{-# LANGUAGE CPP #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
#if MIN_VERSION_base(4,12,0)
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE StandaloneDeriving #-}
#else
{-# LANGUAGE TemplateHaskell #-}
#endif
module Data.Euclidean
( Euclidean(..)
, Field
, GcdDomain(..)
, WrappedIntegral(..)
, WrappedFractional(..)
, gcdExt
) where
import Prelude hiding (quotRem, quot, rem, divMod, div, mod, gcd, lcm, negate, (*), Int, Word)
import qualified Prelude as P
import Control.Exception (throw, ArithException(..))
import Data.Bits (Bits)
import Data.Complex (Complex(..))
import Data.Int (Int, Int8, Int16, Int32, Int64)
import Data.Maybe (isJust)
import Data.Ratio (Ratio)
import Data.Semiring (Semiring(..), Ring(..), (*), minus, isZero, Mod2)
import Data.Word (Word, Word8, Word16, Word32, Word64)
import Foreign.C.Types (CFloat, CDouble)
#if !MIN_VERSION_base(4,12,0)
import Language.Haskell.TH.Syntax (Q, Dec, Type)
#endif
import Numeric.Natural
class Semiring a => GcdDomain a where
divide :: a -> a -> Maybe a
default divide :: (Eq a, Euclidean a) => a -> a -> Maybe a
divide a
x a
y = let (a
q, a
r) = a -> a -> (a, a)
forall a. Euclidean a => a -> a -> (a, a)
quotRem a
x a
y in
if a -> Bool
forall a. (Eq a, Semiring a) => a -> Bool
isZero a
r then a -> Maybe a
forall a. a -> Maybe a
Just a
q else Maybe a
forall a. Maybe a
Nothing
gcd :: a -> a -> a
default gcd :: (Eq a, Euclidean a) => a -> a -> a
gcd a
a a
b
| a -> Bool
forall a. (Eq a, Semiring a) => a -> Bool
isZero a
b = a
a
| Bool
otherwise = a -> a -> a
forall a. GcdDomain a => a -> a -> a
gcd a
b (a
a a -> a -> a
forall a. Euclidean a => a -> a -> a
`rem` a
b)
lcm :: a -> a -> a
default lcm :: Eq a => a -> a -> a
lcm a
a a
b
| a -> Bool
forall a. (Eq a, Semiring a) => a -> Bool
isZero a
a Bool -> Bool -> Bool
|| a -> Bool
forall a. (Eq a, Semiring a) => a -> Bool
isZero a
b = a
forall a. Semiring a => a
zero
| Bool
otherwise = case a
a a -> a -> Maybe a
forall a. GcdDomain a => a -> a -> Maybe a
`divide` a -> a -> a
forall a. GcdDomain a => a -> a -> a
gcd a
a a
b of
Maybe a
Nothing -> [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"lcm: violated gcd invariant"
Just a
c -> a
c a -> a -> a
forall a. Semiring a => a -> a -> a
* a
b
coprime :: a -> a -> Bool
default coprime :: a -> a -> Bool
coprime a
x a
y = Maybe a -> Bool
forall a. Maybe a -> Bool
isJust (a
forall a. Semiring a => a
one a -> a -> Maybe a
forall a. GcdDomain a => a -> a -> Maybe a
`divide` a -> a -> a
forall a. GcdDomain a => a -> a -> a
gcd a
x a
y)
infixl 7 `divide`
class GcdDomain a => Euclidean a where
{-# MINIMAL (quotRem | quot, rem), degree #-}
quotRem :: a -> a -> (a, a)
quotRem a
x a
y = (a -> a -> a
forall a. Euclidean a => a -> a -> a
quot a
x a
y, a -> a -> a
forall a. Euclidean a => a -> a -> a
rem a
x a
y)
quot :: a -> a -> a
quot a
x a
y = (a, a) -> a
forall a b. (a, b) -> a
fst (a -> a -> (a, a)
forall a. Euclidean a => a -> a -> (a, a)
quotRem a
x a
y)
rem :: a -> a -> a
rem a
x a
y = (a, a) -> a
forall a b. (a, b) -> b
snd (a -> a -> (a, a)
forall a. Euclidean a => a -> a -> (a, a)
quotRem a
x a
y)
degree :: a -> Natural
infixl 7 `quot`
infixl 7 `rem`
coprimeIntegral :: Integral a => a -> a -> Bool
coprimeIntegral :: a -> a -> Bool
coprimeIntegral a
x a
y = (a -> Bool
forall a. Integral a => a -> Bool
odd a
x Bool -> Bool -> Bool
|| a -> Bool
forall a. Integral a => a -> Bool
odd a
y) Bool -> Bool -> Bool
&& a -> a -> a
forall a. Integral a => a -> a -> a
P.gcd a
x a
y a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
1
gcdExt :: (Eq a, Euclidean a, Ring a) => a -> a -> (a, a)
gcdExt :: a -> a -> (a, a)
gcdExt = a -> a -> a -> a -> (a, a)
forall t. (Eq t, Euclidean t, Ring t) => t -> t -> t -> t -> (t, t)
go a
forall a. Semiring a => a
one a
forall a. Semiring a => a
zero
where
go :: t -> t -> t -> t -> (t, t)
go t
s t
s' t
r t
r'
| t
r' t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
forall a. Semiring a => a
zero = (t
r, t
s)
| Bool
otherwise = case t -> t -> (t, t)
forall a. Euclidean a => a -> a -> (a, a)
quotRem t
r t
r' of
(t
q, t
r'') -> t -> t -> t -> t -> (t, t)
go t
s' (t -> t -> t
forall a. Ring a => a -> a -> a
minus t
s (t -> t -> t
forall a. Semiring a => a -> a -> a
times t
q t
s')) t
r' t
r''
{-# INLINABLE gcdExt #-}
class (Euclidean a, Ring a) => Field a
instance GcdDomain () where
divide :: () -> () -> Maybe ()
divide = (() -> Maybe ()) -> () -> () -> Maybe ()
forall a b. a -> b -> a
const ((() -> Maybe ()) -> () -> () -> Maybe ())
-> (() -> Maybe ()) -> () -> () -> Maybe ()
forall a b. (a -> b) -> a -> b
$ Maybe () -> () -> Maybe ()
forall a b. a -> b -> a
const (() -> Maybe ()
forall a. a -> Maybe a
Just ())
gcd :: () -> () -> ()
gcd = (() -> ()) -> () -> () -> ()
forall a b. a -> b -> a
const ((() -> ()) -> () -> () -> ()) -> (() -> ()) -> () -> () -> ()
forall a b. (a -> b) -> a -> b
$ () -> () -> ()
forall a b. a -> b -> a
const ()
lcm :: () -> () -> ()
lcm = (() -> ()) -> () -> () -> ()
forall a b. a -> b -> a
const ((() -> ()) -> () -> () -> ()) -> (() -> ()) -> () -> () -> ()
forall a b. (a -> b) -> a -> b
$ () -> () -> ()
forall a b. a -> b -> a
const ()
coprime :: () -> () -> Bool
coprime = (() -> Bool) -> () -> () -> Bool
forall a b. a -> b -> a
const ((() -> Bool) -> () -> () -> Bool)
-> (() -> Bool) -> () -> () -> Bool
forall a b. (a -> b) -> a -> b
$ Bool -> () -> Bool
forall a b. a -> b -> a
const Bool
True
instance Euclidean () where
degree :: () -> Natural
degree = Natural -> () -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: () -> () -> ((), ())
quotRem = (() -> ((), ())) -> () -> () -> ((), ())
forall a b. a -> b -> a
const ((() -> ((), ())) -> () -> () -> ((), ()))
-> (() -> ((), ())) -> () -> () -> ((), ())
forall a b. (a -> b) -> a -> b
$ ((), ()) -> () -> ((), ())
forall a b. a -> b -> a
const ((), ())
quot :: () -> () -> ()
quot = (() -> ()) -> () -> () -> ()
forall a b. a -> b -> a
const ((() -> ()) -> () -> () -> ()) -> (() -> ()) -> () -> () -> ()
forall a b. (a -> b) -> a -> b
$ () -> () -> ()
forall a b. a -> b -> a
const ()
rem :: () -> () -> ()
rem = (() -> ()) -> () -> () -> ()
forall a b. a -> b -> a
const ((() -> ()) -> () -> () -> ()) -> (() -> ()) -> () -> () -> ()
forall a b. (a -> b) -> a -> b
$ () -> () -> ()
forall a b. a -> b -> a
const ()
instance Field ()
instance GcdDomain Mod2 where
instance Euclidean Mod2 where
degree :: Mod2 -> Natural
degree = Natural -> Mod2 -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: Mod2 -> Mod2 -> (Mod2, Mod2)
quotRem Mod2
x Mod2
y
| Mod2 -> Bool
forall a. (Eq a, Semiring a) => a -> Bool
isZero Mod2
y = ArithException -> (Mod2, Mod2)
forall a e. Exception e => e -> a
throw ArithException
DivideByZero
| Bool
otherwise = (Mod2
x, Mod2
forall a. Semiring a => a
zero)
instance Field Mod2
newtype WrappedIntegral a = WrapIntegral { WrappedIntegral a -> a
unwrapIntegral :: a }
deriving (WrappedIntegral a -> WrappedIntegral a -> Bool
(WrappedIntegral a -> WrappedIntegral a -> Bool)
-> (WrappedIntegral a -> WrappedIntegral a -> Bool)
-> Eq (WrappedIntegral a)
forall a. Eq a => WrappedIntegral a -> WrappedIntegral a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: WrappedIntegral a -> WrappedIntegral a -> Bool
$c/= :: forall a. Eq a => WrappedIntegral a -> WrappedIntegral a -> Bool
== :: WrappedIntegral a -> WrappedIntegral a -> Bool
$c== :: forall a. Eq a => WrappedIntegral a -> WrappedIntegral a -> Bool
Eq, Eq (WrappedIntegral a)
Eq (WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> Ordering)
-> (WrappedIntegral a -> WrappedIntegral a -> Bool)
-> (WrappedIntegral a -> WrappedIntegral a -> Bool)
-> (WrappedIntegral a -> WrappedIntegral a -> Bool)
-> (WrappedIntegral a -> WrappedIntegral a -> Bool)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> Ord (WrappedIntegral a)
WrappedIntegral a -> WrappedIntegral a -> Bool
WrappedIntegral a -> WrappedIntegral a -> Ordering
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall a. Ord a => Eq (WrappedIntegral a)
forall a. Ord a => WrappedIntegral a -> WrappedIntegral a -> Bool
forall a.
Ord a =>
WrappedIntegral a -> WrappedIntegral a -> Ordering
forall a.
Ord a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
min :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$cmin :: forall a.
Ord a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
max :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$cmax :: forall a.
Ord a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
>= :: WrappedIntegral a -> WrappedIntegral a -> Bool
$c>= :: forall a. Ord a => WrappedIntegral a -> WrappedIntegral a -> Bool
> :: WrappedIntegral a -> WrappedIntegral a -> Bool
$c> :: forall a. Ord a => WrappedIntegral a -> WrappedIntegral a -> Bool
<= :: WrappedIntegral a -> WrappedIntegral a -> Bool
$c<= :: forall a. Ord a => WrappedIntegral a -> WrappedIntegral a -> Bool
< :: WrappedIntegral a -> WrappedIntegral a -> Bool
$c< :: forall a. Ord a => WrappedIntegral a -> WrappedIntegral a -> Bool
compare :: WrappedIntegral a -> WrappedIntegral a -> Ordering
$ccompare :: forall a.
Ord a =>
WrappedIntegral a -> WrappedIntegral a -> Ordering
$cp1Ord :: forall a. Ord a => Eq (WrappedIntegral a)
Ord, Int -> WrappedIntegral a -> ShowS
[WrappedIntegral a] -> ShowS
WrappedIntegral a -> [Char]
(Int -> WrappedIntegral a -> ShowS)
-> (WrappedIntegral a -> [Char])
-> ([WrappedIntegral a] -> ShowS)
-> Show (WrappedIntegral a)
forall a. Show a => Int -> WrappedIntegral a -> ShowS
forall a. Show a => [WrappedIntegral a] -> ShowS
forall a. Show a => WrappedIntegral a -> [Char]
forall a.
(Int -> a -> ShowS) -> (a -> [Char]) -> ([a] -> ShowS) -> Show a
showList :: [WrappedIntegral a] -> ShowS
$cshowList :: forall a. Show a => [WrappedIntegral a] -> ShowS
show :: WrappedIntegral a -> [Char]
$cshow :: forall a. Show a => WrappedIntegral a -> [Char]
showsPrec :: Int -> WrappedIntegral a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> WrappedIntegral a -> ShowS
Show, Integer -> WrappedIntegral a
WrappedIntegral a -> WrappedIntegral a
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
(WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a)
-> (Integer -> WrappedIntegral a)
-> Num (WrappedIntegral a)
forall a. Num a => Integer -> WrappedIntegral a
forall a. Num a => WrappedIntegral a -> WrappedIntegral a
forall a.
Num a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a.
(a -> a -> a)
-> (a -> a -> a)
-> (a -> a -> a)
-> (a -> a)
-> (a -> a)
-> (a -> a)
-> (Integer -> a)
-> Num a
fromInteger :: Integer -> WrappedIntegral a
$cfromInteger :: forall a. Num a => Integer -> WrappedIntegral a
signum :: WrappedIntegral a -> WrappedIntegral a
$csignum :: forall a. Num a => WrappedIntegral a -> WrappedIntegral a
abs :: WrappedIntegral a -> WrappedIntegral a
$cabs :: forall a. Num a => WrappedIntegral a -> WrappedIntegral a
negate :: WrappedIntegral a -> WrappedIntegral a
$cnegate :: forall a. Num a => WrappedIntegral a -> WrappedIntegral a
* :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$c* :: forall a.
Num a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
- :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$c- :: forall a.
Num a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
+ :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$c+ :: forall a.
Num a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
Num, Enum (WrappedIntegral a)
Real (WrappedIntegral a)
Real (WrappedIntegral a)
-> Enum (WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a))
-> (WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a))
-> (WrappedIntegral a -> Integer)
-> Integral (WrappedIntegral a)
WrappedIntegral a -> Integer
WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a. Integral a => Enum (WrappedIntegral a)
forall a. Integral a => Real (WrappedIntegral a)
forall a. Integral a => WrappedIntegral a -> Integer
forall a.
Integral a =>
WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
forall a.
Integral a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a.
Real a
-> Enum a
-> (a -> a -> a)
-> (a -> a -> a)
-> (a -> a -> a)
-> (a -> a -> a)
-> (a -> a -> (a, a))
-> (a -> a -> (a, a))
-> (a -> Integer)
-> Integral a
toInteger :: WrappedIntegral a -> Integer
$ctoInteger :: forall a. Integral a => WrappedIntegral a -> Integer
divMod :: WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
$cdivMod :: forall a.
Integral a =>
WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
quotRem :: WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
$cquotRem :: forall a.
Integral a =>
WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
mod :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$cmod :: forall a.
Integral a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
div :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$cdiv :: forall a.
Integral a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
rem :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$crem :: forall a.
Integral a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
quot :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$cquot :: forall a.
Integral a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$cp2Integral :: forall a. Integral a => Enum (WrappedIntegral a)
$cp1Integral :: forall a. Integral a => Real (WrappedIntegral a)
Integral, Num (WrappedIntegral a)
Ord (WrappedIntegral a)
Num (WrappedIntegral a)
-> Ord (WrappedIntegral a)
-> (WrappedIntegral a -> Rational)
-> Real (WrappedIntegral a)
WrappedIntegral a -> Rational
forall a. Num a -> Ord a -> (a -> Rational) -> Real a
forall a. Real a => Num (WrappedIntegral a)
forall a. Real a => Ord (WrappedIntegral a)
forall a. Real a => WrappedIntegral a -> Rational
toRational :: WrappedIntegral a -> Rational
$ctoRational :: forall a. Real a => WrappedIntegral a -> Rational
$cp2Real :: forall a. Real a => Ord (WrappedIntegral a)
$cp1Real :: forall a. Real a => Num (WrappedIntegral a)
Real, Int -> WrappedIntegral a
WrappedIntegral a -> Int
WrappedIntegral a -> [WrappedIntegral a]
WrappedIntegral a -> WrappedIntegral a
WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
WrappedIntegral a
-> WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
(WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a)
-> (Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int)
-> (WrappedIntegral a -> [WrappedIntegral a])
-> (WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a])
-> (WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a])
-> (WrappedIntegral a
-> WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a])
-> Enum (WrappedIntegral a)
forall a. Enum a => Int -> WrappedIntegral a
forall a. Enum a => WrappedIntegral a -> Int
forall a. Enum a => WrappedIntegral a -> [WrappedIntegral a]
forall a. Enum a => WrappedIntegral a -> WrappedIntegral a
forall a.
Enum a =>
WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
forall a.
Enum a =>
WrappedIntegral a
-> WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
forall a.
(a -> a)
-> (a -> a)
-> (Int -> a)
-> (a -> Int)
-> (a -> [a])
-> (a -> a -> [a])
-> (a -> a -> [a])
-> (a -> a -> a -> [a])
-> Enum a
enumFromThenTo :: WrappedIntegral a
-> WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
$cenumFromThenTo :: forall a.
Enum a =>
WrappedIntegral a
-> WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
enumFromTo :: WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
$cenumFromTo :: forall a.
Enum a =>
WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
enumFromThen :: WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
$cenumFromThen :: forall a.
Enum a =>
WrappedIntegral a -> WrappedIntegral a -> [WrappedIntegral a]
enumFrom :: WrappedIntegral a -> [WrappedIntegral a]
$cenumFrom :: forall a. Enum a => WrappedIntegral a -> [WrappedIntegral a]
fromEnum :: WrappedIntegral a -> Int
$cfromEnum :: forall a. Enum a => WrappedIntegral a -> Int
toEnum :: Int -> WrappedIntegral a
$ctoEnum :: forall a. Enum a => Int -> WrappedIntegral a
pred :: WrappedIntegral a -> WrappedIntegral a
$cpred :: forall a. Enum a => WrappedIntegral a -> WrappedIntegral a
succ :: WrappedIntegral a -> WrappedIntegral a
$csucc :: forall a. Enum a => WrappedIntegral a -> WrappedIntegral a
Enum, Eq (WrappedIntegral a)
WrappedIntegral a
Eq (WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> WrappedIntegral a
-> (Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> Bool)
-> (WrappedIntegral a -> Maybe Int)
-> (WrappedIntegral a -> Int)
-> (WrappedIntegral a -> Bool)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int -> WrappedIntegral a)
-> (WrappedIntegral a -> Int)
-> Bits (WrappedIntegral a)
Int -> WrappedIntegral a
WrappedIntegral a -> Bool
WrappedIntegral a -> Int
WrappedIntegral a -> Maybe Int
WrappedIntegral a -> WrappedIntegral a
WrappedIntegral a -> Int -> Bool
WrappedIntegral a -> Int -> WrappedIntegral a
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a.
Eq a
-> (a -> a -> a)
-> (a -> a -> a)
-> (a -> a -> a)
-> (a -> a)
-> (a -> Int -> a)
-> (a -> Int -> a)
-> a
-> (Int -> a)
-> (a -> Int -> a)
-> (a -> Int -> a)
-> (a -> Int -> a)
-> (a -> Int -> Bool)
-> (a -> Maybe Int)
-> (a -> Int)
-> (a -> Bool)
-> (a -> Int -> a)
-> (a -> Int -> a)
-> (a -> Int -> a)
-> (a -> Int -> a)
-> (a -> Int -> a)
-> (a -> Int -> a)
-> (a -> Int)
-> Bits a
forall a. Bits a => Eq (WrappedIntegral a)
forall a. Bits a => WrappedIntegral a
forall a. Bits a => Int -> WrappedIntegral a
forall a. Bits a => WrappedIntegral a -> Bool
forall a. Bits a => WrappedIntegral a -> Int
forall a. Bits a => WrappedIntegral a -> Maybe Int
forall a. Bits a => WrappedIntegral a -> WrappedIntegral a
forall a. Bits a => WrappedIntegral a -> Int -> Bool
forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
forall a.
Bits a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
popCount :: WrappedIntegral a -> Int
$cpopCount :: forall a. Bits a => WrappedIntegral a -> Int
rotateR :: WrappedIntegral a -> Int -> WrappedIntegral a
$crotateR :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
rotateL :: WrappedIntegral a -> Int -> WrappedIntegral a
$crotateL :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
unsafeShiftR :: WrappedIntegral a -> Int -> WrappedIntegral a
$cunsafeShiftR :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
shiftR :: WrappedIntegral a -> Int -> WrappedIntegral a
$cshiftR :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
unsafeShiftL :: WrappedIntegral a -> Int -> WrappedIntegral a
$cunsafeShiftL :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
shiftL :: WrappedIntegral a -> Int -> WrappedIntegral a
$cshiftL :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
isSigned :: WrappedIntegral a -> Bool
$cisSigned :: forall a. Bits a => WrappedIntegral a -> Bool
bitSize :: WrappedIntegral a -> Int
$cbitSize :: forall a. Bits a => WrappedIntegral a -> Int
bitSizeMaybe :: WrappedIntegral a -> Maybe Int
$cbitSizeMaybe :: forall a. Bits a => WrappedIntegral a -> Maybe Int
testBit :: WrappedIntegral a -> Int -> Bool
$ctestBit :: forall a. Bits a => WrappedIntegral a -> Int -> Bool
complementBit :: WrappedIntegral a -> Int -> WrappedIntegral a
$ccomplementBit :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
clearBit :: WrappedIntegral a -> Int -> WrappedIntegral a
$cclearBit :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
setBit :: WrappedIntegral a -> Int -> WrappedIntegral a
$csetBit :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
bit :: Int -> WrappedIntegral a
$cbit :: forall a. Bits a => Int -> WrappedIntegral a
zeroBits :: WrappedIntegral a
$czeroBits :: forall a. Bits a => WrappedIntegral a
rotate :: WrappedIntegral a -> Int -> WrappedIntegral a
$crotate :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
shift :: WrappedIntegral a -> Int -> WrappedIntegral a
$cshift :: forall a. Bits a => WrappedIntegral a -> Int -> WrappedIntegral a
complement :: WrappedIntegral a -> WrappedIntegral a
$ccomplement :: forall a. Bits a => WrappedIntegral a -> WrappedIntegral a
xor :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$cxor :: forall a.
Bits a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
.|. :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$c.|. :: forall a.
Bits a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
.&. :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$c.&. :: forall a.
Bits a =>
WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
$cp1Bits :: forall a. Bits a => Eq (WrappedIntegral a)
Bits)
instance Num a => Semiring (WrappedIntegral a) where
plus :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
plus = WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a. Num a => a -> a -> a
(P.+)
zero :: WrappedIntegral a
zero = WrappedIntegral a
0
times :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
times = WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a. Num a => a -> a -> a
(P.*)
one :: WrappedIntegral a
one = WrappedIntegral a
1
fromNatural :: Natural -> WrappedIntegral a
fromNatural = Natural -> WrappedIntegral a
forall a b. (Integral a, Num b) => a -> b
P.fromIntegral
instance Num a => Ring (WrappedIntegral a) where
negate :: WrappedIntegral a -> WrappedIntegral a
negate = WrappedIntegral a -> WrappedIntegral a
forall a. Num a => a -> a
P.negate
instance Integral a => GcdDomain (WrappedIntegral a) where
divide :: WrappedIntegral a -> WrappedIntegral a -> Maybe (WrappedIntegral a)
divide WrappedIntegral a
x WrappedIntegral a
y = case WrappedIntegral a
x WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
forall a. Integral a => a -> a -> (a, a)
`P.quotRem` WrappedIntegral a
y of (WrappedIntegral a
q, WrappedIntegral a
0) -> WrappedIntegral a -> Maybe (WrappedIntegral a)
forall a. a -> Maybe a
Just WrappedIntegral a
q; (WrappedIntegral a, WrappedIntegral a)
_ -> Maybe (WrappedIntegral a)
forall a. Maybe a
Nothing
gcd :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
gcd = WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a. Integral a => a -> a -> a
P.gcd
lcm :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
lcm = WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a. Integral a => a -> a -> a
P.lcm
coprime :: WrappedIntegral a -> WrappedIntegral a -> Bool
coprime = WrappedIntegral a -> WrappedIntegral a -> Bool
forall a. Integral a => a -> a -> Bool
coprimeIntegral
instance Integral a => Euclidean (WrappedIntegral a) where
degree :: WrappedIntegral a -> Natural
degree = a -> Natural
forall a b. (Integral a, Num b) => a -> b
P.fromIntegral (a -> Natural)
-> (WrappedIntegral a -> a) -> WrappedIntegral a -> Natural
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> a
forall a. Num a => a -> a
abs (a -> a) -> (WrappedIntegral a -> a) -> WrappedIntegral a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. WrappedIntegral a -> a
forall a. WrappedIntegral a -> a
unwrapIntegral
quotRem :: WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
quotRem = WrappedIntegral a
-> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a)
forall a. Integral a => a -> a -> (a, a)
P.quotRem
quot :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
quot = WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a. Integral a => a -> a -> a
P.quot
rem :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
rem = WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a
forall a. Integral a => a -> a -> a
P.rem
newtype WrappedFractional a = WrapFractional { WrappedFractional a -> a
unwrapFractional :: a }
deriving (WrappedFractional a -> WrappedFractional a -> Bool
(WrappedFractional a -> WrappedFractional a -> Bool)
-> (WrappedFractional a -> WrappedFractional a -> Bool)
-> Eq (WrappedFractional a)
forall a.
Eq a =>
WrappedFractional a -> WrappedFractional a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: WrappedFractional a -> WrappedFractional a -> Bool
$c/= :: forall a.
Eq a =>
WrappedFractional a -> WrappedFractional a -> Bool
== :: WrappedFractional a -> WrappedFractional a -> Bool
$c== :: forall a.
Eq a =>
WrappedFractional a -> WrappedFractional a -> Bool
Eq, Eq (WrappedFractional a)
Eq (WrappedFractional a)
-> (WrappedFractional a -> WrappedFractional a -> Ordering)
-> (WrappedFractional a -> WrappedFractional a -> Bool)
-> (WrappedFractional a -> WrappedFractional a -> Bool)
-> (WrappedFractional a -> WrappedFractional a -> Bool)
-> (WrappedFractional a -> WrappedFractional a -> Bool)
-> (WrappedFractional a
-> WrappedFractional a -> WrappedFractional a)
-> (WrappedFractional a
-> WrappedFractional a -> WrappedFractional a)
-> Ord (WrappedFractional a)
WrappedFractional a -> WrappedFractional a -> Bool
WrappedFractional a -> WrappedFractional a -> Ordering
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall a. Ord a => Eq (WrappedFractional a)
forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> Bool
forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> Ordering
forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
min :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
$cmin :: forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
max :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
$cmax :: forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
>= :: WrappedFractional a -> WrappedFractional a -> Bool
$c>= :: forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> Bool
> :: WrappedFractional a -> WrappedFractional a -> Bool
$c> :: forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> Bool
<= :: WrappedFractional a -> WrappedFractional a -> Bool
$c<= :: forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> Bool
< :: WrappedFractional a -> WrappedFractional a -> Bool
$c< :: forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> Bool
compare :: WrappedFractional a -> WrappedFractional a -> Ordering
$ccompare :: forall a.
Ord a =>
WrappedFractional a -> WrappedFractional a -> Ordering
$cp1Ord :: forall a. Ord a => Eq (WrappedFractional a)
Ord, Int -> WrappedFractional a -> ShowS
[WrappedFractional a] -> ShowS
WrappedFractional a -> [Char]
(Int -> WrappedFractional a -> ShowS)
-> (WrappedFractional a -> [Char])
-> ([WrappedFractional a] -> ShowS)
-> Show (WrappedFractional a)
forall a. Show a => Int -> WrappedFractional a -> ShowS
forall a. Show a => [WrappedFractional a] -> ShowS
forall a. Show a => WrappedFractional a -> [Char]
forall a.
(Int -> a -> ShowS) -> (a -> [Char]) -> ([a] -> ShowS) -> Show a
showList :: [WrappedFractional a] -> ShowS
$cshowList :: forall a. Show a => [WrappedFractional a] -> ShowS
show :: WrappedFractional a -> [Char]
$cshow :: forall a. Show a => WrappedFractional a -> [Char]
showsPrec :: Int -> WrappedFractional a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> WrappedFractional a -> ShowS
Show, Integer -> WrappedFractional a
WrappedFractional a -> WrappedFractional a
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
(WrappedFractional a -> WrappedFractional a -> WrappedFractional a)
-> (WrappedFractional a
-> WrappedFractional a -> WrappedFractional a)
-> (WrappedFractional a
-> WrappedFractional a -> WrappedFractional a)
-> (WrappedFractional a -> WrappedFractional a)
-> (WrappedFractional a -> WrappedFractional a)
-> (WrappedFractional a -> WrappedFractional a)
-> (Integer -> WrappedFractional a)
-> Num (WrappedFractional a)
forall a. Num a => Integer -> WrappedFractional a
forall a. Num a => WrappedFractional a -> WrappedFractional a
forall a.
Num a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a.
(a -> a -> a)
-> (a -> a -> a)
-> (a -> a -> a)
-> (a -> a)
-> (a -> a)
-> (a -> a)
-> (Integer -> a)
-> Num a
fromInteger :: Integer -> WrappedFractional a
$cfromInteger :: forall a. Num a => Integer -> WrappedFractional a
signum :: WrappedFractional a -> WrappedFractional a
$csignum :: forall a. Num a => WrappedFractional a -> WrappedFractional a
abs :: WrappedFractional a -> WrappedFractional a
$cabs :: forall a. Num a => WrappedFractional a -> WrappedFractional a
negate :: WrappedFractional a -> WrappedFractional a
$cnegate :: forall a. Num a => WrappedFractional a -> WrappedFractional a
* :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
$c* :: forall a.
Num a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
- :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
$c- :: forall a.
Num a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
+ :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
$c+ :: forall a.
Num a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
Num, Num (WrappedFractional a)
Num (WrappedFractional a)
-> (WrappedFractional a
-> WrappedFractional a -> WrappedFractional a)
-> (WrappedFractional a -> WrappedFractional a)
-> (Rational -> WrappedFractional a)
-> Fractional (WrappedFractional a)
Rational -> WrappedFractional a
WrappedFractional a -> WrappedFractional a
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a. Fractional a => Num (WrappedFractional a)
forall a. Fractional a => Rational -> WrappedFractional a
forall a.
Fractional a =>
WrappedFractional a -> WrappedFractional a
forall a.
Fractional a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a.
Num a
-> (a -> a -> a) -> (a -> a) -> (Rational -> a) -> Fractional a
fromRational :: Rational -> WrappedFractional a
$cfromRational :: forall a. Fractional a => Rational -> WrappedFractional a
recip :: WrappedFractional a -> WrappedFractional a
$crecip :: forall a.
Fractional a =>
WrappedFractional a -> WrappedFractional a
/ :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
$c/ :: forall a.
Fractional a =>
WrappedFractional a -> WrappedFractional a -> WrappedFractional a
$cp1Fractional :: forall a. Fractional a => Num (WrappedFractional a)
Fractional)
instance Num a => Semiring (WrappedFractional a) where
plus :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
plus = WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a. Num a => a -> a -> a
(P.+)
zero :: WrappedFractional a
zero = WrappedFractional a
0
times :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
times = WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a. Num a => a -> a -> a
(P.*)
one :: WrappedFractional a
one = WrappedFractional a
1
fromNatural :: Natural -> WrappedFractional a
fromNatural = Natural -> WrappedFractional a
forall a b. (Integral a, Num b) => a -> b
P.fromIntegral
instance Num a => Ring (WrappedFractional a) where
negate :: WrappedFractional a -> WrappedFractional a
negate = WrappedFractional a -> WrappedFractional a
forall a. Num a => a -> a
P.negate
instance Fractional a => GcdDomain (WrappedFractional a) where
divide :: WrappedFractional a
-> WrappedFractional a -> Maybe (WrappedFractional a)
divide WrappedFractional a
x WrappedFractional a
y = WrappedFractional a -> Maybe (WrappedFractional a)
forall a. a -> Maybe a
Just (WrappedFractional a
x WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a. Fractional a => a -> a -> a
/ WrappedFractional a
y)
gcd :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
gcd = (WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a
forall a b. a -> b -> a
const ((WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a)
-> (WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a
forall a b. (a -> b) -> a -> b
$ WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a b. a -> b -> a
const WrappedFractional a
1
lcm :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
lcm = (WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a
forall a b. a -> b -> a
const ((WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a)
-> (WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a
forall a b. (a -> b) -> a -> b
$ WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a b. a -> b -> a
const WrappedFractional a
1
coprime :: WrappedFractional a -> WrappedFractional a -> Bool
coprime = (WrappedFractional a -> Bool)
-> WrappedFractional a -> WrappedFractional a -> Bool
forall a b. a -> b -> a
const ((WrappedFractional a -> Bool)
-> WrappedFractional a -> WrappedFractional a -> Bool)
-> (WrappedFractional a -> Bool)
-> WrappedFractional a
-> WrappedFractional a
-> Bool
forall a b. (a -> b) -> a -> b
$ Bool -> WrappedFractional a -> Bool
forall a b. a -> b -> a
const Bool
True
instance Fractional a => Euclidean (WrappedFractional a) where
degree :: WrappedFractional a -> Natural
degree = Natural -> WrappedFractional a -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: WrappedFractional a
-> WrappedFractional a
-> (WrappedFractional a, WrappedFractional a)
quotRem WrappedFractional a
x WrappedFractional a
y = (WrappedFractional a
x WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a. Fractional a => a -> a -> a
/ WrappedFractional a
y, WrappedFractional a
0)
quot :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
quot = WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a. Fractional a => a -> a -> a
(/)
rem :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a
rem = (WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a
forall a b. a -> b -> a
const ((WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a)
-> (WrappedFractional a -> WrappedFractional a)
-> WrappedFractional a
-> WrappedFractional a
-> WrappedFractional a
forall a b. (a -> b) -> a -> b
$ WrappedFractional a -> WrappedFractional a -> WrappedFractional a
forall a b. a -> b -> a
const WrappedFractional a
0
instance Fractional a => Field (WrappedFractional a)
instance Integral a => GcdDomain (Ratio a) where
divide :: Ratio a -> Ratio a -> Maybe (Ratio a)
divide Ratio a
x Ratio a
y = Ratio a -> Maybe (Ratio a)
forall a. a -> Maybe a
Just (Ratio a
x Ratio a -> Ratio a -> Ratio a
forall a. Fractional a => a -> a -> a
/ Ratio a
y)
gcd :: Ratio a -> Ratio a -> Ratio a
gcd = (Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a
forall a b. a -> b -> a
const ((Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a)
-> (Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a
forall a b. (a -> b) -> a -> b
$ Ratio a -> Ratio a -> Ratio a
forall a b. a -> b -> a
const Ratio a
1
lcm :: Ratio a -> Ratio a -> Ratio a
lcm = (Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a
forall a b. a -> b -> a
const ((Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a)
-> (Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a
forall a b. (a -> b) -> a -> b
$ Ratio a -> Ratio a -> Ratio a
forall a b. a -> b -> a
const Ratio a
1
coprime :: Ratio a -> Ratio a -> Bool
coprime = (Ratio a -> Bool) -> Ratio a -> Ratio a -> Bool
forall a b. a -> b -> a
const ((Ratio a -> Bool) -> Ratio a -> Ratio a -> Bool)
-> (Ratio a -> Bool) -> Ratio a -> Ratio a -> Bool
forall a b. (a -> b) -> a -> b
$ Bool -> Ratio a -> Bool
forall a b. a -> b -> a
const Bool
True
instance Integral a => Euclidean (Ratio a) where
degree :: Ratio a -> Natural
degree = Natural -> Ratio a -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: Ratio a -> Ratio a -> (Ratio a, Ratio a)
quotRem Ratio a
x Ratio a
y = (Ratio a
x Ratio a -> Ratio a -> Ratio a
forall a. Fractional a => a -> a -> a
/ Ratio a
y, Ratio a
0)
quot :: Ratio a -> Ratio a -> Ratio a
quot = Ratio a -> Ratio a -> Ratio a
forall a. Fractional a => a -> a -> a
(/)
rem :: Ratio a -> Ratio a -> Ratio a
rem = (Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a
forall a b. a -> b -> a
const ((Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a)
-> (Ratio a -> Ratio a) -> Ratio a -> Ratio a -> Ratio a
forall a b. (a -> b) -> a -> b
$ Ratio a -> Ratio a -> Ratio a
forall a b. a -> b -> a
const Ratio a
0
instance Integral a => Field (Ratio a)
instance GcdDomain Float where
divide :: Float -> Float -> Maybe Float
divide Float
x Float
y = Float -> Maybe Float
forall a. a -> Maybe a
Just (Float
x Float -> Float -> Float
forall a. Fractional a => a -> a -> a
/ Float
y)
gcd :: Float -> Float -> Float
gcd = (Float -> Float) -> Float -> Float -> Float
forall a b. a -> b -> a
const ((Float -> Float) -> Float -> Float -> Float)
-> (Float -> Float) -> Float -> Float -> Float
forall a b. (a -> b) -> a -> b
$ Float -> Float -> Float
forall a b. a -> b -> a
const Float
1
lcm :: Float -> Float -> Float
lcm = (Float -> Float) -> Float -> Float -> Float
forall a b. a -> b -> a
const ((Float -> Float) -> Float -> Float -> Float)
-> (Float -> Float) -> Float -> Float -> Float
forall a b. (a -> b) -> a -> b
$ Float -> Float -> Float
forall a b. a -> b -> a
const Float
1
coprime :: Float -> Float -> Bool
coprime = (Float -> Bool) -> Float -> Float -> Bool
forall a b. a -> b -> a
const ((Float -> Bool) -> Float -> Float -> Bool)
-> (Float -> Bool) -> Float -> Float -> Bool
forall a b. (a -> b) -> a -> b
$ Bool -> Float -> Bool
forall a b. a -> b -> a
const Bool
True
instance Euclidean Float where
degree :: Float -> Natural
degree = Natural -> Float -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: Float -> Float -> (Float, Float)
quotRem Float
x Float
y = (Float
x Float -> Float -> Float
forall a. Fractional a => a -> a -> a
/ Float
y, Float
0)
quot :: Float -> Float -> Float
quot = Float -> Float -> Float
forall a. Fractional a => a -> a -> a
(/)
rem :: Float -> Float -> Float
rem = (Float -> Float) -> Float -> Float -> Float
forall a b. a -> b -> a
const ((Float -> Float) -> Float -> Float -> Float)
-> (Float -> Float) -> Float -> Float -> Float
forall a b. (a -> b) -> a -> b
$ Float -> Float -> Float
forall a b. a -> b -> a
const Float
0
instance Field Float
instance GcdDomain Double where
divide :: Double -> Double -> Maybe Double
divide Double
x Double
y = Double -> Maybe Double
forall a. a -> Maybe a
Just (Double
x Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
y)
gcd :: Double -> Double -> Double
gcd = (Double -> Double) -> Double -> Double -> Double
forall a b. a -> b -> a
const ((Double -> Double) -> Double -> Double -> Double)
-> (Double -> Double) -> Double -> Double -> Double
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Double
forall a b. a -> b -> a
const Double
1
lcm :: Double -> Double -> Double
lcm = (Double -> Double) -> Double -> Double -> Double
forall a b. a -> b -> a
const ((Double -> Double) -> Double -> Double -> Double)
-> (Double -> Double) -> Double -> Double -> Double
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Double
forall a b. a -> b -> a
const Double
1
coprime :: Double -> Double -> Bool
coprime = (Double -> Bool) -> Double -> Double -> Bool
forall a b. a -> b -> a
const ((Double -> Bool) -> Double -> Double -> Bool)
-> (Double -> Bool) -> Double -> Double -> Bool
forall a b. (a -> b) -> a -> b
$ Bool -> Double -> Bool
forall a b. a -> b -> a
const Bool
True
instance Euclidean Double where
degree :: Double -> Natural
degree = Natural -> Double -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: Double -> Double -> (Double, Double)
quotRem Double
x Double
y = (Double
x Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ Double
y, Double
0)
quot :: Double -> Double -> Double
quot = Double -> Double -> Double
forall a. Fractional a => a -> a -> a
(/)
rem :: Double -> Double -> Double
rem = (Double -> Double) -> Double -> Double -> Double
forall a b. a -> b -> a
const ((Double -> Double) -> Double -> Double -> Double)
-> (Double -> Double) -> Double -> Double -> Double
forall a b. (a -> b) -> a -> b
$ Double -> Double -> Double
forall a b. a -> b -> a
const Double
0
instance Field Double
instance GcdDomain CFloat where
divide :: CFloat -> CFloat -> Maybe CFloat
divide CFloat
x CFloat
y = CFloat -> Maybe CFloat
forall a. a -> Maybe a
Just (CFloat
x CFloat -> CFloat -> CFloat
forall a. Fractional a => a -> a -> a
/ CFloat
y)
gcd :: CFloat -> CFloat -> CFloat
gcd = (CFloat -> CFloat) -> CFloat -> CFloat -> CFloat
forall a b. a -> b -> a
const ((CFloat -> CFloat) -> CFloat -> CFloat -> CFloat)
-> (CFloat -> CFloat) -> CFloat -> CFloat -> CFloat
forall a b. (a -> b) -> a -> b
$ CFloat -> CFloat -> CFloat
forall a b. a -> b -> a
const CFloat
1
lcm :: CFloat -> CFloat -> CFloat
lcm = (CFloat -> CFloat) -> CFloat -> CFloat -> CFloat
forall a b. a -> b -> a
const ((CFloat -> CFloat) -> CFloat -> CFloat -> CFloat)
-> (CFloat -> CFloat) -> CFloat -> CFloat -> CFloat
forall a b. (a -> b) -> a -> b
$ CFloat -> CFloat -> CFloat
forall a b. a -> b -> a
const CFloat
1
coprime :: CFloat -> CFloat -> Bool
coprime = (CFloat -> Bool) -> CFloat -> CFloat -> Bool
forall a b. a -> b -> a
const ((CFloat -> Bool) -> CFloat -> CFloat -> Bool)
-> (CFloat -> Bool) -> CFloat -> CFloat -> Bool
forall a b. (a -> b) -> a -> b
$ Bool -> CFloat -> Bool
forall a b. a -> b -> a
const Bool
True
instance Euclidean CFloat where
degree :: CFloat -> Natural
degree = Natural -> CFloat -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: CFloat -> CFloat -> (CFloat, CFloat)
quotRem CFloat
x CFloat
y = (CFloat
x CFloat -> CFloat -> CFloat
forall a. Fractional a => a -> a -> a
/ CFloat
y, CFloat
0)
quot :: CFloat -> CFloat -> CFloat
quot = CFloat -> CFloat -> CFloat
forall a. Fractional a => a -> a -> a
(/)
rem :: CFloat -> CFloat -> CFloat
rem = (CFloat -> CFloat) -> CFloat -> CFloat -> CFloat
forall a b. a -> b -> a
const ((CFloat -> CFloat) -> CFloat -> CFloat -> CFloat)
-> (CFloat -> CFloat) -> CFloat -> CFloat -> CFloat
forall a b. (a -> b) -> a -> b
$ CFloat -> CFloat -> CFloat
forall a b. a -> b -> a
const CFloat
0
instance Field CFloat
instance GcdDomain CDouble where
divide :: CDouble -> CDouble -> Maybe CDouble
divide CDouble
x CDouble
y = CDouble -> Maybe CDouble
forall a. a -> Maybe a
Just (CDouble
x CDouble -> CDouble -> CDouble
forall a. Fractional a => a -> a -> a
/ CDouble
y)
gcd :: CDouble -> CDouble -> CDouble
gcd = (CDouble -> CDouble) -> CDouble -> CDouble -> CDouble
forall a b. a -> b -> a
const ((CDouble -> CDouble) -> CDouble -> CDouble -> CDouble)
-> (CDouble -> CDouble) -> CDouble -> CDouble -> CDouble
forall a b. (a -> b) -> a -> b
$ CDouble -> CDouble -> CDouble
forall a b. a -> b -> a
const CDouble
1
lcm :: CDouble -> CDouble -> CDouble
lcm = (CDouble -> CDouble) -> CDouble -> CDouble -> CDouble
forall a b. a -> b -> a
const ((CDouble -> CDouble) -> CDouble -> CDouble -> CDouble)
-> (CDouble -> CDouble) -> CDouble -> CDouble -> CDouble
forall a b. (a -> b) -> a -> b
$ CDouble -> CDouble -> CDouble
forall a b. a -> b -> a
const CDouble
1
coprime :: CDouble -> CDouble -> Bool
coprime = (CDouble -> Bool) -> CDouble -> CDouble -> Bool
forall a b. a -> b -> a
const ((CDouble -> Bool) -> CDouble -> CDouble -> Bool)
-> (CDouble -> Bool) -> CDouble -> CDouble -> Bool
forall a b. (a -> b) -> a -> b
$ Bool -> CDouble -> Bool
forall a b. a -> b -> a
const Bool
True
instance Euclidean CDouble where
degree :: CDouble -> Natural
degree = Natural -> CDouble -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: CDouble -> CDouble -> (CDouble, CDouble)
quotRem CDouble
x CDouble
y = (CDouble
x CDouble -> CDouble -> CDouble
forall a. Fractional a => a -> a -> a
/ CDouble
y, CDouble
0)
quot :: CDouble -> CDouble -> CDouble
quot = CDouble -> CDouble -> CDouble
forall a. Fractional a => a -> a -> a
(/)
rem :: CDouble -> CDouble -> CDouble
rem = (CDouble -> CDouble) -> CDouble -> CDouble -> CDouble
forall a b. a -> b -> a
const ((CDouble -> CDouble) -> CDouble -> CDouble -> CDouble)
-> (CDouble -> CDouble) -> CDouble -> CDouble -> CDouble
forall a b. (a -> b) -> a -> b
$ CDouble -> CDouble -> CDouble
forall a b. a -> b -> a
const CDouble
0
instance Field CDouble
conjQuotAbs :: Field a => Complex a -> Complex a
conjQuotAbs :: Complex a -> Complex a
conjQuotAbs (a
x :+ a
y) = a
x a -> a -> a
forall a. Euclidean a => a -> a -> a
`quot` a
norm a -> a -> Complex a
forall a. a -> a -> Complex a
:+ (a -> a
forall a. Ring a => a -> a
negate a
y) a -> a -> a
forall a. Euclidean a => a -> a -> a
`quot` a
norm
where
norm :: a
norm = (a
x a -> a -> a
forall a. Semiring a => a -> a -> a
`times` a
x) a -> a -> a
forall a. Semiring a => a -> a -> a
`plus` (a
y a -> a -> a
forall a. Semiring a => a -> a -> a
`times` a
y)
instance Field a => GcdDomain (Complex a) where
divide :: Complex a -> Complex a -> Maybe (Complex a)
divide Complex a
x Complex a
y = Complex a -> Maybe (Complex a)
forall a. a -> Maybe a
Just (Complex a
x Complex a -> Complex a -> Complex a
forall a. Semiring a => a -> a -> a
`times` Complex a -> Complex a
forall a. Field a => Complex a -> Complex a
conjQuotAbs Complex a
y)
gcd :: Complex a -> Complex a -> Complex a
gcd = (Complex a -> Complex a) -> Complex a -> Complex a -> Complex a
forall a b. a -> b -> a
const ((Complex a -> Complex a) -> Complex a -> Complex a -> Complex a)
-> (Complex a -> Complex a) -> Complex a -> Complex a -> Complex a
forall a b. (a -> b) -> a -> b
$ Complex a -> Complex a -> Complex a
forall a b. a -> b -> a
const Complex a
forall a. Semiring a => a
one
lcm :: Complex a -> Complex a -> Complex a
lcm = (Complex a -> Complex a) -> Complex a -> Complex a -> Complex a
forall a b. a -> b -> a
const ((Complex a -> Complex a) -> Complex a -> Complex a -> Complex a)
-> (Complex a -> Complex a) -> Complex a -> Complex a -> Complex a
forall a b. (a -> b) -> a -> b
$ Complex a -> Complex a -> Complex a
forall a b. a -> b -> a
const Complex a
forall a. Semiring a => a
one
coprime :: Complex a -> Complex a -> Bool
coprime = (Complex a -> Bool) -> Complex a -> Complex a -> Bool
forall a b. a -> b -> a
const ((Complex a -> Bool) -> Complex a -> Complex a -> Bool)
-> (Complex a -> Bool) -> Complex a -> Complex a -> Bool
forall a b. (a -> b) -> a -> b
$ Bool -> Complex a -> Bool
forall a b. a -> b -> a
const Bool
True
instance Field a => Euclidean (Complex a) where
degree :: Complex a -> Natural
degree = Natural -> Complex a -> Natural
forall a b. a -> b -> a
const Natural
0
quotRem :: Complex a -> Complex a -> (Complex a, Complex a)
quotRem Complex a
x Complex a
y = (Complex a -> Complex a -> Complex a
forall a. Euclidean a => a -> a -> a
quot Complex a
x Complex a
y, Complex a
forall a. Semiring a => a
zero)
quot :: Complex a -> Complex a -> Complex a
quot Complex a
x Complex a
y = Complex a
x Complex a -> Complex a -> Complex a
forall a. Semiring a => a -> a -> a
`times` Complex a -> Complex a
forall a. Field a => Complex a -> Complex a
conjQuotAbs Complex a
y
rem :: Complex a -> Complex a -> Complex a
rem = (Complex a -> Complex a) -> Complex a -> Complex a -> Complex a
forall a b. a -> b -> a
const ((Complex a -> Complex a) -> Complex a -> Complex a -> Complex a)
-> (Complex a -> Complex a) -> Complex a -> Complex a -> Complex a
forall a b. (a -> b) -> a -> b
$ Complex a -> Complex a -> Complex a
forall a b. a -> b -> a
const Complex a
forall a. Semiring a => a
zero
instance Field a => Field (Complex a)
#if MIN_VERSION_base(4,12,0)
deriving via (WrappedIntegral Int) instance GcdDomain Int
deriving via (WrappedIntegral Int8) instance GcdDomain Int8
deriving via (WrappedIntegral Int16) instance GcdDomain Int16
deriving via (WrappedIntegral Int32) instance GcdDomain Int32
deriving via (WrappedIntegral Int64) instance GcdDomain Int64
deriving via (WrappedIntegral Integer) instance GcdDomain Integer
deriving via (WrappedIntegral Word) instance GcdDomain Word
deriving via (WrappedIntegral Word8) instance GcdDomain Word8
deriving via (WrappedIntegral Word16) instance GcdDomain Word16
deriving via (WrappedIntegral Word32) instance GcdDomain Word32
deriving via (WrappedIntegral Word64) instance GcdDomain Word64
deriving via (WrappedIntegral Natural) instance GcdDomain Natural
#else
$(let
deriveGcdDomain :: Q Type -> Q [Dec]
deriveGcdDomain ty = [d|
instance GcdDomain $ty where
gcd = P.gcd
lcm = P.lcm
coprime = coprimeIntegral
|]
in P.concat P.<$> P.traverse deriveGcdDomain
[[t|Int|]
,[t|Int8|]
,[t|Int16|]
,[t|Int32|]
,[t|Int64|]
,[t|Integer|]
,[t|Word|]
,[t|Word8|]
,[t|Word16|]
,[t|Word32|]
,[t|Word64|]
,[t|Natural|]
])
#endif
#if MIN_VERSION_base(4,12,0)
deriving via (WrappedIntegral Int) instance Euclidean Int
deriving via (WrappedIntegral Int8) instance Euclidean Int8
deriving via (WrappedIntegral Int16) instance Euclidean Int16
deriving via (WrappedIntegral Int32) instance Euclidean Int32
deriving via (WrappedIntegral Int64) instance Euclidean Int64
deriving via (WrappedIntegral Integer) instance Euclidean Integer
deriving via (WrappedIntegral Word) instance Euclidean Word
deriving via (WrappedIntegral Word8) instance Euclidean Word8
deriving via (WrappedIntegral Word16) instance Euclidean Word16
deriving via (WrappedIntegral Word32) instance Euclidean Word32
deriving via (WrappedIntegral Word64) instance Euclidean Word64
deriving via (WrappedIntegral Natural) instance Euclidean Natural
#else
$(let
deriveEuclidean :: Q Type -> Q [Dec]
deriveEuclidean ty = [d|
instance Euclidean $ty where
degree = P.fromIntegral . abs
quotRem = P.quotRem
quot = P.quot
rem = P.rem
|]
in P.concat P.<$> P.traverse deriveEuclidean
[[t|Int|]
,[t|Int8|]
,[t|Int16|]
,[t|Int32|]
,[t|Int64|]
,[t|Integer|]
,[t|Word|]
,[t|Word8|]
,[t|Word16|]
,[t|Word32|]
,[t|Word64|]
,[t|Natural|]
])
#endif