Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- getPromptLine :: (MonadIO m, MonadMask m) => String -> InputT m String
- getPromptInitial :: (MonadIO m, MonadMask m) => String -> String -> InputT m String
- getPromptChar :: (MonadIO m, MonadMask m) => String -> InputT m Char
- getPromptPassword :: (MonadIO m, MonadMask m) => String -> InputT m String
- getGenericPrompt :: MonadIO m => (String -> InputT m (Maybe a)) -> String -> InputT m a
- runPrompt :: (MonadIO m, MonadMask m) => InputT m a -> m a
- untilInput :: (MonadIO m, MonadMask m) => (a -> Bool) -> InputT m a -> InputT m a
- mapInput :: (MonadIO m, MonadMask m) => (a -> Maybe b) -> InputT m a -> InputT m b
- nonEmptyInput :: (MonadIO m, MonadMask m) => InputT m String -> InputT m String
- timedInput :: MonadIO m => InputT m a -> InputT m a
- class Monad m => MonadIO (m :: Type -> Type)
- class MonadCatch m => MonadMask (m :: Type -> Type)
Documentation
getPromptLine :: (MonadIO m, MonadMask m) => String -> InputT m String Source #
like getInputLine, but error if fails
getPromptInitial :: (MonadIO m, MonadMask m) => String -> String -> InputT m String Source #
like getPromptLine, but with initial input
getPromptChar :: (MonadIO m, MonadMask m) => String -> InputT m Char Source #
like getInputChar, but error if fails
getGenericPrompt :: MonadIO m => (String -> InputT m (Maybe a)) -> String -> InputT m a Source #
generic prompt wrapper
untilInput :: (MonadIO m, MonadMask m) => (a -> Bool) -> InputT m a -> InputT m a Source #
loop prompt until check
mapInput :: (MonadIO m, MonadMask m) => (a -> Maybe b) -> InputT m a -> InputT m b Source #
maybe map input or loop prompt
nonEmptyInput :: (MonadIO m, MonadMask m) => InputT m String -> InputT m String Source #
repeat prompt until non-empty
timedInput :: MonadIO m => InputT m a -> InputT m a Source #
repeat prompt if input returned within milliseconds
class Monad m => MonadIO (m :: Type -> Type) #
Monads in which IO
computations may be embedded.
Any monad built by applying a sequence of monad transformers to the
IO
monad will be an instance of this class.
Instances should satisfy the following laws, which state that liftIO
is a transformer of monads:
Instances
class MonadCatch m => MonadMask (m :: Type -> Type) #
A class for monads which provide for the ability to account for all possible exit points from a computation, and to mask asynchronous exceptions. Continuation-based monads are invalid instances of this class.
Instances should ensure that, in the following code:
fg = f `finally` g
The action g
is called regardless of what occurs within f
, including
async exceptions. Some monads allow f
to abort the computation via other
effects than throwing an exception. For simplicity, we will consider aborting
and throwing an exception to be two forms of "throwing an error".
If f
and g
both throw an error, the error thrown by fg
depends on which
errors we're talking about. In a monad transformer stack, the deeper layers
override the effects of the inner layers; for example, ExceptT e1 (Except
e2) a
represents a value of type Either e2 (Either e1 a)
, so throwing both
an e1
and an e2
will result in Left e2
. If f
and g
both throw an
error from the same layer, instances should ensure that the error from g
wins.
Effects other than throwing an error are also overriden by the deeper layers.
For example, StateT s Maybe a
represents a value of type s -> Maybe (a,
s)
, so if an error thrown from f
causes this function to return Nothing
,
any changes to the state which f
also performed will be erased. As a
result, g
will see the state as it was before f
. Once g
completes,
f
's error will be rethrown, so g
' state changes will be erased as well.
This is the normal interaction between effects in a monad transformer stack.
By contrast, lifted-base's
version of finally
always discards all of g
's non-IO effects, and g
never sees any of f
's non-IO effects, regardless of the layer ordering and
regardless of whether f
throws an error. This is not the result of
interacting effects, but a consequence of MonadBaseControl
's approach.
Instances
MonadMask IO | |
e ~ SomeException => MonadMask (Either e) | Since: exceptions-0.8.3 |
Defined in Control.Monad.Catch | |
MonadMask m => MonadMask (InputT m) | |
Defined in System.Console.Haskeline.InputT | |
MonadMask m => MonadMask (MaybeT m) | Since: exceptions-0.10.0 |
Defined in Control.Monad.Catch | |
(Error e, MonadMask m) => MonadMask (ErrorT e m) | |
Defined in Control.Monad.Catch | |
MonadMask m => MonadMask (ExceptT e m) | Since: exceptions-0.9.0 |
Defined in Control.Monad.Catch mask :: ((forall a. ExceptT e m a -> ExceptT e m a) -> ExceptT e m b) -> ExceptT e m b # uninterruptibleMask :: ((forall a. ExceptT e m a -> ExceptT e m a) -> ExceptT e m b) -> ExceptT e m b # generalBracket :: ExceptT e m a -> (a -> ExitCase b -> ExceptT e m c) -> (a -> ExceptT e m b) -> ExceptT e m (b, c) # | |
MonadMask m => MonadMask (IdentityT m) | |
Defined in Control.Monad.Catch mask :: ((forall a. IdentityT m a -> IdentityT m a) -> IdentityT m b) -> IdentityT m b # uninterruptibleMask :: ((forall a. IdentityT m a -> IdentityT m a) -> IdentityT m b) -> IdentityT m b # generalBracket :: IdentityT m a -> (a -> ExitCase b -> IdentityT m c) -> (a -> IdentityT m b) -> IdentityT m (b, c) # | |
MonadMask m => MonadMask (ReaderT r m) | |
Defined in Control.Monad.Catch mask :: ((forall a. ReaderT r m a -> ReaderT r m a) -> ReaderT r m b) -> ReaderT r m b # uninterruptibleMask :: ((forall a. ReaderT r m a -> ReaderT r m a) -> ReaderT r m b) -> ReaderT r m b # generalBracket :: ReaderT r m a -> (a -> ExitCase b -> ReaderT r m c) -> (a -> ReaderT r m b) -> ReaderT r m (b, c) # | |
MonadMask m => MonadMask (StateT s m) | |
Defined in Control.Monad.Catch | |
MonadMask m => MonadMask (StateT s m) | |
Defined in Control.Monad.Catch | |
(MonadMask m, Monoid w) => MonadMask (WriterT w m) | |
Defined in Control.Monad.Catch mask :: ((forall a. WriterT w m a -> WriterT w m a) -> WriterT w m b) -> WriterT w m b # uninterruptibleMask :: ((forall a. WriterT w m a -> WriterT w m a) -> WriterT w m b) -> WriterT w m b # generalBracket :: WriterT w m a -> (a -> ExitCase b -> WriterT w m c) -> (a -> WriterT w m b) -> WriterT w m (b, c) # | |
(MonadMask m, Monoid w) => MonadMask (WriterT w m) | |
Defined in Control.Monad.Catch mask :: ((forall a. WriterT w m a -> WriterT w m a) -> WriterT w m b) -> WriterT w m b # uninterruptibleMask :: ((forall a. WriterT w m a -> WriterT w m a) -> WriterT w m b) -> WriterT w m b # generalBracket :: WriterT w m a -> (a -> ExitCase b -> WriterT w m c) -> (a -> WriterT w m b) -> WriterT w m (b, c) # | |
(MonadMask m, Monoid w) => MonadMask (RWST r w s m) | |
Defined in Control.Monad.Catch mask :: ((forall a. RWST r w s m a -> RWST r w s m a) -> RWST r w s m b) -> RWST r w s m b # uninterruptibleMask :: ((forall a. RWST r w s m a -> RWST r w s m a) -> RWST r w s m b) -> RWST r w s m b # generalBracket :: RWST r w s m a -> (a -> ExitCase b -> RWST r w s m c) -> (a -> RWST r w s m b) -> RWST r w s m (b, c) # | |
(MonadMask m, Monoid w) => MonadMask (RWST r w s m) | |
Defined in Control.Monad.Catch mask :: ((forall a. RWST r w s m a -> RWST r w s m a) -> RWST r w s m b) -> RWST r w s m b # uninterruptibleMask :: ((forall a. RWST r w s m a -> RWST r w s m a) -> RWST r w s m b) -> RWST r w s m b # generalBracket :: RWST r w s m a -> (a -> ExitCase b -> RWST r w s m c) -> (a -> RWST r w s m b) -> RWST r w s m (b, c) # |