool
True
= forall a. SVal -> SBV a
SBV forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k forall a b. (a -> b) -> a -> b
$ forall a b. b -> Either a b
Right forall a b. (a -> b) -> a -> b
$ forall a. (State -> IO a) -> Cached a
cache State -> IO SV
r
where k :: Kind
k = forall a. HasKind a => a -> Kind
kindOf (forall {k} (t :: k). Proxy t
Proxy @c)
r :: State -> IO SV
r State
st = do SV
sva <- forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV a
a
SV
svb <- forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV b
b
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
k (Op -> [SV] -> SBVExpr
SBVApp (SeqOp -> Op
SeqOp SeqOp
w) [SV
sva, SV
svb])
lift3 :: forall a b c d. (SymVal a, SymVal b, SymVal c, SymVal d) => SeqOp -> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 :: forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
SeqOp
-> Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> SBV d
lift3 SeqOp
w Maybe (a -> b -> c -> d)
mbOp SBV a
a SBV b
b SBV c
c
| Just SBV d
cv <- forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
Maybe (a -> b -> c -> d)
-> SBV a -> SBV b -> SBV c -> Maybe (SBV d)
concEval3 Maybe (a -> b -> c -> d)
mbOp SBV a
a SBV b
b SBV c
c
= SBV d
cv
| Bool
True
= forall a. SVal -> SBV a
SBV forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k forall a b. (a -> b) -> a -> b
$ forall a b. b -> Either a b
Right forall a b. (a -> b) -> a -> b
$ forall a. (State -> IO a) -> Cached a
cache State -> IO SV
r
where k :: Kind
k = forall a. HasKind a => a -> Kind
kindOf (forall {k} (t :: k). Proxy t
Proxy @d)
r :: State -> IO SV
r State
st = do SV
sva <- forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV a
a
SV
svb <- forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV b
b
SV
svc <- forall a. State -> SBV a -> IO SV
sbvToSV State
st SBV c
c
State -> Kind -> SBVExpr -> IO SV
newExpr State
st Kind
k (Op -> [SV] -> SBVExpr
SBVApp (SeqOp -> Op
SeqOp SeqOp
w) [SV
sva, SV
svb, SV
svc])
concEval1 :: (SymVal a, SymVal b) => Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 :: forall a b.
(SymVal a, SymVal b) =>
Maybe (a -> b) -> SBV a -> Maybe (SBV b)
concEval1 Maybe (a -> b)
mbOp SBV a
a = forall a. SymVal a => a -> SBV a
literal forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Maybe (a -> b)
mbOp forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
a)
concEval2 :: (SymVal a, SymVal b, SymVal c) => Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c)
concEval2 :: forall a b c.
(SymVal a, SymVal b, SymVal c) =>
Maybe (a -> b -> c) -> SBV a -> SBV b -> Maybe (SBV c)
concEval2 Maybe (a -> b -> c)
mbOp SBV a
a SBV b
b = forall a. SymVal a => a -> SBV a
literal forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Maybe (a -> b -> c)
mbOp forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. SymVal a => SBV a -> Maybe a
unliteral SBV b
b)
concEval3 :: (SymVal a, SymVal b, SymVal c, SymVal d) => Maybe (a -> b -> c -> d) -> SBV a -> SBV b -> SBV c -> Maybe (SBV d)
concEval3 :: forall a b c d.
(SymVal a, SymVal b, SymVal c, SymVal d) =>
Maybe (a -> b -> c -> d)
-> SBV a -> SBV b -> SBV c -> Maybe (SBV d)
concEval3 Maybe (a -> b -> c -> d)
mbOp SBV a
a SBV b
b SBV c
c = forall a. SymVal a => a -> SBV a
literal forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Maybe (a -> b -> c -> d)
mbOp forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. SymVal a => SBV a -> Maybe a
unliteral SBV b
b forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. SymVal a => SBV a -> Maybe a
unliteral SBV c
c)
isConcretelyEmpty :: SymVal a => SList a -> Bool
isConcretelyEmpty :: forall a. SymVal a => SList a -> Bool
isConcretelyEmpty SList a
sl | Just [a]
l <- forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
sl = forall (t :: * -> *) a. Foldable t => t a -> Bool
P.null [a]
l
| Bool
True = Bool
False