{-# LANGUAGE DataKinds #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -Wno-redundant-constraints #-}
module Data.Singletons.Bool (
SBool(..),
SBoolI(..),
fromSBool,
withSomeSBool,
reflectBool,
reifyBool,
discreteBool,
sboolAnd, sboolOr, sboolNot,
eqToRefl, eqCast, sboolEqRefl,
trivialRefl,
) where
import Control.DeepSeq (NFData (..))
import Data.Boring (Boring (..))
import Data.GADT.Compare (GCompare (..), GEq (..), GOrdering (..))
import Data.GADT.DeepSeq (GNFData (..))
import Data.GADT.Show (GRead (..), GShow (..))
import Data.Proxy (Proxy (..))
import Data.Type.Bool
import Data.Type.Dec (Dec (..))
import Data.Type.Equality
import Unsafe.Coerce (unsafeCoerce)
import Data.EqP (EqP (..))
import Data.OrdP (OrdP (..))
import qualified Data.Some.Church as Church
data SBool (b :: Bool) where
STrue :: SBool 'True
SFalse :: SBool 'False
class SBoolI (b :: Bool) where sbool :: SBool b
instance SBoolI 'True where sbool :: SBool 'True
sbool = SBool 'True
STrue
instance SBoolI 'False where sbool :: SBool 'False
sbool = SBool 'False
SFalse
instance Show (SBool b) where
showsPrec :: Int -> SBool b -> ShowS
showsPrec Int
_ SBool b
STrue = String -> ShowS
showString String
"STrue"
showsPrec Int
_ SBool b
SFalse = String -> ShowS
showString String
"SFalse"
instance Eq (SBool b) where
SBool b
_ == :: SBool b -> SBool b -> Bool
== SBool b
_ = Bool
True
instance Ord (SBool b) where
compare :: SBool b -> SBool b -> Ordering
compare SBool b
_ SBool b
_ = Ordering
EQ
instance NFData (SBool b) where
rnf :: SBool b -> ()
rnf SBool b
STrue = ()
rnf SBool b
SFalse = ()
fromSBool :: SBool b -> Bool
fromSBool :: forall (b :: Bool). SBool b -> Bool
fromSBool SBool b
STrue = Bool
True
fromSBool SBool b
SFalse = Bool
False
withSomeSBool :: Bool -> (forall b. SBool b -> r) -> r
withSomeSBool :: forall r. Bool -> (forall (b :: Bool). SBool b -> r) -> r
withSomeSBool Bool
True forall (b :: Bool). SBool b -> r
f = SBool 'True -> r
forall (b :: Bool). SBool b -> r
f SBool 'True
STrue
withSomeSBool Bool
False forall (b :: Bool). SBool b -> r
f = SBool 'False -> r
forall (b :: Bool). SBool b -> r
f SBool 'False
SFalse
reifyBool :: forall r. Bool -> (forall b. SBoolI b => Proxy b -> r) -> r
reifyBool :: forall r.
Bool -> (forall (b :: Bool). SBoolI b => Proxy b -> r) -> r
reifyBool Bool
True forall (b :: Bool). SBoolI b => Proxy b -> r
f = Proxy 'True -> r
forall (b :: Bool). SBoolI b => Proxy b -> r
f (Proxy 'True
forall {k} (t :: k). Proxy t
Proxy :: Proxy 'True)
reifyBool Bool
False forall (b :: Bool). SBoolI b => Proxy b -> r
f = Proxy 'False -> r
forall (b :: Bool). SBoolI b => Proxy b -> r
f (Proxy 'False
forall {k} (t :: k). Proxy t
Proxy :: Proxy 'False)
reflectBool :: forall b proxy. SBoolI b => proxy b -> Bool
reflectBool :: forall (b :: Bool) (proxy :: Bool -> *).
SBoolI b =>
proxy b -> Bool
reflectBool proxy b
_ = SBool b -> Bool
forall (b :: Bool). SBool b -> Bool
fromSBool (SBool b
forall (b :: Bool). SBoolI b => SBool b
sbool :: SBool b)
instance SBoolI b => Boring (SBool b) where
boring :: SBool b
boring = SBool b
forall (b :: Bool). SBoolI b => SBool b
sbool
instance GEq SBool where
geq :: forall (a :: Bool) (b :: Bool).
SBool a -> SBool b -> Maybe (a :~: b)
geq SBool a
STrue SBool b
STrue = (a :~: b) -> Maybe (a :~: b)
forall a. a -> Maybe a
Just a :~: a
a :~: b
forall {k} (a :: k). a :~: a
Refl
geq SBool a
SFalse SBool b
SFalse = (a :~: b) -> Maybe (a :~: b)
forall a. a -> Maybe a
Just a :~: a
a :~: b
forall {k} (a :: k). a :~: a
Refl
geq SBool a
_ SBool b
_ = Maybe (a :~: b)
forall a. Maybe a
Nothing
instance GCompare SBool where
gcompare :: forall (a :: Bool) (b :: Bool). SBool a -> SBool b -> GOrdering a b
gcompare SBool a
SFalse SBool b
SFalse = GOrdering a a
GOrdering a b
forall {k} (a :: k). GOrdering a a
GEQ
gcompare SBool a
SFalse SBool b
STrue = GOrdering a b
forall {k} (a :: k) (b :: k). GOrdering a b
GLT
gcompare SBool a
STrue SBool b
SFalse = GOrdering a b
forall {k} (a :: k) (b :: k). GOrdering a b
GGT
gcompare SBool a
STrue SBool b
STrue = GOrdering a a
GOrdering a b
forall {k} (a :: k). GOrdering a a
GEQ
instance GNFData SBool where
grnf :: forall (b :: Bool). SBool b -> ()
grnf SBool a
STrue = ()
grnf SBool a
SFalse = ()
instance GShow SBool where
gshowsPrec :: forall (b :: Bool). Int -> SBool b -> ShowS
gshowsPrec = Int -> SBool a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
instance GRead SBool where
greadsPrec :: Int -> GReadS SBool
greadsPrec Int
_ String
s =
[ (SBool 'True -> Some SBool
forall {k} (tag :: k -> *) (a :: k). tag a -> Some tag
Church.mkSome SBool 'True
STrue, String
t)
| (String
"STrue", String
t) <- ReadS String
lex String
s
]
[(Some SBool, String)]
-> [(Some SBool, String)] -> [(Some SBool, String)]
forall a. [a] -> [a] -> [a]
++
[ (SBool 'False -> Some SBool
forall {k} (tag :: k -> *) (a :: k). tag a -> Some tag
Church.mkSome SBool 'False
SFalse, String
t)
| (String
"SFalse", String
t) <- ReadS String
lex String
s
]
instance EqP SBool where
eqp :: forall (a :: Bool) (b :: Bool). SBool a -> SBool b -> Bool
eqp SBool a
STrue SBool b
STrue = Bool
True
eqp SBool a
SFalse SBool b
SFalse = Bool
True
eqp SBool a
_ SBool b
_ = Bool
False
instance OrdP SBool where
comparep :: forall (a :: Bool) (b :: Bool). SBool a -> SBool b -> Ordering
comparep SBool a
STrue SBool b
STrue = Ordering
EQ
comparep SBool a
SFalse SBool b
SFalse = Ordering
EQ
comparep SBool a
STrue SBool b
SFalse = Ordering
GT
comparep SBool a
SFalse SBool b
STrue = Ordering
LT
discreteBool :: forall a b. (SBoolI a, SBoolI b) => Dec (a :~: b)
discreteBool :: forall (a :: Bool) (b :: Bool).
(SBoolI a, SBoolI b) =>
Dec (a :~: b)
discreteBool = case (SBool a
forall (b :: Bool). SBoolI b => SBool b
sbool :: SBool a, SBool b
forall (b :: Bool). SBoolI b => SBool b
sbool :: SBool b) of
(SBool a
STrue, SBool b
STrue) -> (a :~: b) -> Dec (a :~: b)
forall a. a -> Dec a
Yes a :~: a
a :~: b
forall {k} (a :: k). a :~: a
Refl
(SBool a
STrue, SBool b
SFalse) -> Neg (a :~: b) -> Dec (a :~: b)
forall a. Neg a -> Dec a
No (Neg (a :~: b) -> Dec (a :~: b)) -> Neg (a :~: b) -> Dec (a :~: b)
forall a b. (a -> b) -> a -> b
$ \a :~: b
p -> case a :~: b
p of {}
(SBool a
SFalse, SBool b
STrue) -> Neg (a :~: b) -> Dec (a :~: b)
forall a. Neg a -> Dec a
No (Neg (a :~: b) -> Dec (a :~: b)) -> Neg (a :~: b) -> Dec (a :~: b)
forall a b. (a -> b) -> a -> b
$ \a :~: b
p -> case a :~: b
p of {}
(SBool a
SFalse, SBool b
SFalse) -> (a :~: b) -> Dec (a :~: b)
forall a. a -> Dec a
Yes a :~: a
a :~: b
forall {k} (a :: k). a :~: a
Refl
sboolAnd :: SBool a -> SBool b -> SBool (a && b)
sboolAnd :: forall (a :: Bool) (b :: Bool).
SBool a -> SBool b -> SBool (a && b)
sboolAnd SBool a
SFalse SBool b
_ = SBool 'False
SBool (a && b)
SFalse
sboolAnd SBool a
STrue SBool b
b = SBool b
SBool (a && b)
b
sboolOr :: SBool a -> SBool b -> SBool (a || b)
sboolOr :: forall (a :: Bool) (b :: Bool).
SBool a -> SBool b -> SBool (a || b)
sboolOr SBool a
STrue SBool b
_ = SBool 'True
SBool (a || b)
STrue
sboolOr SBool a
SFalse SBool b
b = SBool b
SBool (a || b)
b
sboolNot :: SBool a -> SBool (Not a)
sboolNot :: forall (a :: Bool). SBool a -> SBool (Not a)
sboolNot SBool a
STrue = SBool 'False
SBool (Not a)
SFalse
sboolNot SBool a
SFalse = SBool 'True
SBool (Not a)
STrue
eqToRefl :: (a == b) ~ 'True => a :~: b
eqToRefl :: forall {k} (a :: k) (b :: k). ((a == b) ~ 'True) => a :~: b
eqToRefl = (() :~: ()) -> a :~: b
forall a b. a -> b
unsafeCoerce () :~: ()
trivialRefl
eqCast :: (a == b) ~ 'True => a -> b
eqCast :: forall a b. ((a == b) ~ 'True) => a -> b
eqCast = a -> b
forall a b. a -> b
unsafeCoerce
trivialRefl :: () :~: ()
trivialRefl :: () :~: ()
trivialRefl = () :~: ()
forall {k} (a :: k). a :~: a
Refl
sboolEqRefl :: forall k (a :: k) (b :: k). SBoolI (a == b) => Maybe (a :~: b)
sboolEqRefl :: forall k (a :: k) (b :: k). SBoolI (a == b) => Maybe (a :~: b)
sboolEqRefl = case SBool (a == b)
forall (b :: Bool). SBoolI b => SBool b
sbool :: SBool (a == b) of
SBool (a == b)
STrue -> (a :~: b) -> Maybe (a :~: b)
forall a. a -> Maybe a
Just a :~: b
forall {k} (a :: k) (b :: k). ((a == b) ~ 'True) => a :~: b
eqToRefl
SBool (a == b)
SFalse -> Maybe (a :~: b)
forall a. Maybe a
Nothing