{-# LANGUAGE BangPatterns               #-}
{-# LANGUAGE CPP                        #-}
{-# LANGUAGE DeriveDataTypeable         #-}
{-# LANGUAGE DeriveFoldable             #-}
{-# LANGUAGE DeriveFunctor              #-}
{-# LANGUAGE DeriveGeneric              #-}
{-# LANGUAGE DeriveTraversable          #-}
{-# LANGUAGE FlexibleContexts           #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE NoImplicitPrelude          #-}
{-# LANGUAGE Rank2Types                 #-}
{-# LANGUAGE ScopedTypeVariables        #-}
{-# LANGUAGE StandaloneDeriving         #-}

{-# OPTIONS_GHC -Wall #-}

-----------------------------------------------------------------------------
-- |
-- A class for semirings (types with two binary operations, one commutative and one associative, and two respective identities), with various general-purpose instances.
--
-----------------------------------------------------------------------------

module Data.Semiring
  ( -- * Semiring typeclass
    Semiring(..)
  , (+)
  , (*)
  , (^)
  , foldMapP
  , foldMapT
  , sum
  , product
  , sum'
  , product'

    -- * Types
  , Add(..)
  , Mul(..)
  , WrappedNum(..)
  , IntSetOf(..)
  , IntMapOf(..)

    -- * Ring typeclass
  , Ring(..)
  , (-)
  , minus
  ) where

import           Control.Applicative (Applicative(..), Const(..), liftA2)
import           Data.Bool (Bool(..), (||), (&&), otherwise, not)
#if MIN_VERSION_base(4,7,0)
import           Data.Coerce (Coercible, coerce)
#endif
import           Data.Complex (Complex(..))
import           Data.Eq (Eq(..))
import           Data.Fixed (Fixed, HasResolution)
import           Data.Foldable (Foldable(foldMap))
import qualified Data.Foldable as Foldable
import           Data.Function ((.), const, flip, id)
import           Data.Functor (Functor(..))
#if MIN_VERSION_base(4,12,0)
import           Data.Functor.Contravariant (Predicate(..), Equivalence(..), Op(..))
#endif
import           Data.Functor.Identity (Identity(..))
#if defined(VERSION_unordered_containers)
import           Data.Hashable (Hashable)
import           Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import           Data.HashSet (HashSet)
import qualified Data.HashSet as HashSet
#endif
import           Data.Int (Int, Int8, Int16, Int32, Int64)
import qualified Data.List as List
import           Data.Maybe (Maybe(..))
#if MIN_VERSION_base(4,12,0)
import           Data.Monoid (Ap(..))
#endif
#if defined(VERSION_containers)
import           Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import           Data.IntSet (IntSet)
import qualified Data.IntSet as IntSet
import           Data.Map (Map)
import qualified Data.Map as Map
#endif
import           Data.Monoid (Monoid(..), Dual(..))
import           Data.Ord (Ord(..), Ordering(..), compare)
#if MIN_VERSION_base(4,6,0)
import           Data.Ord (Down(..))
#endif
import           Data.Proxy (Proxy(..))
import           Data.Ratio (Ratio, Rational, (%))
import           Data.Semigroup (Semigroup(..))
#if defined(VERSION_containers)
import           Data.Set (Set)
import qualified Data.Set as Set
#endif
-- #if defined(VERSION_primitive)
-- import           Data.Primitive.Array (Array(..))
-- import qualified Data.Primitive.Array as Array
-- #endif
import           Data.Traversable (Traversable)
import           Data.Typeable (Typeable)
#if defined(VERSION_vector)
import           Data.Vector (Vector)
import qualified Data.Vector as Vector
import qualified Data.Vector.Storable as SV
import qualified Data.Vector.Unboxed as UV
#endif
import           Data.Word (Word, Word8, Word16, Word32, Word64)
import           Foreign.C.Types
  (CChar, CClock, CDouble, CFloat, CInt,
   CIntMax, CIntPtr, CLLong, CLong,
   CPtrdiff, CSChar, CSUSeconds, CShort,
   CSigAtomic, CSize, CTime, CUChar, CUInt,
   CUIntMax, CUIntPtr, CULLong, CULong,
   CUSeconds, CUShort, CWchar)
import           Foreign.Ptr (IntPtr, WordPtr)
import           Foreign.Storable (Storable)
import           GHC.Base (build)
import           GHC.Enum (Enum, Bounded)
import           GHC.Float (Float, Double)
#if MIN_VERSION_base(4,6,1)
import           GHC.Generics (Generic,Generic1)
#endif
import           GHC.IO (IO)
import           GHC.Integer (Integer)
import qualified GHC.Num as Num
import           GHC.Read (Read)
import           GHC.Real (Integral, Fractional, Real, RealFrac)
import           GHC.Show (Show)
import           Numeric.Natural (Natural)
import           System.Posix.Types
  (CCc, CDev, CGid, CIno, CMode, CNlink,
   COff, CPid, CRLim, CSpeed, CSsize,
   CTcflag, CUid, Fd)

infixl 7 *, `times`
infixl 6 +, `plus`, -, `minus`
infixr 8 ^

{--------------------------------------------------------------------
  Helpers
--------------------------------------------------------------------}

-- | Raise a number to a non-negative integral power.
-- If the power is negative, this will return 'zero'.
{-# SPECIALISE [1] (^) ::
        Integer -> Integer -> Integer,
        Integer -> Int -> Integer,
        Int -> Int -> Int #-}
{-# INLINABLE [1] (^) #-} -- See note [Inlining (^)]
(^) :: (Semiring a, Integral b) => a -> b -> a
x ^ y = getMul (stimes y (Mul x))

{- Note [Inlining (^)]
   ~~~~~~~~~~~~~~~~~~~
   The INLINABLE pragma allows (^) to be specialised at its call sites.
   If it is called repeatedly at the same type, that can make a huge
   difference, because of those constants which can be repeatedly
   calculated.

   Currently the fromInteger calls are not floated because we get
             \d1 d2 x y -> blah
   after the gentle round of simplification.
-}

{- Rules for powers with known small exponent
    see Trac #5237
    For small exponents, (^) is inefficient compared to manually
    expanding the multiplication tree.
    Here, rules for the most common exponent types are given.
    The range of exponents for which rules are given is quite
    arbitrary and kept small to not unduly increase the number of rules.
    It might be desirable to have corresponding rules also for
    exponents of other types (e.g., Word), but it's doubtful they
    would fire, since the exponents of other types tend to get
    floated out before the rule has a chance to fire. (Why?)

    Note: Trying to save multiplication by sharing the square for
    exponents 4 and 5 does not save time, indeed, for Double, it is
    up to twice slower, so the rules contain flat sequences of
    multiplications.
-}

{-# RULES
"^0/Int" forall x. x ^ (0 :: Int) = one
"^1/Int" forall x. x ^ (1 :: Int) = let u = x in u
"^2/Int" forall x. x ^ (2 :: Int) = let u = x in u*u
"^3/Int" forall x. x ^ (3 :: Int) = let u = x in u*u*u
"^4/Int" forall x. x ^ (4 :: Int) = let u = x in u*u*u*u
"^5/Int" forall x. x ^ (5 :: Int) = let u = x in u*u*u*u*u
"^0/Integer" forall x. x ^ (0 :: Integer) = one
"^1/Integer" forall x. x ^ (1 :: Integer) = let u = x in u
"^2/Integer" forall x. x ^ (2 :: Integer) = let u = x in u*u
"^3/Integer" forall x. x ^ (3 :: Integer) = let u = x in u*u*u
"^4/Integer" forall x. x ^ (4 :: Integer) = let u = x in u*u*u*u
"^5/Integer" forall x. x ^ (5 :: Integer) = let u = x in u*u*u*u*u
  #-}

-- | Infix shorthand for 'plus'.
(+) :: Semiring a => a -> a -> a
(+) = plus
{-# INLINE (+) #-}

-- | Infix shorthand for 'times'.
(*) :: Semiring a => a -> a -> a
(*) = times
{-# INLINE (*) #-}

-- | Infix shorthand for 'minus'.
(-) :: Ring a => a -> a -> a
(-) = minus
{-# INLINE (-) #-}

-- | Map each element of the structure to a semiring, and combine the results
--   using 'plus'.
foldMapP :: (Foldable t, Semiring s) => (a -> s) -> t a -> s
foldMapP f = Foldable.foldr (plus  . f) zero
{-# INLINE foldMapP #-}

-- | Map each element of the structure to a semiring, and combine the results
--   using 'times'.
foldMapT :: (Foldable t, Semiring s) => (a -> s) -> t a -> s
foldMapT f = Foldable.foldr (times . f) one
{-# INLINE foldMapT #-}

#if MIN_VERSION_base(4,7,0)
infixr 9 #.
(#.) :: Coercible b c => (b -> c) -> (a -> b) -> a -> c
(#.) _ = coerce

-- | The 'sum' function computes the additive sum of the elements in a structure.
--   This function is lazy. For a strict version, see 'sum''.
sum :: (Foldable t, Semiring a) => t a -> a
sum = getAdd #. foldMap Add
{-# INLINE sum #-}

-- | The 'product' function computes the product of the elements in a structure.
--   This function is lazy. for a strict version, see 'product''.
product :: (Foldable t, Semiring a) => t a -> a
product = getMul #. foldMap Mul
{-# INLINE product #-}

#else

-- | The 'sum' function computes the additive sum of the elements in a structure.
--   This function is lazy. For a strict version, see 'sum''.
sum :: (Foldable t, Semiring a) => t a -> a
sum = getAdd . foldMap Add
{-# INLINE sum #-}

-- | The 'product' function computes the product of the elements in a structure.
--   This function is lazy. for a strict version, see 'product''.
product :: (Foldable t, Semiring a) => t a -> a
product = getMul . foldMap Mul
{-# INLINE product #-}

#endif

-- | The 'sum'' function computes the additive sum of the elements in a structure.
--   This function is strict. For a lazy version, see 'sum'.
sum'  :: (Foldable t, Semiring a) => t a -> a
sum'  = Foldable.foldl' plus zero
{-# INLINE sum' #-}

-- | The 'product'' function computes the additive sum of the elements in a structure.
--   This function is strict. For a lazy version, see 'product'.
product' :: (Foldable t, Semiring a) => t a -> a
product' = Foldable.foldl' times one
{-# INLINE product' #-}

-- | Monoid under 'plus'. Analogous to 'Data.Monoid.Sum', but
--   uses the 'Semiring' constraint rather than 'Num'.
newtype Add a = Add { getAdd :: a }
  deriving
    ( Bounded
    , Enum
    , Eq
    , Foldable
    , Fractional
    , Functor
#if MIN_VERSION_base(4,6,1)
    , Generic
    , Generic1
#endif
    , Num.Num
    , Ord
    , Read
    , Real
    , RealFrac
    , Show
    , Storable
    , Traversable
    , Typeable
    )

instance Semiring a => Semigroup (Add a) where
  Add a <> Add b = Add (a + b)
  {-# INLINE (<>) #-}

instance Semiring a => Monoid (Add a) where
  mempty = Add zero
  mappend = (<>)
  {-# INLINE mempty #-}
  {-# INLINE mappend #-}

-- | Monoid under 'times'. Analogous to 'Data.Monoid.Product', but
--   uses the 'Semiring' constraint rather than 'Num'.
newtype Mul a = Mul { getMul :: a }
  deriving
    ( Bounded
    , Enum
    , Eq
    , Foldable
    , Fractional
    , Functor
#if MIN_VERSION_base(4,6,1)
    , Generic
    , Generic1
#endif
    , Num.Num
    , Ord
    , Read
    , Real
    , RealFrac
    , Show
    , Storable
    , Traversable
    , Typeable
    )

instance Semiring a => Semigroup (Mul a) where
  Mul a <> Mul b = Mul (a * b)
  {-# INLINE (<>) #-}

instance Semiring a => Monoid (Mul a) where
  mempty = Mul one
  mappend = (<>)
  {-# INLINE mempty #-}
  {-# INLINE mappend #-}

-- | Provide Semiring and Ring for an arbitrary Num. It is useful with GHC 8.6+'s DerivingVia extension.
newtype WrappedNum a = WrapNum { unwrapNum :: a }
  deriving
    ( Bounded
    , Enum
    , Eq
    , Foldable
    , Fractional
    , Functor
#if MIN_VERSION_base(4,6,1)
    , Generic
    , Generic1
#endif
    , Num.Num
    , Ord
    , Read
    , Real
    , RealFrac
    , Show
    , Storable
    , Traversable
    , Typeable
    )

instance Num.Num a => Semiring (WrappedNum a) where
  plus  = (Num.+)
  zero  = 0
  times = (Num.*)
  one   = 1

instance Num.Num a => Ring (WrappedNum a) where
  negate = Num.negate

{--------------------------------------------------------------------
  Classes
--------------------------------------------------------------------}

-- | The class of semirings (types with two binary
-- operations and two respective identities). One
-- can think of a semiring as two monoids of the same
-- underlying type, with the first being commutative.
-- In the documentation, you will often see the first
-- monoid being referred to as 'additive', and the second
-- monoid being referred to as 'multiplicative', a typical
-- convention when talking about semirings.
--
-- For any type R with a 'Prelude.Num'
-- instance, the additive monoid is (R, '(Prelude.+)', 0)
-- and the multiplicative monoid is (R, '(Prelude.*)', 1).
--
-- For 'Prelude.Bool', the additive monoid is ('Prelude.Bool', 'Prelude.||', 'Prelude.False')
-- and the multiplicative monoid is ('Prelude.Bool', 'Prelude.&&', 'Prelude.True').
--
-- Instances should satisfy the following laws:
--
-- [/additive identity/]
--     @x '+' 'zero' = 'zero' '+' x = x@
-- [/additive associativity/]
--     @x '+' (y '+' z) = (x '+' y) '+' z@
-- [/additive commutativity/]
--     @x '+' y = y '+' x@
-- [/multiplicative identity/]
--     @x '*' 'one' = 'one' '*' x = x@
-- [/multiplicative associativity/]
--     @x '*' (y '*' z) = (x '*' y) '*' z@
-- [/left- and right-distributivity of '*' over '+'/]
--     @x '*' (y '+' z) = (x '*' y) '+' (x '*' z)@
--     @(x '+' y) '*' z = (x '*' z) '+' (y '*' z)@
-- [/annihilation/]
--     @'zero' '*' x = x '*' 'zero' = 'zero'@

class Semiring a where
#if __GLASGOW_HASKELL__ >= 708
  {-# MINIMAL plus, zero, times, one #-}
#endif
  plus  :: a -> a -> a -- ^ Commutative Operation
  zero  :: a           -- ^ Commutative Unit
  times :: a -> a -> a -- ^ Associative Operation
  one   :: a           -- ^ Associative Unit

-- | The class of semirings with an additive inverse.
--
--     @'negate' a '+' a = 'zero'@

class Semiring a => Ring a where
#if __GLASGOW_HASKELL__ >= 708
  {-# MINIMAL negate #-}
#endif
  negate :: a -> a

-- | Subtract two 'Ring' values. For any type 'R' with
-- a 'Prelude.Num' instance, this is the same as '(Prelude.-)'.
--
--     @x `minus` y = x '+' 'negate' y@
minus :: Ring a => a -> a -> a
minus x y = x + negate y
{-# INLINE minus #-}

{--------------------------------------------------------------------
  Instances (base)
--------------------------------------------------------------------}

instance Semiring b => Semiring (a -> b) where
  plus f g x  = f x `plus` g x
  zero        = const zero
  times f g x = f x `times` g x
  one         = const one
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring b => Ring (a -> b) where
  negate f x = negate (f x)
  {-# INLINE negate #-}

instance Semiring () where
  plus _ _  = ()
  zero      = ()
  times _ _ = ()
  one       = ()
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring () where
  negate _ = ()
  {-# INLINE negate #-}

instance Semiring (Proxy a) where
  plus _ _  = Proxy
  zero      = Proxy
  times _ _ = Proxy
  one       = Proxy
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Semiring Bool where
  plus  = (||)
  zero  = False
  times = (&&)
  one   = True
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring Bool where
  negate = not
  {-# INLINE negate #-}

-- | The 'Semiring' instance for '[a]' can be interpreted as
--   treating each element of the list as coefficients to a
--   polynomial in one variable.
--
-- ==== __Examples__
--
-- @poly1 = [1,2,3] :: [Int]@
-- @poly2 = [  2,1] :: [Int]@
-- @poly1 * poly2 = [2,5,8,3]@
-- fromList [2,5,8,3]
instance Semiring a => Semiring [a] where
  zero = []
  one  = [one]
  plus  = listAdd -- See Section: List fusion
  times = listTimes -- See Section: List fusion
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring a => Ring [a] where
  negate = fmap negate
  {-# INLINE negate #-}

instance Semiring a => Semiring (Maybe a) where
  zero  = Nothing
  one   = Just one

  plus Nothing y = y
  plus x Nothing = x
  plus (Just x) (Just y) = Just (plus x y)

  times Nothing _ = Nothing
  times _ Nothing = Nothing
  times (Just x) (Just y) = Just (times x y)
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring a => Ring (Maybe a) where
  negate = fmap negate
  {-# INLINE negate #-}

instance Semiring a => Semiring (IO a) where
  zero  = pure zero
  one   = pure one
  plus  = liftA2 plus
  times = liftA2 times
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring a => Ring (IO a) where
  negate = fmap negate
  {-# INLINE negate #-}

instance Semiring a => Semiring (Dual a) where
  zero = Dual zero
  Dual x `plus` Dual y = Dual (y `plus` x)
  one = Dual one
  Dual x `times` Dual y = Dual (y `times` x)
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring a => Ring (Dual a) where
  negate (Dual x) = Dual (negate x)
  {-# INLINE negate #-}

instance Semiring a => Semiring (Const a b) where
  zero = Const zero
  one  = Const one
  plus  (Const x) (Const y) = Const (x `plus`  y)
  times (Const x) (Const y) = Const (x `times` y)
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring a => Ring (Const a b) where
  negate (Const x) = Const (negate x)
  {-# INLINE negate #-}

-- | This instance can suffer due to floating point arithmetic.
instance Ring a => Semiring (Complex a) where
  zero = zero :+ zero
  one  = one  :+ zero
  plus  (x :+ y) (x' :+ y') = plus x x' :+ plus y y'
  times (x :+ y) (x' :+ y')
    = (x * x' - (y * y')) :+ (x * y' + y * x')
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring a => Ring (Complex a) where
  negate (x :+ y) = negate x :+ negate y
  {-# INLINE negate #-}

#if MIN_VERSION_base(4,12,0)
instance (Semiring a, Applicative f) => Semiring (Ap f a) where
  zero  = pure zero
  one   = pure one
  plus  = liftA2 plus
  times = liftA2 times
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance (Ring a, Applicative f) => Ring (Ap f a) where
  negate = fmap negate
  {-# INLINE negate #-}
#endif

#if MIN_VERSION_base(4,12,0)
deriving instance Semiring (Predicate a)
deriving instance Ring (Predicate a)

deriving instance Semiring a => Semiring (Equivalence a)
deriving instance Ring a => Ring (Equivalence a)

deriving instance Semiring a => Semiring (Op a b)
deriving instance Ring a => Ring (Op a b)
#endif

#define deriveSemiring(ty)        \
instance Semiring (ty) where {    \
   zero  = 0                      \
;  one   = 1                      \
;  plus  x y = (Num.+) x y        \
;  times x y = (Num.*) x y        \
;  {-# INLINE zero #-}            \
;  {-# INLINE one  #-}            \
;  {-# INLINE plus #-}            \
;  {-# INLINE times #-}           \
}

deriveSemiring(Int)
deriveSemiring(Int8)
deriveSemiring(Int16)
deriveSemiring(Int32)
deriveSemiring(Int64)
deriveSemiring(Integer)
deriveSemiring(Word)
deriveSemiring(Word8)
deriveSemiring(Word16)
deriveSemiring(Word32)
deriveSemiring(Word64)
deriveSemiring(Float)
deriveSemiring(Double)
deriveSemiring(CUIntMax)
deriveSemiring(CIntMax)
deriveSemiring(CUIntPtr)
deriveSemiring(CIntPtr)
deriveSemiring(CSUSeconds)
deriveSemiring(CUSeconds)
deriveSemiring(CTime)
deriveSemiring(CClock)
deriveSemiring(CSigAtomic)
deriveSemiring(CWchar)
deriveSemiring(CSize)
deriveSemiring(CPtrdiff)
deriveSemiring(CDouble)
deriveSemiring(CFloat)
deriveSemiring(CULLong)
deriveSemiring(CLLong)
deriveSemiring(CULong)
deriveSemiring(CLong)
deriveSemiring(CUInt)
deriveSemiring(CInt)
deriveSemiring(CUShort)
deriveSemiring(CShort)
deriveSemiring(CUChar)
deriveSemiring(CSChar)
deriveSemiring(CChar)
deriveSemiring(IntPtr)
deriveSemiring(WordPtr)
deriveSemiring(Fd)
deriveSemiring(CRLim)
deriveSemiring(CTcflag)
deriveSemiring(CSpeed)
deriveSemiring(CCc)
deriveSemiring(CUid)
deriveSemiring(CNlink)
deriveSemiring(CGid)
deriveSemiring(CSsize)
deriveSemiring(CPid)
deriveSemiring(COff)
deriveSemiring(CMode)
deriveSemiring(CIno)
deriveSemiring(CDev)
deriveSemiring(Natural)
instance Integral a => Semiring (Ratio a) where
  {-# SPECIALIZE instance Semiring Rational #-}
  zero  = 0 % 1
  one   = 1 % 1
  plus  = (Num.+)
  times = (Num.*)
  {-# INLINE zero  #-}
  {-# INLINE one   #-}
  {-# INLINE plus  #-}
  {-# INLINE times #-}
deriving instance Semiring a => Semiring (Identity a)
#if MIN_VERSION_base(4,6,0)
deriving instance Semiring a => Semiring (Down a)
#endif
instance HasResolution a => Semiring (Fixed a) where
  zero  = 0
  one   = 1
  plus  = (Num.+)
  times = (Num.*)
  {-# INLINE zero  #-}
  {-# INLINE one   #-}
  {-# INLINE plus  #-}
  {-# INLINE times #-}

#define deriveRing(ty)          \
instance Ring (ty) where {      \
  negate = Num.negate           \
; {-# INLINE negate #-}         \
}

deriveRing(Int)
deriveRing(Int8)
deriveRing(Int16)
deriveRing(Int32)
deriveRing(Int64)
deriveRing(Integer)
deriveRing(Word)
deriveRing(Word8)
deriveRing(Word16)
deriveRing(Word32)
deriveRing(Word64)
deriveRing(Float)
deriveRing(Double)
deriveRing(CUIntMax)
deriveRing(CIntMax)
deriveRing(CUIntPtr)
deriveRing(CIntPtr)
deriveRing(CSUSeconds)
deriveRing(CUSeconds)
deriveRing(CTime)
deriveRing(CClock)
deriveRing(CSigAtomic)
deriveRing(CWchar)
deriveRing(CSize)
deriveRing(CPtrdiff)
deriveRing(CDouble)
deriveRing(CFloat)
deriveRing(CULLong)
deriveRing(CLLong)
deriveRing(CULong)
deriveRing(CLong)
deriveRing(CUInt)
deriveRing(CInt)
deriveRing(CUShort)
deriveRing(CShort)
deriveRing(CUChar)
deriveRing(CSChar)
deriveRing(CChar)
deriveRing(IntPtr)
deriveRing(WordPtr)
deriveRing(Fd)
deriveRing(CRLim)
deriveRing(CTcflag)
deriveRing(CSpeed)
deriveRing(CCc)
deriveRing(CUid)
deriveRing(CNlink)
deriveRing(CGid)
deriveRing(CSsize)
deriveRing(CPid)
deriveRing(COff)
deriveRing(CMode)
deriveRing(CIno)
deriveRing(CDev)
deriveRing(Natural)
instance Integral a => Ring (Ratio a) where
  negate = Num.negate
  {-# INLINE negate #-}

#if MIN_VERSION_base(4,6,0)
deriving instance Ring a => Ring (Down a)
#endif
deriving instance Ring a => Ring (Identity a)
instance HasResolution a => Ring (Fixed a) where
  negate = Num.negate
  {-# INLINE negate #-}

{--------------------------------------------------------------------
  Instances (containers)
--------------------------------------------------------------------}

#if defined(VERSION_containers)

-- | The multiplication laws are satisfied for
--   any underlying 'Monoid', so we require a
--   'Monoid' constraint instead of a 'Semiring'
--   constraint since 'times' can use
--   the context of either.
instance (Ord a, Monoid a) => Semiring (Set a) where
  zero  = Set.empty
  one   = Set.singleton mempty
  plus  = Set.union
  times xs ys = Foldable.foldMap (flip Set.map ys . mappend) xs
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

-- | Wrapper to mimic 'Set' ('Data.Semigroup.Sum' 'Int'),
-- 'Set' ('Data.Semigroup.Product' 'Int'), etc.,
-- while having a more efficient underlying representation.
newtype IntSetOf a = IntSetOf { getIntSet :: IntSet }
  deriving
    ( Eq
#if MIN_VERSION_base(4,6,1)
    , Generic
    , Generic1
#endif
    , Ord
    , Read
    , Show
    , Typeable
    , Semigroup
    , Monoid
    )

#if MIN_VERSION_base(4,7,0)
instance (Coercible Int a, Monoid a) => Semiring (IntSetOf a) where
  zero  = coerce IntSet.empty
  one   = coerce IntSet.singleton (mempty :: a)
  plus  = coerce IntSet.union
  xs `times` ys
    = coerce IntSet.fromList
        [ mappend k l
        | k :: a <- coerce IntSet.toList xs
        , l :: a <- coerce IntSet.toList ys
        ]
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}
#endif

-- | The multiplication laws are satisfied for
--   any underlying 'Monoid' as the key type,
--   so we require a 'Monoid' constraint instead of
--   a 'Semiring' constraint since 'times' can use
--   the context of either.
instance (Ord k, Monoid k, Semiring v) => Semiring (Map k v) where
  zero = Map.empty
  one  = Map.singleton mempty one
  plus = Map.unionWith (+)
  xs `times` ys
    = Map.fromListWith (+)
        [ (mappend k l, v * u)
        | (k,v) <- Map.toList xs
        , (l,u) <- Map.toList ys
        ]
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

-- | Wrapper to mimic 'Map' ('Data.Semigroup.Sum' 'Int') v,
-- 'Map' ('Data.Semigroup.Product' 'Int') v, etc.,
-- while having a more efficient underlying representation.
newtype IntMapOf k v = IntMapOf { getIntMap :: IntMap v }
  deriving
    ( Eq
#if MIN_VERSION_base(4,6,1)
    , Generic
    , Generic1
#endif
    , Ord
    , Read
    , Show
    , Typeable
    , Semigroup
    , Monoid
    )

#if MIN_VERSION_base(4,7,0)
instance (Coercible Int k, Monoid k, Semiring v) => Semiring (IntMapOf k v) where
  zero = coerce (IntMap.empty :: IntMap v)
  one  = coerce (IntMap.singleton :: Int -> v -> IntMap v) (mempty :: k) (one :: v)
  plus = coerce (IntMap.unionWith (+) :: IntMap v -> IntMap v -> IntMap v)
  xs `times` ys
    = coerce (IntMap.fromListWith (+) :: [(Int, v)] -> IntMap v)
        [ (mappend k l, v * u)
        | (k :: k, v :: v) <- coerce (IntMap.toList :: IntMap v -> [(Int, v)]) xs
        , (l :: k, u :: v) <- coerce (IntMap.toList :: IntMap v -> [(Int, v)]) ys
        ]
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}
#endif

#endif

{--------------------------------------------------------------------
  Instances (unordered-containers)
--------------------------------------------------------------------}

#if defined(VERSION_unordered_containers)

-- | The multiplication laws are satisfied for
--   any underlying 'Monoid', so we require a
--   'Monoid' constraint instead of a 'Semiring'
--   constraint since 'times' can use
--   the context of either.
instance (Eq a, Hashable a, Monoid a) => Semiring (HashSet a) where
  zero = HashSet.empty
  one  = HashSet.singleton mempty
  plus = HashSet.union
  times xs ys = Foldable.foldMap (flip HashSet.map ys . mappend) xs
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

-- | The multiplication laws are satisfied for
--   any underlying 'Monoid' as the key type,
--   so we require a 'Monoid' constraint instead of
--   a 'Semiring' constraint since 'times' can use
--   the context of either.
instance (Eq k, Hashable k, Monoid k, Semiring v) => Semiring (HashMap k v) where
  zero = HashMap.empty
  one  = HashMap.singleton mempty one
  plus = HashMap.unionWith (+)
  xs `times` ys
    = HashMap.fromListWith (+)
        [ (mappend k l, v * u)
        | (k,v) <- HashMap.toList xs
        , (l,u) <- HashMap.toList ys
        ]
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}
#endif

{--------------------------------------------------------------------
  Instances (primitive)
--------------------------------------------------------------------}

#if defined(VERSION_primitive)
-- | The multiplication laws are satisfied for
--   any underlying 'Monoid', so we require a
--   'Monoid' constraint instead of a 'Semiring'
--   constraint since 'times' can use
--   the context of either.
-- instance (Monoid a) => Semiring (Array a) where
--   zero  = mempty
--   one   = runST e where
--     e :: forall s. Monoid a => ST s (Array a)
--     e = (Array.newArray 1 mempty) >>= Array.unsafeFreezeArray
--   plus _ _ = mempty
--   times _ _ = mempty
--   {-# INLINE plus  #-}
--   {-# INLINE zero  #-}
--   {-# INLINE times #-}
--   {-# INLINE one   #-}
#endif

{--------------------------------------------------------------------
  Instances (vector)
--------------------------------------------------------------------}

#if defined(VERSION_vector)
-- | The 'Semiring' instance for 'Vector a' can be interpreted as
--   treating each element of the list as coefficients to a
--   polynomial in one variable.
--
-- ==== __Examples__
--
-- @poly1 = Vector.fromList [1,2,3 :: Int]@
-- @poly2 = Vector.fromList [  2,1 :: Int]@
-- @poly1 * poly2@
-- fromList [2,5,8,3]
instance Semiring a => Semiring (Vector a) where
  zero  = Vector.empty
  one   = Vector.singleton one
  plus xs ys =
    case compare (Vector.length xs) (Vector.length ys) of
      EQ -> Vector.zipWith (+) xs ys
      LT -> Vector.unsafeAccumulate (+) ys (Vector.indexed xs)
      GT -> Vector.unsafeAccumulate (+) xs (Vector.indexed ys)
  times signal kernel
    | Vector.null signal = Vector.empty
    | Vector.null kernel = Vector.empty
    | otherwise = Vector.generate (slen + klen - 1) f
    where
      !slen = Vector.length signal
      !klen = Vector.length kernel
      f n = Foldable.foldl'
        (\a k -> a +
                 Vector.unsafeIndex signal k *
                 Vector.unsafeIndex kernel (n - k)
        )
        zero
        [kmin .. kmax]
        where
          !kmin = max 0 (n - (klen - 1))
          !kmax = min n (slen - 1)
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance Ring a => Ring (Vector a) where
  negate = Vector.map negate
  {-# INLINE negate #-}

instance (UV.Unbox a, Semiring a) => Semiring (UV.Vector a) where
  zero = UV.empty
  one  = UV.singleton one
  plus xs ys =
    case compare (UV.length xs) (UV.length ys) of
      EQ -> UV.zipWith (+) xs ys
      LT -> UV.unsafeAccumulate (+) ys (UV.indexed xs)
      GT -> UV.unsafeAccumulate (+) xs (UV.indexed ys)
  times signal kernel
    | UV.null signal = UV.empty
    | UV.null kernel = UV.empty
    | otherwise = UV.generate (slen + klen - 1) f
    where
      !slen = UV.length signal
      !klen = UV.length kernel
      f n = Foldable.foldl'
        (\a k -> a +
                 UV.unsafeIndex signal k *
                 UV.unsafeIndex kernel (n - k)
        )
        zero
        [kmin .. kmax]
        where
          !kmin = max 0 (n - (klen - 1))
          !kmax = min n (slen - 1)
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance (UV.Unbox a, Ring a) => Ring (UV.Vector a) where
  negate = UV.map negate
  {-# INLINE negate #-}

instance (SV.Storable a, Semiring a) => Semiring (SV.Vector a) where
  zero = SV.empty
  one = SV.singleton one
  plus xs ys =
    case compare lxs lys of
      EQ -> SV.zipWith (+) xs ys
      LT -> SV.unsafeAccumulate_ (+) ys (SV.enumFromN 0 lxs) xs
      GT -> SV.unsafeAccumulate_ (+) xs (SV.enumFromN 0 lys) ys
    where
      lxs = SV.length xs
      lys = SV.length ys
  times signal kernel
    | SV.null signal = SV.empty
    | SV.null kernel = SV.empty
    | otherwise = SV.generate (slen + klen - 1) f
      where
        !slen = SV.length signal
        !klen = SV.length kernel
        f n = Foldable.foldl'
          (\a k -> a +
                  SV.unsafeIndex signal k *
                  SV.unsafeIndex kernel (n - k))
                zero
                [kmin .. kmax]
          where
            !kmin = max 0 (n - (klen - 1))
            !kmax = min n (slen - 1)
  {-# INLINE plus  #-}
  {-# INLINE zero  #-}
  {-# INLINE times #-}
  {-# INLINE one   #-}

instance (SV.Storable a, Ring a) => Ring (SV.Vector a) where
  negate = SV.map negate
  {-# INLINE negate #-}
#endif

-- [Section: List fusion]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
listAdd, listTimes :: Semiring a => [a] -> [a] -> [a]
listAdd [] ys = ys
listAdd xs [] = xs
listAdd (x:xs) (y:ys) = (x + y) : listAdd xs ys
{-# NOINLINE [0] listAdd #-}

listTimes _  [] = []
listTimes xs ys = List.foldr f [] xs
  where
    f x zs = List.foldr (g x) id ys (zero : zs)
    g x y a []     = x `times` y : a []
    g x y a (z:zs) = x `times` y `plus` z : a zs
{-# NOINLINE [0] listTimes #-}

type ListBuilder a = forall b. (a -> b -> b) -> b -> b

{-# RULES
"listAddFB/left"  forall    (g :: ListBuilder a). listAdd    (build g) = listAddFBL g
"listAddFB/right" forall xs (g :: ListBuilder a). listAdd xs (build g) = listAddFBR xs g
  #-}

-- a definition of listAdd which can be fused on its left argument
listAddFBL :: Semiring a => ListBuilder a -> [a] -> [a]
listAddFBL xf = xf f id where
  f x xs (y:ys) = x + y : xs ys
  f x xs []     = x : xs []

-- a definition of listAdd which can be fused on its right argument
listAddFBR :: Semiring a => [a] -> ListBuilder a -> [a]
listAddFBR xs' yf = yf f id xs' where
  f y ys (x:xs) = x + y : ys xs
  f y ys []     = y : ys []