{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, FlexibleInstances #-} ----------------------------------------------------------------------------------------- -- | -- Module : Data.VectorSpace -- Copyright : (c) Antony Courtney and Henrik Nilsson, Yale University, 2003 -- License : BSD-style (see the LICENSE file in the distribution) -- -- Maintainer : ivan.perez@keera.co.uk -- Stability : provisional -- Portability : non-portable (GHC extensions) -- -- Vector space type relation and basic instances. ----------------------------------------------------------------------------------------- module Data.VectorSpace where infixr *^ infixl ^/ infix 7 `dot` infixl 6 ^+^, ^-^ -- Maybe norm and normalize should not be class methods, in which case -- the constraint on the coefficient space (a) should (or, at least, could) -- be Fractional (roughly a Field) rather than Floating. -- | Vector space type relation. -- -- A vector space is a set (type) closed under addition and multiplication by -- a scalar. The type of the scalar is the /field/ of the vector space, and -- it is said that @v@ is a vector space over @a@. -- -- The encoding uses a type class |VectorSpace| @v a@, where @v@ represents -- the type of the vectors and @a@ represents the types of the scalars. class (Eq a, Floating a) => VectorSpace v a | v -> a where -- | Vector with no magnitude (unit for addition). zeroVector :: v -- | Multiplication by a scalar. (*^) :: a -> v -> v -- | Division by a scalar. (^/) :: v -> a -> v v ^/ a = (1/a) *^ v -- | Vector addition (^+^) :: v -> v -> v -- | Vector subtraction (^-^) :: v -> v -> v v1 ^-^ v2 = v1 ^+^ negateVector v2 -- | Vector negation. Addition with a negated vector should be -- same as subtraction. negateVector :: v -> v negateVector v = (-1) *^ v -- | Dot product (also known as scalar or inner product). -- -- For two vectors, mathematically represented as @a = a1,a2,...,an@ and @b -- = b1,b2,...,bn@, the dot product is @a . b = a1*b1 + a2*b2 + ... + -- an*bn@. -- -- Some properties are derived from this. The dot product of a vector with -- itself is the square of its magnitude ('norm'), and the dot product of -- two orthogonal vectors is zero. dot :: v -> v -> a -- | Vector's norm (also known as magnitude). -- -- For a vector represented mathematically as @a = a1,a2,...,an@, the norm -- is the square root of @a1^2 + a2^2 + ... + an^2@. norm :: v -> a norm v = sqrt (v `dot` v) -- | Return a vector with the same origin and orientation (angle), but such -- that the norm is one (the unit for multiplication by a scalar). normalize :: v -> v normalize v = if nv /= 0 then v ^/ nv else error "normalize: zero vector" where nv = norm v -- | Vector space instance for 'Float's, with 'Float' scalars. instance VectorSpace Float Float where zeroVector = 0 a *^ x = a * x x ^/ a = x / a negateVector x = (-x) x1 ^+^ x2 = x1 + x2 x1 ^-^ x2 = x1 - x2 x1 `dot` x2 = x1 * x2 -- | Vector space instance for 'Double's, with 'Double' scalars. instance VectorSpace Double Double where zeroVector = 0 a *^ x = a * x x ^/ a = x / a negateVector x = (-x) x1 ^+^ x2 = x1 + x2 x1 ^-^ x2 = x1 - x2 x1 `dot` x2 = x1 * x2 -- | Vector space instance for pairs of 'Floating' point numbers. instance (Eq a, Floating a) => VectorSpace (a,a) a where zeroVector = (0,0) a *^ (x,y) = (a * x, a * y) (x,y) ^/ a = (x / a, y / a) negateVector (x,y) = (-x, -y) (x1,y1) ^+^ (x2,y2) = (x1 + x2, y1 + y2) (x1,y1) ^-^ (x2,y2) = (x1 - x2, y1 - y2) (x1,y1) `dot` (x2,y2) = x1 * x2 + y1 * y2 -- | Vector space instance for triplets of 'Floating' point numbers. instance (Eq a, Floating a) => VectorSpace (a,a,a) a where zeroVector = (0,0,0) a *^ (x,y,z) = (a * x, a * y, a * z) (x,y,z) ^/ a = (x / a, y / a, z / a) negateVector (x,y,z) = (-x, -y, -z) (x1,y1,z1) ^+^ (x2,y2,z2) = (x1+x2, y1+y2, z1+z2) (x1,y1,z1) ^-^ (x2,y2,z2) = (x1-x2, y1-y2, z1-z2) (x1,y1,z1) `dot` (x2,y2,z2) = x1 * x2 + y1 * y2 + z1 * z2 -- | Vector space instance for tuples with four 'Floating' point numbers. instance (Eq a, Floating a) => VectorSpace (a,a,a,a) a where zeroVector = (0,0,0,0) a *^ (x,y,z,u) = (a * x, a * y, a * z, a * u) (x,y,z,u) ^/ a = (x / a, y / a, z / a, u / a) negateVector (x,y,z,u) = (-x, -y, -z, -u) (x1,y1,z1,u1) ^+^ (x2,y2,z2,u2) = (x1+x2, y1+y2, z1+z2, u1+u2) (x1,y1,z1,u1) ^-^ (x2,y2,z2,u2) = (x1-x2, y1-y2, z1-z2, u1-u2) (x1,y1,z1,u1) `dot` (x2,y2,z2,u2) = x1 * x2 + y1 * y2 + z1 * z2 + u1 * u2 -- | Vector space instance for tuples with five 'Floating' point numbers. instance (Eq a, Floating a) => VectorSpace (a,a,a,a,a) a where zeroVector = (0,0,0,0,0) a *^ (x,y,z,u,v) = (a * x, a * y, a * z, a * u, a * v) (x,y,z,u,v) ^/ a = (x / a, y / a, z / a, u / a, v / a) negateVector (x,y,z,u,v) = (-x, -y, -z, -u, -v) (x1,y1,z1,u1,v1) ^+^ (x2,y2,z2,u2,v2) = (x1+x2, y1+y2, z1+z2, u1+u2, v1+v2) (x1,y1,z1,u1,v1) ^-^ (x2,y2,z2,u2,v2) = (x1-x2, y1-y2, z1-z2, u1-u2, v1-v2) (x1,y1,z1,u1,v1) `dot` (x2,y2,z2,u2,v2) = x1 * x2 + y1 * y2 + z1 * z2 + u1 * u2 + v1 * v2