semigroupoids-5.2.1: Semigroupoids: Category sans id

Copyright(C) 2011-2015 Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityprovisional
Portabilityportable
Safe HaskellSafe
LanguageHaskell98

Data.Functor.Apply

Contents

Description

 

Synopsis

Functors

class Functor f where #

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

fmap id  ==  id
fmap (f . g)  ==  fmap f . fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b #

(<$) :: a -> f b -> f a infixl 4 #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Instances

Functor [] 

Methods

fmap :: (a -> b) -> [a] -> [b] #

(<$) :: a -> [b] -> [a] #

Functor Maybe 

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Functor IO 

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Functor V1 

Methods

fmap :: (a -> b) -> V1 a -> V1 b #

(<$) :: a -> V1 b -> V1 a #

Functor U1 

Methods

fmap :: (a -> b) -> U1 a -> U1 b #

(<$) :: a -> U1 b -> U1 a #

Functor Par1 

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b #

(<$) :: a -> Par1 b -> Par1 a #

Functor Id 

Methods

fmap :: (a -> b) -> Id a -> Id b #

(<$) :: a -> Id b -> Id a #

Functor Identity 

Methods

fmap :: (a -> b) -> Identity a -> Identity b #

(<$) :: a -> Identity b -> Identity a #

Functor Min 

Methods

fmap :: (a -> b) -> Min a -> Min b #

(<$) :: a -> Min b -> Min a #

Functor Max 

Methods

fmap :: (a -> b) -> Max a -> Max b #

(<$) :: a -> Max b -> Max a #

Functor First 

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last 

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Option 

Methods

fmap :: (a -> b) -> Option a -> Option b #

(<$) :: a -> Option b -> Option a #

Functor NonEmpty 

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Functor Complex 

Methods

fmap :: (a -> b) -> Complex a -> Complex b #

(<$) :: a -> Complex b -> Complex a #

Functor ZipList 

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Functor Handler 

Methods

fmap :: (a -> b) -> Handler a -> Handler b #

(<$) :: a -> Handler b -> Handler a #

Functor Dual 

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Functor Sum 

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Functor Product 

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Functor First 

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last 

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Digit 

Methods

fmap :: (a -> b) -> Digit a -> Digit b #

(<$) :: a -> Digit b -> Digit a #

Functor Node 

Methods

fmap :: (a -> b) -> Node a -> Node b #

(<$) :: a -> Node b -> Node a #

Functor Elem 

Methods

fmap :: (a -> b) -> Elem a -> Elem b #

(<$) :: a -> Elem b -> Elem a #

Functor FingerTree 

Methods

fmap :: (a -> b) -> FingerTree a -> FingerTree b #

(<$) :: a -> FingerTree b -> FingerTree a #

Functor IntMap 

Methods

fmap :: (a -> b) -> IntMap a -> IntMap b #

(<$) :: a -> IntMap b -> IntMap a #

Functor Tree 

Methods

fmap :: (a -> b) -> Tree a -> Tree b #

(<$) :: a -> Tree b -> Tree a #

Functor Seq 

Methods

fmap :: (a -> b) -> Seq a -> Seq b #

(<$) :: a -> Seq b -> Seq a #

Functor ViewL 

Methods

fmap :: (a -> b) -> ViewL a -> ViewL b #

(<$) :: a -> ViewL b -> ViewL a #

Functor ViewR 

Methods

fmap :: (a -> b) -> ViewR a -> ViewR b #

(<$) :: a -> ViewR b -> ViewR a #

Functor ((->) r) 

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b #

(<$) :: a -> (r -> b) -> r -> a #

Functor (Either a) 

Methods

fmap :: (a -> b) -> Either a a -> Either a b #

(<$) :: a -> Either a b -> Either a a #

Functor f => Functor (Rec1 f) 

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b #

(<$) :: a -> Rec1 f b -> Rec1 f a #

Functor (URec Char) 

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b #

(<$) :: a -> URec Char b -> URec Char a #

Functor (URec Double) 

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Functor (URec Float) 

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Functor (URec Int) 

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Functor (URec Word) 

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Functor (URec (Ptr ())) 

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a #

Functor ((,) a) 

Methods

fmap :: (a -> b) -> (a, a) -> (a, b) #

(<$) :: a -> (a, b) -> (a, a) #

Functor (Array i) 

Methods

fmap :: (a -> b) -> Array i a -> Array i b #

(<$) :: a -> Array i b -> Array i a #

Functor (StateL s) 

Methods

fmap :: (a -> b) -> StateL s a -> StateL s b #

(<$) :: a -> StateL s b -> StateL s a #

Functor (StateR s) 

Methods

fmap :: (a -> b) -> StateR s a -> StateR s b #

(<$) :: a -> StateR s b -> StateR s a #

Functor (Arg a) 

Methods

fmap :: (a -> b) -> Arg a a -> Arg a b #

(<$) :: a -> Arg a b -> Arg a a #

Monad m => Functor (WrappedMonad m) 

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Functor (ArrowMonad a) 

Methods

fmap :: (a -> b) -> ArrowMonad a a -> ArrowMonad a b #

(<$) :: a -> ArrowMonad a b -> ArrowMonad a a #

Functor (Proxy *) 

Methods

fmap :: (a -> b) -> Proxy * a -> Proxy * b #

(<$) :: a -> Proxy * b -> Proxy * a #

Functor (StateL s) 

Methods

fmap :: (a -> b) -> StateL s a -> StateL s b #

(<$) :: a -> StateL s b -> StateL s a #

Functor (StateR s) 

Methods

fmap :: (a -> b) -> StateR s a -> StateR s b #

(<$) :: a -> StateR s b -> StateR s a #

Functor (State s) 

Methods

fmap :: (a -> b) -> State s a -> State s b #

(<$) :: a -> State s b -> State s a #

Functor (Map k) 

Methods

fmap :: (a -> b) -> Map k a -> Map k b #

(<$) :: a -> Map k b -> Map k a #

Functor f => Functor (Lift f) 

Methods

fmap :: (a -> b) -> Lift f a -> Lift f b #

(<$) :: a -> Lift f b -> Lift f a #

Functor m => Functor (MaybeT m) 

Methods

fmap :: (a -> b) -> MaybeT m a -> MaybeT m b #

(<$) :: a -> MaybeT m b -> MaybeT m a #

Functor m => Functor (ListT m) 

Methods

fmap :: (a -> b) -> ListT m a -> ListT m b #

(<$) :: a -> ListT m b -> ListT m a #

Functor (HashMap k) 

Methods

fmap :: (a -> b) -> HashMap k a -> HashMap k b #

(<$) :: a -> HashMap k b -> HashMap k a #

Functor f => Functor (MaybeApply f) # 

Methods

fmap :: (a -> b) -> MaybeApply f a -> MaybeApply f b #

(<$) :: a -> MaybeApply f b -> MaybeApply f a #

Functor f => Functor (WrappedApplicative f) # 

Methods

fmap :: (a -> b) -> WrappedApplicative f a -> WrappedApplicative f b #

(<$) :: a -> WrappedApplicative f b -> WrappedApplicative f a #

Functor (K1 i c) 

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b #

(<$) :: a -> K1 i c b -> K1 i c a #

(Functor g, Functor f) => Functor ((:+:) f g) 

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b #

(<$) :: a -> (f :+: g) b -> (f :+: g) a #

(Functor g, Functor f) => Functor ((:*:) f g) 

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b #

(<$) :: a -> (f :*: g) b -> (f :*: g) a #

(Functor g, Functor f) => Functor ((:.:) f g) 

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b #

(<$) :: a -> (f :.: g) b -> (f :.: g) a #

Arrow a => Functor (WrappedArrow a b) 

Methods

fmap :: (a -> b) -> WrappedArrow a b a -> WrappedArrow a b b #

(<$) :: a -> WrappedArrow a b b -> WrappedArrow a b a #

Functor (Const * m) 

Methods

fmap :: (a -> b) -> Const * m a -> Const * m b #

(<$) :: a -> Const * m b -> Const * m a #

Functor f => Functor (Alt * f) 

Methods

fmap :: (a -> b) -> Alt * f a -> Alt * f b #

(<$) :: a -> Alt * f b -> Alt * f a #

Bifunctor p => Functor (Join * p) 

Methods

fmap :: (a -> b) -> Join * p a -> Join * p b #

(<$) :: a -> Join * p b -> Join * p a #

Functor w => Functor (TracedT m w) 

Methods

fmap :: (a -> b) -> TracedT m w a -> TracedT m w b #

(<$) :: a -> TracedT m w b -> TracedT m w a #

Functor w => Functor (StoreT s w) 

Methods

fmap :: (a -> b) -> StoreT s w a -> StoreT s w b #

(<$) :: a -> StoreT s w b -> StoreT s w a #

Functor w => Functor (EnvT e w) 

Methods

fmap :: (a -> b) -> EnvT e w a -> EnvT e w b #

(<$) :: a -> EnvT e w b -> EnvT e w a #

Functor (Cokleisli w a) 

Methods

fmap :: (a -> b) -> Cokleisli w a a -> Cokleisli w a b #

(<$) :: a -> Cokleisli w a b -> Cokleisli w a a #

Functor m => Functor (IdentityT * m) 

Methods

fmap :: (a -> b) -> IdentityT * m a -> IdentityT * m b #

(<$) :: a -> IdentityT * m b -> IdentityT * m a #

Functor (Tagged k s) 

Methods

fmap :: (a -> b) -> Tagged k s a -> Tagged k s b #

(<$) :: a -> Tagged k s b -> Tagged k s a #

Functor f => Functor (Reverse * f)

Derived instance.

Methods

fmap :: (a -> b) -> Reverse * f a -> Reverse * f b #

(<$) :: a -> Reverse * f b -> Reverse * f a #

Functor f => Functor (Backwards * f)

Derived instance.

Methods

fmap :: (a -> b) -> Backwards * f a -> Backwards * f b #

(<$) :: a -> Backwards * f b -> Backwards * f a #

Functor m => Functor (WriterT w m) 

Methods

fmap :: (a -> b) -> WriterT w m a -> WriterT w m b #

(<$) :: a -> WriterT w m b -> WriterT w m a #

Functor m => Functor (WriterT w m) 

Methods

fmap :: (a -> b) -> WriterT w m a -> WriterT w m b #

(<$) :: a -> WriterT w m b -> WriterT w m a #

Functor m => Functor (StateT s m) 

Methods

fmap :: (a -> b) -> StateT s m a -> StateT s m b #

(<$) :: a -> StateT s m b -> StateT s m a #

Functor m => Functor (StateT s m) 

Methods

fmap :: (a -> b) -> StateT s m a -> StateT s m b #

(<$) :: a -> StateT s m b -> StateT s m a #

Functor m => Functor (ExceptT e m) 

Methods

fmap :: (a -> b) -> ExceptT e m a -> ExceptT e m b #

(<$) :: a -> ExceptT e m b -> ExceptT e m a #

Functor m => Functor (ErrorT e m) 

Methods

fmap :: (a -> b) -> ErrorT e m a -> ErrorT e m b #

(<$) :: a -> ErrorT e m b -> ErrorT e m a #

Functor (Constant * a) 

Methods

fmap :: (a -> b) -> Constant * a a -> Constant * a b #

(<$) :: a -> Constant * a b -> Constant * a a #

Functor f => Functor (Static f a) # 

Methods

fmap :: (a -> b) -> Static f a a -> Static f a b #

(<$) :: a -> Static f a b -> Static f a a #

Functor f => Functor (M1 i c f) 

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b #

(<$) :: a -> M1 i c f b -> M1 i c f a #

(Functor f, Functor g) => Functor (Sum * f g) 

Methods

fmap :: (a -> b) -> Sum * f g a -> Sum * f g b #

(<$) :: a -> Sum * f g b -> Sum * f g a #

(Functor f, Functor g) => Functor (Product * f g) 

Methods

fmap :: (a -> b) -> Product * f g a -> Product * f g b #

(<$) :: a -> Product * f g b -> Product * f g a #

Functor m => Functor (ReaderT * r m) 

Methods

fmap :: (a -> b) -> ReaderT * r m a -> ReaderT * r m b #

(<$) :: a -> ReaderT * r m b -> ReaderT * r m a #

Functor (ContT k r m) 

Methods

fmap :: (a -> b) -> ContT k r m a -> ContT k r m b #

(<$) :: a -> ContT k r m b -> ContT k r m a #

(Functor f, Functor g) => Functor (Compose * * f g) 

Methods

fmap :: (a -> b) -> Compose * * f g a -> Compose * * f g b #

(<$) :: a -> Compose * * f g b -> Compose * * f g a #

Bifunctor p => Functor (WrappedBifunctor * * p a) 

Methods

fmap :: (a -> b) -> WrappedBifunctor * * p a a -> WrappedBifunctor * * p a b #

(<$) :: a -> WrappedBifunctor * * p a b -> WrappedBifunctor * * p a a #

Functor g => Functor (Joker k * g a) 

Methods

fmap :: (a -> b) -> Joker k * g a a -> Joker k * g a b #

(<$) :: a -> Joker k * g a b -> Joker k * g a a #

Bifunctor p => Functor (Flip * * p a) 

Methods

fmap :: (a -> b) -> Flip * * p a a -> Flip * * p a b #

(<$) :: a -> Flip * * p a b -> Flip * * p a a #

Functor (Clown * k f a) 

Methods

fmap :: (a -> b) -> Clown * k f a a -> Clown * k f a b #

(<$) :: a -> Clown * k f a b -> Clown * k f a a #

Functor m => Functor (RWST r w s m) 

Methods

fmap :: (a -> b) -> RWST r w s m a -> RWST r w s m b #

(<$) :: a -> RWST r w s m b -> RWST r w s m a #

Functor m => Functor (RWST r w s m) 

Methods

fmap :: (a -> b) -> RWST r w s m a -> RWST r w s m b #

(<$) :: a -> RWST r w s m b -> RWST r w s m a #

(Functor f, Bifunctor p) => Functor (Tannen * * * f p a) 

Methods

fmap :: (a -> b) -> Tannen * * * f p a a -> Tannen * * * f p a b #

(<$) :: a -> Tannen * * * f p a b -> Tannen * * * f p a a #

(Bifunctor p, Functor g) => Functor (Biff * k * * p f g a) 

Methods

fmap :: (a -> b) -> Biff * k * * p f g a a -> Biff * k * * p f g a b #

(<$) :: a -> Biff * k * * p f g a b -> Biff * k * * p f g a a #

(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #

An infix synonym for fmap.

The name of this operator is an allusion to $. Note the similarities between their types:

 ($)  ::              (a -> b) ->   a ->   b
(<$>) :: Functor f => (a -> b) -> f a -> f b

Whereas $ is function application, <$> is function application lifted over a Functor.

Examples

Convert from a Maybe Int to a Maybe String using show:

>>> show <$> Nothing
Nothing
>>> show <$> Just 3
Just "3"

Convert from an Either Int Int to an Either Int String using show:

>>> show <$> Left 17
Left 17
>>> show <$> Right 17
Right "17"

Double each element of a list:

>>> (*2) <$> [1,2,3]
[2,4,6]

Apply even to the second element of a pair:

>>> even <$> (2,2)
(2,True)

($>) :: Functor f => f a -> b -> f b infixl 4 #

Flipped version of <$.

Examples

Replace the contents of a Maybe Int with a constant String:

>>> Nothing $> "foo"
Nothing
>>> Just 90210 $> "foo"
Just "foo"

Replace the contents of an Either Int Int with a constant String, resulting in an Either Int String:

>>> Left 8675309 $> "foo"
Left 8675309
>>> Right 8675309 $> "foo"
Right "foo"

Replace each element of a list with a constant String:

>>> [1,2,3] $> "foo"
["foo","foo","foo"]

Replace the second element of a pair with a constant String:

>>> (1,2) $> "foo"
(1,"foo")

Since: 4.7.0.0

Apply - a strong lax semimonoidal endofunctor

class Functor f => Apply f where Source #

A strong lax semi-monoidal endofunctor. This is equivalent to an Applicative without pure.

Laws:

(.) <$> u <.> v <.> w = u <.> (v <.> w)
x <.> (f <$> y) = (. f) <$> x <.> y
f <$> (x <.> y) = (f .) <$> x <.> y

The laws imply that .> and <. really ignore their left and right results, respectively, and really return their right and left results, respectively. Specifically,

(mf <$> m) .> (nf <$> n) = nf <$> (m .> n)
(mf <$> m) <. (nf <$> n) = mf <$> (m <. n)

Minimal complete definition

(<.>)

Methods

(<.>) :: f (a -> b) -> f a -> f b infixl 4 Source #

(.>) :: f a -> f b -> f b infixl 4 Source #

 a .> b = const id <$> a <.> b

(<.) :: f a -> f b -> f a infixl 4 Source #

 a <. b = const <$> a <.> b

Instances

Apply [] Source # 

Methods

(<.>) :: [a -> b] -> [a] -> [b] Source #

(.>) :: [a] -> [b] -> [b] Source #

(<.) :: [a] -> [b] -> [a] Source #

Apply Maybe Source # 

Methods

(<.>) :: Maybe (a -> b) -> Maybe a -> Maybe b Source #

(.>) :: Maybe a -> Maybe b -> Maybe b Source #

(<.) :: Maybe a -> Maybe b -> Maybe a Source #

Apply IO Source # 

Methods

(<.>) :: IO (a -> b) -> IO a -> IO b Source #

(.>) :: IO a -> IO b -> IO b Source #

(<.) :: IO a -> IO b -> IO a Source #

Apply Identity Source # 

Methods

(<.>) :: Identity (a -> b) -> Identity a -> Identity b Source #

(.>) :: Identity a -> Identity b -> Identity b Source #

(<.) :: Identity a -> Identity b -> Identity a Source #

Apply Option Source # 

Methods

(<.>) :: Option (a -> b) -> Option a -> Option b Source #

(.>) :: Option a -> Option b -> Option b Source #

(<.) :: Option a -> Option b -> Option a Source #

Apply NonEmpty Source # 

Methods

(<.>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b Source #

(.>) :: NonEmpty a -> NonEmpty b -> NonEmpty b Source #

(<.) :: NonEmpty a -> NonEmpty b -> NonEmpty a Source #

Apply Complex Source # 

Methods

(<.>) :: Complex (a -> b) -> Complex a -> Complex b Source #

(.>) :: Complex a -> Complex b -> Complex b Source #

(<.) :: Complex a -> Complex b -> Complex a Source #

Apply ZipList Source # 

Methods

(<.>) :: ZipList (a -> b) -> ZipList a -> ZipList b Source #

(.>) :: ZipList a -> ZipList b -> ZipList b Source #

(<.) :: ZipList a -> ZipList b -> ZipList a Source #

Apply IntMap Source #

An IntMap is not Applicative, but it is an instance of Apply

Methods

(<.>) :: IntMap (a -> b) -> IntMap a -> IntMap b Source #

(.>) :: IntMap a -> IntMap b -> IntMap b Source #

(<.) :: IntMap a -> IntMap b -> IntMap a Source #

Apply Tree Source # 

Methods

(<.>) :: Tree (a -> b) -> Tree a -> Tree b Source #

(.>) :: Tree a -> Tree b -> Tree b Source #

(<.) :: Tree a -> Tree b -> Tree a Source #

Apply Seq Source # 

Methods

(<.>) :: Seq (a -> b) -> Seq a -> Seq b Source #

(.>) :: Seq a -> Seq b -> Seq b Source #

(<.) :: Seq a -> Seq b -> Seq a Source #

Apply ((->) m) Source # 

Methods

(<.>) :: (m -> a -> b) -> (m -> a) -> m -> b Source #

(.>) :: (m -> a) -> (m -> b) -> m -> b Source #

(<.) :: (m -> a) -> (m -> b) -> m -> a Source #

Apply (Either a) Source # 

Methods

(<.>) :: Either a (a -> b) -> Either a a -> Either a b Source #

(.>) :: Either a a -> Either a b -> Either a b Source #

(<.) :: Either a a -> Either a b -> Either a a Source #

Semigroup m => Apply ((,) m) Source # 

Methods

(<.>) :: (m, a -> b) -> (m, a) -> (m, b) Source #

(.>) :: (m, a) -> (m, b) -> (m, b) Source #

(<.) :: (m, a) -> (m, b) -> (m, a) Source #

Monad m => Apply (WrappedMonad m) Source # 
Apply (Proxy *) Source # 

Methods

(<.>) :: Proxy * (a -> b) -> Proxy * a -> Proxy * b Source #

(.>) :: Proxy * a -> Proxy * b -> Proxy * b Source #

(<.) :: Proxy * a -> Proxy * b -> Proxy * a Source #

Ord k => Apply (Map k) Source #

A Map is not Applicative, but it is an instance of Apply

Methods

(<.>) :: Map k (a -> b) -> Map k a -> Map k b Source #

(.>) :: Map k a -> Map k b -> Map k b Source #

(<.) :: Map k a -> Map k b -> Map k a Source #

Apply f => Apply (Lift f) Source # 

Methods

(<.>) :: Lift f (a -> b) -> Lift f a -> Lift f b Source #

(.>) :: Lift f a -> Lift f b -> Lift f b Source #

(<.) :: Lift f a -> Lift f b -> Lift f a Source #

(Functor m, Monad m) => Apply (MaybeT m) Source # 

Methods

(<.>) :: MaybeT m (a -> b) -> MaybeT m a -> MaybeT m b Source #

(.>) :: MaybeT m a -> MaybeT m b -> MaybeT m b Source #

(<.) :: MaybeT m a -> MaybeT m b -> MaybeT m a Source #

Apply m => Apply (ListT m) Source # 

Methods

(<.>) :: ListT m (a -> b) -> ListT m a -> ListT m b Source #

(.>) :: ListT m a -> ListT m b -> ListT m b Source #

(<.) :: ListT m a -> ListT m b -> ListT m a Source #

(Hashable k, Eq k) => Apply (HashMap k) Source #

A HashMap is not Applicative, but it is an instance of Apply

Methods

(<.>) :: HashMap k (a -> b) -> HashMap k a -> HashMap k b Source #

(.>) :: HashMap k a -> HashMap k b -> HashMap k b Source #

(<.) :: HashMap k a -> HashMap k b -> HashMap k a Source #

Apply f => Apply (MaybeApply f) Source # 

Methods

(<.>) :: MaybeApply f (a -> b) -> MaybeApply f a -> MaybeApply f b Source #

(.>) :: MaybeApply f a -> MaybeApply f b -> MaybeApply f b Source #

(<.) :: MaybeApply f a -> MaybeApply f b -> MaybeApply f a Source #

Applicative f => Apply (WrappedApplicative f) Source # 
Arrow a => Apply (WrappedArrow a b) Source # 

Methods

(<.>) :: WrappedArrow a b (a -> b) -> WrappedArrow a b a -> WrappedArrow a b b Source #

(.>) :: WrappedArrow a b a -> WrappedArrow a b b -> WrappedArrow a b b Source #

(<.) :: WrappedArrow a b a -> WrappedArrow a b b -> WrappedArrow a b a Source #

Semigroup m => Apply (Const * m) Source # 

Methods

(<.>) :: Const * m (a -> b) -> Const * m a -> Const * m b Source #

(.>) :: Const * m a -> Const * m b -> Const * m b Source #

(<.) :: Const * m a -> Const * m b -> Const * m a Source #

Biapply p => Apply (Join * p) Source # 

Methods

(<.>) :: Join * p (a -> b) -> Join * p a -> Join * p b Source #

(.>) :: Join * p a -> Join * p b -> Join * p b Source #

(<.) :: Join * p a -> Join * p b -> Join * p a Source #

Apply w => Apply (TracedT m w) Source # 

Methods

(<.>) :: TracedT m w (a -> b) -> TracedT m w a -> TracedT m w b Source #

(.>) :: TracedT m w a -> TracedT m w b -> TracedT m w b Source #

(<.) :: TracedT m w a -> TracedT m w b -> TracedT m w a Source #

(Apply w, Semigroup s) => Apply (StoreT s w) Source # 

Methods

(<.>) :: StoreT s w (a -> b) -> StoreT s w a -> StoreT s w b Source #

(.>) :: StoreT s w a -> StoreT s w b -> StoreT s w b Source #

(<.) :: StoreT s w a -> StoreT s w b -> StoreT s w a Source #

(Semigroup e, Apply w) => Apply (EnvT e w) Source # 

Methods

(<.>) :: EnvT e w (a -> b) -> EnvT e w a -> EnvT e w b Source #

(.>) :: EnvT e w a -> EnvT e w b -> EnvT e w b Source #

(<.) :: EnvT e w a -> EnvT e w b -> EnvT e w a Source #

Apply (Cokleisli w a) Source # 

Methods

(<.>) :: Cokleisli w a (a -> b) -> Cokleisli w a a -> Cokleisli w a b Source #

(.>) :: Cokleisli w a a -> Cokleisli w a b -> Cokleisli w a b Source #

(<.) :: Cokleisli w a a -> Cokleisli w a b -> Cokleisli w a a Source #

Apply w => Apply (IdentityT * w) Source # 

Methods

(<.>) :: IdentityT * w (a -> b) -> IdentityT * w a -> IdentityT * w b Source #

(.>) :: IdentityT * w a -> IdentityT * w b -> IdentityT * w b Source #

(<.) :: IdentityT * w a -> IdentityT * w b -> IdentityT * w a Source #

Apply (Tagged * a) Source # 

Methods

(<.>) :: Tagged * a (a -> b) -> Tagged * a a -> Tagged * a b Source #

(.>) :: Tagged * a a -> Tagged * a b -> Tagged * a b Source #

(<.) :: Tagged * a a -> Tagged * a b -> Tagged * a a Source #

Apply f => Apply (Reverse * f) Source # 

Methods

(<.>) :: Reverse * f (a -> b) -> Reverse * f a -> Reverse * f b Source #

(.>) :: Reverse * f a -> Reverse * f b -> Reverse * f b Source #

(<.) :: Reverse * f a -> Reverse * f b -> Reverse * f a Source #

Apply f => Apply (Backwards * f) Source # 

Methods

(<.>) :: Backwards * f (a -> b) -> Backwards * f a -> Backwards * f b Source #

(.>) :: Backwards * f a -> Backwards * f b -> Backwards * f b Source #

(<.) :: Backwards * f a -> Backwards * f b -> Backwards * f a Source #

(Apply m, Semigroup w) => Apply (WriterT w m) Source # 

Methods

(<.>) :: WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b Source #

(.>) :: WriterT w m a -> WriterT w m b -> WriterT w m b Source #

(<.) :: WriterT w m a -> WriterT w m b -> WriterT w m a Source #

(Apply m, Semigroup w) => Apply (WriterT w m) Source # 

Methods

(<.>) :: WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b Source #

(.>) :: WriterT w m a -> WriterT w m b -> WriterT w m b Source #

(<.) :: WriterT w m a -> WriterT w m b -> WriterT w m a Source #

Bind m => Apply (StateT s m) Source # 

Methods

(<.>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b Source #

(.>) :: StateT s m a -> StateT s m b -> StateT s m b Source #

(<.) :: StateT s m a -> StateT s m b -> StateT s m a Source #

Bind m => Apply (StateT s m) Source # 

Methods

(<.>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b Source #

(.>) :: StateT s m a -> StateT s m b -> StateT s m b Source #

(<.) :: StateT s m a -> StateT s m b -> StateT s m a Source #

(Functor m, Monad m) => Apply (ExceptT e m) Source # 

Methods

(<.>) :: ExceptT e m (a -> b) -> ExceptT e m a -> ExceptT e m b Source #

(.>) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m b Source #

(<.) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m a Source #

(Functor m, Monad m) => Apply (ErrorT e m) Source # 

Methods

(<.>) :: ErrorT e m (a -> b) -> ErrorT e m a -> ErrorT e m b Source #

(.>) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m b Source #

(<.) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m a Source #

Semigroup f => Apply (Constant * f) Source # 

Methods

(<.>) :: Constant * f (a -> b) -> Constant * f a -> Constant * f b Source #

(.>) :: Constant * f a -> Constant * f b -> Constant * f b Source #

(<.) :: Constant * f a -> Constant * f b -> Constant * f a Source #

Apply f => Apply (Static f a) Source # 

Methods

(<.>) :: Static f a (a -> b) -> Static f a a -> Static f a b Source #

(.>) :: Static f a a -> Static f a b -> Static f a b Source #

(<.) :: Static f a a -> Static f a b -> Static f a a Source #

(Apply f, Apply g) => Apply (Product * f g) Source # 

Methods

(<.>) :: Product * f g (a -> b) -> Product * f g a -> Product * f g b Source #

(.>) :: Product * f g a -> Product * f g b -> Product * f g b Source #

(<.) :: Product * f g a -> Product * f g b -> Product * f g a Source #

Apply m => Apply (ReaderT * e m) Source # 

Methods

(<.>) :: ReaderT * e m (a -> b) -> ReaderT * e m a -> ReaderT * e m b Source #

(.>) :: ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m b Source #

(<.) :: ReaderT * e m a -> ReaderT * e m b -> ReaderT * e m a Source #

Apply (ContT * r m) Source # 

Methods

(<.>) :: ContT * r m (a -> b) -> ContT * r m a -> ContT * r m b Source #

(.>) :: ContT * r m a -> ContT * r m b -> ContT * r m b Source #

(<.) :: ContT * r m a -> ContT * r m b -> ContT * r m a Source #

(Apply f, Apply g) => Apply (Compose * * f g) Source # 

Methods

(<.>) :: Compose * * f g (a -> b) -> Compose * * f g a -> Compose * * f g b Source #

(.>) :: Compose * * f g a -> Compose * * f g b -> Compose * * f g b Source #

(<.) :: Compose * * f g a -> Compose * * f g b -> Compose * * f g a Source #

(Bind m, Semigroup w) => Apply (RWST r w s m) Source # 

Methods

(<.>) :: RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b Source #

(.>) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m b Source #

(<.) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m a Source #

(Bind m, Semigroup w) => Apply (RWST r w s m) Source # 

Methods

(<.>) :: RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b Source #

(.>) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m b Source #

(<.) :: RWST r w s m a -> RWST r w s m b -> RWST r w s m a Source #

(<..>) :: Apply w => w a -> w (a -> b) -> w b infixl 4 Source #

A variant of <.> with the arguments reversed.

liftF2 :: Apply w => (a -> b -> c) -> w a -> w b -> w c Source #

Lift a binary function into a comonad with zipping

liftF3 :: Apply w => (a -> b -> c -> d) -> w a -> w b -> w c -> w d Source #

Lift a ternary function into a comonad with zipping

Wrappers

newtype WrappedApplicative f a Source #

Wrap an Applicative to be used as a member of Apply

Constructors

WrapApplicative 

Fields

Instances

Functor f => Functor (WrappedApplicative f) Source # 

Methods

fmap :: (a -> b) -> WrappedApplicative f a -> WrappedApplicative f b #

(<$) :: a -> WrappedApplicative f b -> WrappedApplicative f a #

Applicative f => Applicative (WrappedApplicative f) Source # 
Alternative f => Alternative (WrappedApplicative f) Source # 
Applicative f => Apply (WrappedApplicative f) Source # 
Alternative f => Alt (WrappedApplicative f) Source # 
Alternative f => Plus (WrappedApplicative f) Source # 

newtype MaybeApply f a Source #

Transform a Apply into an Applicative by adding a unit.

Constructors

MaybeApply 

Fields

Instances

Functor f => Functor (MaybeApply f) Source # 

Methods

fmap :: (a -> b) -> MaybeApply f a -> MaybeApply f b #

(<$) :: a -> MaybeApply f b -> MaybeApply f a #

Apply f => Applicative (MaybeApply f) Source # 

Methods

pure :: a -> MaybeApply f a #

(<*>) :: MaybeApply f (a -> b) -> MaybeApply f a -> MaybeApply f b #

(*>) :: MaybeApply f a -> MaybeApply f b -> MaybeApply f b #

(<*) :: MaybeApply f a -> MaybeApply f b -> MaybeApply f a #

Comonad f => Comonad (MaybeApply f) Source # 

Methods

extract :: MaybeApply f a -> a #

duplicate :: MaybeApply f a -> MaybeApply f (MaybeApply f a) #

extend :: (MaybeApply f a -> b) -> MaybeApply f a -> MaybeApply f b #

Extend f => Extend (MaybeApply f) Source # 

Methods

duplicated :: MaybeApply f a -> MaybeApply f (MaybeApply f a) Source #

extended :: (MaybeApply f a -> b) -> MaybeApply f a -> MaybeApply f b Source #

Apply f => Apply (MaybeApply f) Source # 

Methods

(<.>) :: MaybeApply f (a -> b) -> MaybeApply f a -> MaybeApply f b Source #

(.>) :: MaybeApply f a -> MaybeApply f b -> MaybeApply f b Source #

(<.) :: MaybeApply f a -> MaybeApply f b -> MaybeApply f a Source #