Copyright | (C) 2013-2014 Richard Eisenberg, Jan Stolarek |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Richard Eisenberg (eir@cis.upenn.edu) |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Defines functions and datatypes relating to the singleton for '[]',
including a singletons version of a few of the definitions in Data.List
.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.List
. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
- data family Sing a
- type SList z = Sing z
- type family a :++ a :: [a]
- (%:++) :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply (:++$) t) t)
- type family Head a :: a
- sHead :: forall t. Sing t -> Sing (Apply HeadSym0 t)
- type family Last a :: a
- sLast :: forall t. Sing t -> Sing (Apply LastSym0 t)
- type family Tail a :: [a]
- sTail :: forall t. Sing t -> Sing (Apply TailSym0 t)
- type family Init a :: [a]
- sInit :: forall t. Sing t -> Sing (Apply InitSym0 t)
- type family Null a :: Bool
- sNull :: forall t. Sing t -> Sing (Apply NullSym0 t)
- type family Map a a :: [b]
- sMap :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t)
- type family Reverse a :: [a]
- sReverse :: forall t. Sing t -> Sing (Apply ReverseSym0 t)
- type family Intersperse a a :: [a]
- sIntersperse :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply IntersperseSym0 t) t)
- type family Intercalate a a :: [a]
- sIntercalate :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply IntercalateSym0 t) t)
- type family Subsequences a :: [[a]]
- sSubsequences :: forall t. Sing t -> Sing (Apply SubsequencesSym0 t)
- type family Permutations a :: [[a]]
- sPermutations :: forall t. Sing t -> Sing (Apply PermutationsSym0 t)
- type family Foldl a a a :: b
- sFoldl :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t)
- type family Foldl' a a a :: b
- sFoldl' :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t)
- type family Foldl1 a a :: a
- sFoldl1 :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t)
- type family Foldl1' a a :: a
- sFoldl1' :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Foldl1'Sym0 t) t)
- type family Foldr a a a :: b
- sFoldr :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t)
- type family Foldr1 a a :: a
- sFoldr1 :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t)
- type family Concat a :: [a]
- sConcat :: forall t. Sing t -> Sing (Apply ConcatSym0 t)
- type family ConcatMap a a :: [b]
- sConcatMap :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t)
- type family And a :: Bool
- sAnd :: forall t. Sing t -> Sing (Apply AndSym0 t)
- type family Or a :: Bool
- sOr :: forall t. Sing t -> Sing (Apply OrSym0 t)
- type family Any_ a a :: Bool
- sAny_ :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Any_Sym0 t) t)
- type family All a a :: Bool
- sAll :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t)
- any_ :: forall a. (a -> Bool) -> [a] -> Bool
- type family Scanl a a a :: [b]
- sScanl :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t)
- type family Scanl1 a a :: [a]
- sScanl1 :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t)
- type family Scanr a a a :: [b]
- sScanr :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t)
- type family Scanr1 a a :: [a]
- sScanr1 :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t)
- type family MapAccumL a a a :: (acc, [y])
- sMapAccumL :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumLSym0 t) t) t)
- type family MapAccumR a a a :: (acc, [y])
- sMapAccumR :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumRSym0 t) t) t)
- type family Unfoldr a a :: [a]
- sUnfoldr :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply UnfoldrSym0 t) t)
- type family Inits a :: [[a]]
- sInits :: forall t. Sing t -> Sing (Apply InitsSym0 t)
- type family Tails a :: [[a]]
- sTails :: forall t. Sing t -> Sing (Apply TailsSym0 t)
- type family IsPrefixOf a a :: Bool
- sIsPrefixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsPrefixOfSym0 t) t)
- type family IsSuffixOf a a :: Bool
- sIsSuffixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsSuffixOfSym0 t) t)
- type family IsInfixOf a a :: Bool
- sIsInfixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsInfixOfSym0 t) t)
- type family Elem a a :: Bool
- sElem :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t)
- type family NotElem a a :: Bool
- sNotElem :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t)
- type family Zip a a :: [(a, b)]
- sZip :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t)
- type family Zip3 a a a :: [(a, b, c)]
- sZip3 :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t)
- type family ZipWith a a a :: [c]
- sZipWith :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t)
- type family ZipWith3 a a a a :: [d]
- sZipWith3 :: forall t t t t. Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t)
- type family Unzip a :: ([a], [b])
- sUnzip :: forall t. Sing t -> Sing (Apply UnzipSym0 t)
- type family Unzip3 a :: ([a], [b], [c])
- sUnzip3 :: forall t. Sing t -> Sing (Apply Unzip3Sym0 t)
- type family Unzip4 a :: ([a], [b], [c], [d])
- sUnzip4 :: forall t. Sing t -> Sing (Apply Unzip4Sym0 t)
- type family Unzip5 a :: ([a], [b], [c], [d], [e])
- sUnzip5 :: forall t. Sing t -> Sing (Apply Unzip5Sym0 t)
- type family Unzip6 a :: ([a], [b], [c], [d], [e], [f])
- sUnzip6 :: forall t. Sing t -> Sing (Apply Unzip6Sym0 t)
- type family Unzip7 a :: ([a], [b], [c], [d], [e], [f], [g])
- sUnzip7 :: forall t. Sing t -> Sing (Apply Unzip7Sym0 t)
- type family Delete a a :: [a]
- sDelete :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply DeleteSym0 t) t)
- type family a :\\ a :: [a]
- (%:\\) :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply (:\\$) t) t)
- type family DeleteBy a a a :: [a]
- sDeleteBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteBySym0 t) t) t)
- type family DeleteFirstsBy a a a :: [a]
- sDeleteFirstsBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteFirstsBySym0 t) t) t)
- type family SortBy a a :: [a]
- sSortBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply SortBySym0 t) t)
- type family InsertBy a a a :: [a]
- sInsertBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply InsertBySym0 t) t) t)
- type family MaximumBy a a :: a
- sMaximumBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t)
- type family MinimumBy a a :: a
- sMinimumBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t)
- type NilSym0 = `[]`
- data (:$) l
- data l :$$ l
- type (:$$$) t t = (:) t t
- data l :++$$ l
- data (:++$) l
- data HeadSym0 l
- type HeadSym1 t = Head t
- data LastSym0 l
- type LastSym1 t = Last t
- data TailSym0 l
- type TailSym1 t = Tail t
- data InitSym0 l
- type InitSym1 t = Init t
- data NullSym0 l
- type NullSym1 t = Null t
- data MapSym0 l
- data MapSym1 l l
- type MapSym2 t t = Map t t
- data ReverseSym0 l
- type ReverseSym1 t = Reverse t
- data IntersperseSym0 l
- data IntersperseSym1 l l
- type IntersperseSym2 t t = Intersperse t t
- data IntercalateSym0 l
- data IntercalateSym1 l l
- type IntercalateSym2 t t = Intercalate t t
- data SubsequencesSym0 l
- type SubsequencesSym1 t = Subsequences t
- data PermutationsSym0 l
- type PermutationsSym1 t = Permutations t
- data FoldlSym0 l
- data FoldlSym1 l l
- data FoldlSym2 l l l
- type FoldlSym3 t t t = Foldl t t t
- data Foldl'Sym0 l
- data Foldl'Sym1 l l
- data Foldl'Sym2 l l l
- type Foldl'Sym3 t t t = Foldl' t t t
- data Foldl1Sym0 l
- data Foldl1Sym1 l l
- type Foldl1Sym2 t t = Foldl1 t t
- data Foldl1'Sym0 l
- data Foldl1'Sym1 l l
- type Foldl1'Sym2 t t = Foldl1' t t
- data FoldrSym0 l
- data FoldrSym1 l l
- data FoldrSym2 l l l
- type FoldrSym3 t t t = Foldr t t t
- data Foldr1Sym0 l
- data Foldr1Sym1 l l
- type Foldr1Sym2 t t = Foldr1 t t
- data ConcatSym0 l
- type ConcatSym1 t = Concat t
- data ConcatMapSym0 l
- data ConcatMapSym1 l l
- type ConcatMapSym2 t t = ConcatMap t t
- data AndSym0 l
- type AndSym1 t = And t
- data OrSym0 l
- type OrSym1 t = Or t
- data Any_Sym0 l
- data Any_Sym1 l l
- type Any_Sym2 t t = Any_ t t
- data AllSym0 l
- data AllSym1 l l
- type AllSym2 t t = All t t
- data ScanlSym0 l
- data ScanlSym1 l l
- data ScanlSym2 l l l
- type ScanlSym3 t t t = Scanl t t t
- data Scanl1Sym0 l
- data Scanl1Sym1 l l
- type Scanl1Sym2 t t = Scanl1 t t
- data ScanrSym0 l
- data ScanrSym1 l l
- data ScanrSym2 l l l
- type ScanrSym3 t t t = Scanr t t t
- data Scanr1Sym0 l
- data Scanr1Sym1 l l
- type Scanr1Sym2 t t = Scanr1 t t
- data MapAccumLSym0 l
- data MapAccumLSym1 l l
- data MapAccumLSym2 l l l
- type MapAccumLSym3 t t t = MapAccumL t t t
- data MapAccumRSym0 l
- data MapAccumRSym1 l l
- data MapAccumRSym2 l l l
- type MapAccumRSym3 t t t = MapAccumR t t t
- data UnfoldrSym0 l
- data UnfoldrSym1 l l
- type UnfoldrSym2 t t = Unfoldr t t
- data InitsSym0 l
- type InitsSym1 t = Inits t
- data TailsSym0 l
- type TailsSym1 t = Tails t
- data IsPrefixOfSym0 l
- data IsPrefixOfSym1 l l
- type IsPrefixOfSym2 t t = IsPrefixOf t t
- data IsSuffixOfSym0 l
- data IsSuffixOfSym1 l l
- type IsSuffixOfSym2 t t = IsSuffixOf t t
- data IsInfixOfSym0 l
- data IsInfixOfSym1 l l
- type IsInfixOfSym2 t t = IsInfixOf t t
- data ElemSym0 l
- data ElemSym1 l l
- type ElemSym2 t t = Elem t t
- data NotElemSym0 l
- data NotElemSym1 l l
- type NotElemSym2 t t = NotElem t t
- data ZipSym0 l
- data ZipSym1 l l
- type ZipSym2 t t = Zip t t
- data Zip3Sym0 l
- data Zip3Sym1 l l
- data Zip3Sym2 l l l
- type Zip3Sym3 t t t = Zip3 t t t
- data ZipWithSym0 l
- data ZipWithSym1 l l
- data ZipWithSym2 l l l
- type ZipWithSym3 t t t = ZipWith t t t
- data ZipWith3Sym0 l
- data ZipWith3Sym1 l l
- data ZipWith3Sym2 l l l
- data ZipWith3Sym3 l l l l
- data UnzipSym0 l
- type UnzipSym1 t = Unzip t
- data Unzip3Sym0 l
- type Unzip3Sym1 t = Unzip3 t
- data Unzip4Sym0 l
- type Unzip4Sym1 t = Unzip4 t
- data Unzip5Sym0 l
- type Unzip5Sym1 t = Unzip5 t
- data Unzip6Sym0 l
- type Unzip6Sym1 t = Unzip6 t
- data Unzip7Sym0 l
- type Unzip7Sym1 t = Unzip7 t
- data DeleteSym0 l
- data DeleteSym1 l l
- type DeleteSym2 t t = Delete t t
- data (:\\$) l
- data l :\\$$ l
- type (:\\$$$) t t = (:\\) t t
- data DeleteBySym0 l
- data DeleteBySym1 l l
- data DeleteBySym2 l l l
- type DeleteBySym3 t t t = DeleteBy t t t
- data DeleteFirstsBySym0 l
- data DeleteFirstsBySym1 l l
- data DeleteFirstsBySym2 l l l
- type DeleteFirstsBySym3 t t t = DeleteFirstsBy t t t
- data SortBySym0 l
- data SortBySym1 l l
- type SortBySym2 t t = SortBy t t
- data InsertBySym0 l
- data InsertBySym1 l l
- data InsertBySym2 l l l
- type InsertBySym3 t t t = InsertBy t t t
- data MaximumBySym0 l
- data MaximumBySym1 l l
- type MaximumBySym2 t t = MaximumBy t t
- data MinimumBySym0 l
- data MinimumBySym1 l l
- type MinimumBySym2 t t = MinimumBy t t
The singleton for lists
The singleton kind-indexed data family.
TestCoercion * (Sing *) | |
SDecide k (KProxy k) => TestEquality k (Sing k) | |
data Sing Bool where | |
data Sing Ordering where | |
data Sing * where | |
data Sing Nat where | |
data Sing Symbol where
| |
data Sing () where | |
data Sing [a0] where | |
data Sing (Maybe a0) where | |
data Sing (TyFun k1 k2 -> *) = SLambda {} | |
data Sing (Either a0 b0) where | |
data Sing ((,) a0 b0) where | |
data Sing ((,,) a0 b0 c0) where | |
data Sing ((,,,) a0 b0 c0 d0) where | |
data Sing ((,,,,) a0 b0 c0 d0 e0) where | |
data Sing ((,,,,,) a0 b0 c0 d0 e0 f0) where | |
data Sing ((,,,,,,) a0 b0 c0 d0 e0 f0 g0) where |
Though Haddock doesn't show it, the Sing
instance above declares
constructors
SNil :: Sing '[] SCons :: Sing (h :: k) -> Sing (t :: [k]) -> Sing (h ': t)
Basic functions
List transformations
type family Intersperse a a :: [a] Source
Intersperse z `[]` = `[]` | |
Intersperse sep ((:) x xs) = Apply (Apply (:$) x) (Apply (Apply PrependToAllSym0 sep) xs) |
sIntersperse :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply IntersperseSym0 t) t) Source
type family Intercalate a a :: [a] Source
Intercalate xs xss = Apply ConcatSym0 (Apply (Apply IntersperseSym0 xs) xss) |
sIntercalate :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply IntercalateSym0 t) t) Source
type family Subsequences a :: [[a]] Source
Subsequences xs = Apply (Apply (:$) `[]`) (Apply NonEmptySubsequencesSym0 xs) |
sSubsequences :: forall t. Sing t -> Sing (Apply SubsequencesSym0 t) Source
type family Permutations a :: [[a]] Source
sPermutations :: forall t. Sing t -> Sing (Apply PermutationsSym0 t) Source
Reducing lists (folds)
sFoldl :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source
sFoldl' :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source
sFoldr :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source
Special folds
sConcatMap :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t) Source
Building lists
Scans
sScanl :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t) Source
sScanr :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t) Source
Accumulating maps
sMapAccumL :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumLSym0 t) t) t) Source
sMapAccumR :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumRSym0 t) t) t) Source
Unfolding
type family Unfoldr a a :: [a] Source
Unfoldr f b = Case_1627595484 f b (Let_1627595475Scrutinee_1627594835Sym2 f b) |
Sublists
Extracting sublists
Predicates
type family IsPrefixOf a a :: Bool Source
IsPrefixOf `[]` `[]` = TrueSym0 | |
IsPrefixOf `[]` ((:) z z) = TrueSym0 | |
IsPrefixOf ((:) z z) `[]` = FalseSym0 | |
IsPrefixOf ((:) x xs) ((:) y ys) = Apply (Apply (:&&$) (Apply (Apply (:==$) x) y)) (Apply (Apply IsPrefixOfSym0 xs) ys) |
sIsPrefixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsPrefixOfSym0 t) t) Source
type family IsSuffixOf a a :: Bool Source
IsSuffixOf x y = Apply (Apply IsPrefixOfSym0 (Apply ReverseSym0 x)) (Apply ReverseSym0 y) |
sIsSuffixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsSuffixOfSym0 t) t) Source
sIsInfixOf :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply IsInfixOfSym0 t) t) Source
Searching lists
Searching by equality
sElem :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source
sNotElem :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t) Source
Zipping and unzipping lists
type family Zip3 a a a :: [(a, b, c)] Source
Zip3 ((:) a as) ((:) b bs) ((:) c cs) = Apply (Apply (:$) (Apply (Apply (Apply Tuple3Sym0 a) b) c)) (Apply (Apply (Apply Zip3Sym0 as) bs) cs) | |
Zip3 `[]` `[]` `[]` = `[]` | |
Zip3 `[]` `[]` ((:) z z) = `[]` | |
Zip3 `[]` ((:) z z) `[]` = `[]` | |
Zip3 `[]` ((:) z z) ((:) z z) = `[]` | |
Zip3 ((:) z z) `[]` `[]` = `[]` | |
Zip3 ((:) z z) `[]` ((:) z z) = `[]` | |
Zip3 ((:) z z) ((:) z z) `[]` = `[]` |
sZip3 :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t) Source
sZipWith :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t) Source
type family ZipWith3 a a a a :: [d] Source
ZipWith3 z ((:) a as) ((:) b bs) ((:) c cs) = Apply (Apply (:$) (Apply (Apply (Apply z a) b) c)) (Apply (Apply (Apply (Apply ZipWith3Sym0 z) as) bs) cs) | |
ZipWith3 z `[]` `[]` `[]` = `[]` | |
ZipWith3 z `[]` `[]` ((:) z z) = `[]` | |
ZipWith3 z `[]` ((:) z z) `[]` = `[]` | |
ZipWith3 z `[]` ((:) z z) ((:) z z) = `[]` | |
ZipWith3 z ((:) z z) `[]` `[]` = `[]` | |
ZipWith3 z ((:) z z) `[]` ((:) z z) = `[]` | |
ZipWith3 z ((:) z z) ((:) z z) `[]` = `[]` |
sZipWith3 :: forall t t t t. Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t) Source
Special lists
"Set" operations
sDelete :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply DeleteSym0 t) t) Source
(%:\\) :: forall t t. SEq (KProxy :: KProxy a) => Sing t -> Sing t -> Sing (Apply (Apply (:\\$) t) t) Source
Ordered lists
Generalized functions
The "By
" operations
sDeleteBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteBySym0 t) t) t) Source
type family DeleteFirstsBy a a a :: [a] Source
DeleteFirstsBy eq a_1627596436 a_1627596438 = Apply (Apply (Apply FoldlSym0 (Apply FlipSym0 (Apply DeleteBySym0 eq))) a_1627596436) a_1627596438 |
sDeleteFirstsBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteFirstsBySym0 t) t) t) Source
sInsertBy :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply InsertBySym0 t) t) t) Source
sMaximumBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t) Source
sMinimumBy :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t) Source
Defunctionalization symbols
SuppressUnusedWarnings ([k] -> TyFun [k] [k] -> *) ((:++$$) k) | |
type Apply [k] [k] ((:++$$) k l1) l0 |
data ReverseSym0 l Source
SuppressUnusedWarnings (TyFun [k] [k] -> *) (ReverseSym0 k) | |
type Apply [k] [k] (ReverseSym0 k) l0 = ReverseSym1 k l0 |
type ReverseSym1 t = Reverse t Source
data IntersperseSym0 l Source
SuppressUnusedWarnings (TyFun k (TyFun [k] [k] -> *) -> *) (IntersperseSym0 k) | |
type Apply (TyFun [k] [k] -> *) k (IntersperseSym0 k) l0 = IntersperseSym1 k l0 |
data IntersperseSym1 l l Source
SuppressUnusedWarnings (k -> TyFun [k] [k] -> *) (IntersperseSym1 k) | |
type Apply [k] [k] (IntersperseSym1 k l1) l0 = IntersperseSym2 k l1 l0 |
type IntersperseSym2 t t = Intersperse t t Source
data IntercalateSym0 l Source
SuppressUnusedWarnings (TyFun [k] (TyFun [[k]] [k] -> *) -> *) (IntercalateSym0 k) | |
type Apply (TyFun [[k]] [k] -> *) [k] (IntercalateSym0 k) l0 = IntercalateSym1 k l0 |
data IntercalateSym1 l l Source
SuppressUnusedWarnings ([k] -> TyFun [[k]] [k] -> *) (IntercalateSym1 k) | |
type Apply [k] [[k]] (IntercalateSym1 k l1) l0 = IntercalateSym2 k l1 l0 |
type IntercalateSym2 t t = Intercalate t t Source
data SubsequencesSym0 l Source
SuppressUnusedWarnings (TyFun [k] [[k]] -> *) (SubsequencesSym0 k) | |
type Apply [[k]] [k] (SubsequencesSym0 k) l0 = SubsequencesSym1 k l0 |
type SubsequencesSym1 t = Subsequences t Source
data PermutationsSym0 l Source
SuppressUnusedWarnings (TyFun [k] [[k]] -> *) (PermutationsSym0 k) | |
type Apply [[k]] [k] (PermutationsSym0 k) l0 = PermutationsSym1 k l0 |
type PermutationsSym1 t = Permutations t Source
data Foldl'Sym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun k (TyFun [k] k -> *) -> *) -> *) (Foldl'Sym0 k k) | |
type Apply (TyFun k (TyFun [k1] k -> *) -> *) (TyFun k (TyFun k1 k -> *) -> *) (Foldl'Sym0 k k1) l0 = Foldl'Sym1 k k1 l0 |
data Foldl'Sym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun k (TyFun [k] k -> *) -> *) (Foldl'Sym1 k k) | |
type Apply (TyFun [k1] k -> *) k (Foldl'Sym1 k k1 l1) l0 = Foldl'Sym2 k k1 l1 l0 |
data Foldl'Sym2 l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> k -> TyFun [k] k -> *) (Foldl'Sym2 k k) | |
type Apply k [k1] (Foldl'Sym2 k k1 l1 l2) l0 = Foldl'Sym3 k k1 l1 l2 l0 |
type Foldl'Sym3 t t t = Foldl' t t t Source
data Foldl1Sym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] k -> *) -> *) (Foldl1Sym0 k) | |
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k k -> *) -> *) (Foldl1Sym0 k) l0 = Foldl1Sym1 k l0 |
data Foldl1Sym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] k -> *) (Foldl1Sym1 k) | |
type Apply k [k] (Foldl1Sym1 k l1) l0 = Foldl1Sym2 k l1 l0 |
type Foldl1Sym2 t t = Foldl1 t t Source
data Foldl1'Sym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] k -> *) -> *) (Foldl1'Sym0 k) | |
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k k -> *) -> *) (Foldl1'Sym0 k) l0 = Foldl1'Sym1 k l0 |
data Foldl1'Sym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] k -> *) (Foldl1'Sym1 k) | |
type Apply k [k] (Foldl1'Sym1 k l1) l0 = Foldl1'Sym2 k l1 l0 |
type Foldl1'Sym2 t t = Foldl1' t t Source
data Foldr1Sym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] k -> *) -> *) (Foldr1Sym0 k) | |
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k k -> *) -> *) (Foldr1Sym0 k) l0 = Foldr1Sym1 k l0 |
data Foldr1Sym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] k -> *) (Foldr1Sym1 k) | |
type Apply k [k] (Foldr1Sym1 k l1) l0 = Foldr1Sym2 k l1 l0 |
type Foldr1Sym2 t t = Foldr1 t t Source
data ConcatSym0 l Source
SuppressUnusedWarnings (TyFun [[k]] [k] -> *) (ConcatSym0 k) | |
type Apply [k] [[k]] (ConcatSym0 k) l0 = ConcatSym1 k l0 |
type ConcatSym1 t = Concat t Source
data ConcatMapSym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k [k] -> *) (TyFun [k] [k] -> *) -> *) (ConcatMapSym0 k k) | |
type Apply (TyFun [k] [k1] -> *) (TyFun k [k1] -> *) (ConcatMapSym0 k k1) l0 = ConcatMapSym1 k k1 l0 |
data ConcatMapSym1 l l Source
SuppressUnusedWarnings ((TyFun k [k] -> *) -> TyFun [k] [k] -> *) (ConcatMapSym1 k k) | |
type Apply [k1] [k] (ConcatMapSym1 k k1 l1) l0 = ConcatMapSym2 k k1 l1 l0 |
type ConcatMapSym2 t t = ConcatMap t t Source
data Scanl1Sym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] [k] -> *) -> *) (Scanl1Sym0 k) | |
type Apply (TyFun [k] [k] -> *) (TyFun k (TyFun k k -> *) -> *) (Scanl1Sym0 k) l0 = Scanl1Sym1 k l0 |
data Scanl1Sym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] [k] -> *) (Scanl1Sym1 k) | |
type Apply [k] [k] (Scanl1Sym1 k l1) l0 = Scanl1Sym2 k l1 l0 |
type Scanl1Sym2 t t = Scanl1 t t Source
data Scanr1Sym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] [k] -> *) -> *) (Scanr1Sym0 k) | |
type Apply (TyFun [k] [k] -> *) (TyFun k (TyFun k k -> *) -> *) (Scanr1Sym0 k) l0 = Scanr1Sym1 k l0 |
data Scanr1Sym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] [k] -> *) (Scanr1Sym1 k) | |
type Apply [k] [k] (Scanr1Sym1 k l1) l0 = Scanr1Sym2 k l1 l0 |
type Scanr1Sym2 t t = Scanr1 t t Source
data MapAccumLSym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k ((,) k k) -> *) -> *) (TyFun k (TyFun [k] ((,) k [k]) -> *) -> *) -> *) (MapAccumLSym0 k k k) | |
type Apply (TyFun k (TyFun [k1] ((,) k [k2]) -> *) -> *) (TyFun k (TyFun k1 ((,) k k2) -> *) -> *) (MapAccumLSym0 k k1 k2) l0 = MapAccumLSym1 k k1 k2 l0 |
data MapAccumLSym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k ((,) k k) -> *) -> *) -> TyFun k (TyFun [k] ((,) k [k]) -> *) -> *) (MapAccumLSym1 k k k) | |
type Apply (TyFun [k1] ((,) k [k2]) -> *) k (MapAccumLSym1 k k1 k2 l1) l0 = MapAccumLSym2 k k1 k2 l1 l0 |
data MapAccumLSym2 l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k ((,) k k) -> *) -> *) -> k -> TyFun [k] ((,) k [k]) -> *) (MapAccumLSym2 k k k) | |
type Apply ((,) k [k2]) [k1] (MapAccumLSym2 k k1 k2 l1 l2) l0 = MapAccumLSym3 k k1 k2 l1 l2 l0 |
type MapAccumLSym3 t t t = MapAccumL t t t Source
data MapAccumRSym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k ((,) k k) -> *) -> *) (TyFun k (TyFun [k] ((,) k [k]) -> *) -> *) -> *) (MapAccumRSym0 k k k) | |
type Apply (TyFun k (TyFun [k1] ((,) k [k2]) -> *) -> *) (TyFun k (TyFun k1 ((,) k k2) -> *) -> *) (MapAccumRSym0 k k1 k2) l0 = MapAccumRSym1 k k1 k2 l0 |
data MapAccumRSym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k ((,) k k) -> *) -> *) -> TyFun k (TyFun [k] ((,) k [k]) -> *) -> *) (MapAccumRSym1 k k k) | |
type Apply (TyFun [k1] ((,) k [k2]) -> *) k (MapAccumRSym1 k k1 k2 l1) l0 = MapAccumRSym2 k k1 k2 l1 l0 |
data MapAccumRSym2 l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k ((,) k k) -> *) -> *) -> k -> TyFun [k] ((,) k [k]) -> *) (MapAccumRSym2 k k k) | |
type Apply ((,) k [k2]) [k1] (MapAccumRSym2 k k1 k2 l1 l2) l0 = MapAccumRSym3 k k1 k2 l1 l2 l0 |
type MapAccumRSym3 t t t = MapAccumR t t t Source
data UnfoldrSym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (Maybe ((,) k k)) -> *) (TyFun k [k] -> *) -> *) (UnfoldrSym0 k k) | |
type Apply (TyFun k [k1] -> *) (TyFun k (Maybe ((,) k1 k)) -> *) (UnfoldrSym0 k k1) l0 = UnfoldrSym1 k k1 l0 |
data UnfoldrSym1 l l Source
SuppressUnusedWarnings ((TyFun k (Maybe ((,) k k)) -> *) -> TyFun k [k] -> *) (UnfoldrSym1 k k) | |
type Apply [k1] k (UnfoldrSym1 k k1 l1) l0 = UnfoldrSym2 k k1 l1 l0 |
type UnfoldrSym2 t t = Unfoldr t t Source
data IsPrefixOfSym0 l Source
SuppressUnusedWarnings (TyFun [k] (TyFun [k] Bool -> *) -> *) (IsPrefixOfSym0 k) | |
type Apply (TyFun [k] Bool -> *) [k] (IsPrefixOfSym0 k) l0 = IsPrefixOfSym1 k l0 |
data IsPrefixOfSym1 l l Source
SuppressUnusedWarnings ([k] -> TyFun [k] Bool -> *) (IsPrefixOfSym1 k) | |
type Apply Bool [k] (IsPrefixOfSym1 k l1) l0 = IsPrefixOfSym2 k l1 l0 |
type IsPrefixOfSym2 t t = IsPrefixOf t t Source
data IsSuffixOfSym0 l Source
SuppressUnusedWarnings (TyFun [k] (TyFun [k] Bool -> *) -> *) (IsSuffixOfSym0 k) | |
type Apply (TyFun [k] Bool -> *) [k] (IsSuffixOfSym0 k) l0 = IsSuffixOfSym1 k l0 |
data IsSuffixOfSym1 l l Source
SuppressUnusedWarnings ([k] -> TyFun [k] Bool -> *) (IsSuffixOfSym1 k) | |
type Apply Bool [k] (IsSuffixOfSym1 k l1) l0 = IsSuffixOfSym2 k l1 l0 |
type IsSuffixOfSym2 t t = IsSuffixOf t t Source
data IsInfixOfSym0 l Source
SuppressUnusedWarnings (TyFun [k] (TyFun [k] Bool -> *) -> *) (IsInfixOfSym0 k) | |
type Apply (TyFun [k] Bool -> *) [k] (IsInfixOfSym0 k) l0 = IsInfixOfSym1 k l0 |
data IsInfixOfSym1 l l Source
SuppressUnusedWarnings ([k] -> TyFun [k] Bool -> *) (IsInfixOfSym1 k) | |
type Apply Bool [k] (IsInfixOfSym1 k l1) l0 = IsInfixOfSym2 k l1 l0 |
type IsInfixOfSym2 t t = IsInfixOf t t Source
data NotElemSym0 l Source
SuppressUnusedWarnings (TyFun k (TyFun [k] Bool -> *) -> *) (NotElemSym0 k) | |
type Apply (TyFun [k] Bool -> *) k (NotElemSym0 k) l0 = NotElemSym1 k l0 |
data NotElemSym1 l l Source
SuppressUnusedWarnings (k -> TyFun [k] Bool -> *) (NotElemSym1 k) | |
type Apply Bool [k] (NotElemSym1 k l1) l0 = NotElemSym2 k l1 l0 |
type NotElemSym2 t t = NotElem t t Source
data ZipWithSym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k k -> *) -> *) (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) (ZipWithSym0 k k k) | |
type Apply (TyFun [k] (TyFun [k1] [k2] -> *) -> *) (TyFun k (TyFun k1 k2 -> *) -> *) (ZipWithSym0 k k1 k2) l0 = ZipWithSym1 k k1 k2 l0 |
data ZipWithSym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> TyFun [k] (TyFun [k] [k] -> *) -> *) (ZipWithSym1 k k k) | |
type Apply (TyFun [k1] [k2] -> *) [k] (ZipWithSym1 k k1 k2 l1) l0 = ZipWithSym2 k k1 k2 l1 l0 |
data ZipWithSym2 l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k k -> *) -> *) -> [k] -> TyFun [k] [k] -> *) (ZipWithSym2 k k k) | |
type Apply [k2] [k1] (ZipWithSym2 k k1 k2 l1 l2) l0 = ZipWithSym3 k k1 k2 l1 l2 l0 |
type ZipWithSym3 t t t = ZipWith t t t Source
data ZipWith3Sym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) (TyFun [k] (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) -> *) (ZipWith3Sym0 k k k k) | |
type Apply (TyFun [k] (TyFun [k1] (TyFun [k2] [k3] -> *) -> *) -> *) (TyFun k (TyFun k1 (TyFun k2 k3 -> *) -> *) -> *) (ZipWith3Sym0 k k1 k2 k3) l0 = ZipWith3Sym1 k k1 k2 k3 l0 |
data ZipWith3Sym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> TyFun [k] (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) (ZipWith3Sym1 k k k k) | |
type Apply (TyFun [k1] (TyFun [k2] [k3] -> *) -> *) [k] (ZipWith3Sym1 k k1 k2 k3 l1) l0 = ZipWith3Sym2 k k1 k2 k3 l1 l0 |
data ZipWith3Sym2 l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> [k] -> TyFun [k] (TyFun [k] [k] -> *) -> *) (ZipWith3Sym2 k k k k) | |
type Apply (TyFun [k2] [k3] -> *) [k1] (ZipWith3Sym2 k k1 k2 k3 l1 l2) l0 = ZipWith3Sym3 k k1 k2 k3 l1 l2 l0 |
data ZipWith3Sym3 l l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k (TyFun k k -> *) -> *) -> *) -> [k] -> [k] -> TyFun [k] [k] -> *) (ZipWith3Sym3 k k k k) | |
type Apply [k3] [k2] (ZipWith3Sym3 k k1 k2 k3 l1 l2 l3) l0 |
data Unzip3Sym0 l Source
SuppressUnusedWarnings (TyFun [(,,) k k k] ((,,) [k] [k] [k]) -> *) (Unzip3Sym0 k k k) | |
type Apply ((,,) [k] [k1] [k2]) [(,,) k k1 k2] (Unzip3Sym0 k k1 k2) l0 = Unzip3Sym1 k k1 k2 l0 |
type Unzip3Sym1 t = Unzip3 t Source
data Unzip4Sym0 l Source
SuppressUnusedWarnings (TyFun [(,,,) k k k k] ((,,,) [k] [k] [k] [k]) -> *) (Unzip4Sym0 k k k k) | |
type Apply ((,,,) [k] [k1] [k2] [k3]) [(,,,) k k1 k2 k3] (Unzip4Sym0 k k1 k2 k3) l0 = Unzip4Sym1 k k1 k2 k3 l0 |
type Unzip4Sym1 t = Unzip4 t Source
data Unzip5Sym0 l Source
SuppressUnusedWarnings (TyFun [(,,,,) k k k k k] ((,,,,) [k] [k] [k] [k] [k]) -> *) (Unzip5Sym0 k k k k k) | |
type Apply ((,,,,) [k] [k1] [k2] [k3] [k4]) [(,,,,) k k1 k2 k3 k4] (Unzip5Sym0 k k1 k2 k3 k4) l0 = Unzip5Sym1 k k1 k2 k3 k4 l0 |
type Unzip5Sym1 t = Unzip5 t Source
data Unzip6Sym0 l Source
SuppressUnusedWarnings (TyFun [(,,,,,) k k k k k k] ((,,,,,) [k] [k] [k] [k] [k] [k]) -> *) (Unzip6Sym0 k k k k k k) | |
type Apply ((,,,,,) [k] [k1] [k2] [k3] [k4] [k5]) [(,,,,,) k k1 k2 k3 k4 k5] (Unzip6Sym0 k k1 k2 k3 k4 k5) l0 = Unzip6Sym1 k k1 k2 k3 k4 k5 l0 |
type Unzip6Sym1 t = Unzip6 t Source
data Unzip7Sym0 l Source
SuppressUnusedWarnings (TyFun [(,,,,,,) k k k k k k k] ((,,,,,,) [k] [k] [k] [k] [k] [k] [k]) -> *) (Unzip7Sym0 k k k k k k k) | |
type Apply ((,,,,,,) [k] [k1] [k2] [k3] [k4] [k5] [k6]) [(,,,,,,) k k1 k2 k3 k4 k5 k6] (Unzip7Sym0 k k1 k2 k3 k4 k5 k6) l0 = Unzip7Sym1 k k1 k2 k3 k4 k5 k6 l0 |
type Unzip7Sym1 t = Unzip7 t Source
data DeleteSym0 l Source
SuppressUnusedWarnings (TyFun k (TyFun [k] [k] -> *) -> *) (DeleteSym0 k) | |
type Apply (TyFun [k] [k] -> *) k (DeleteSym0 k) l0 = DeleteSym1 k l0 |
data DeleteSym1 l l Source
SuppressUnusedWarnings (k -> TyFun [k] [k] -> *) (DeleteSym1 k) | |
type Apply [k] [k] (DeleteSym1 k l1) l0 = DeleteSym2 k l1 l0 |
type DeleteSym2 t t = Delete t t Source
data DeleteBySym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Bool -> *) -> *) (TyFun k (TyFun [k] [k] -> *) -> *) -> *) (DeleteBySym0 k) | |
type Apply (TyFun k (TyFun [k] [k] -> *) -> *) (TyFun k (TyFun k Bool -> *) -> *) (DeleteBySym0 k) l0 = DeleteBySym1 k l0 |
data DeleteBySym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Bool -> *) -> *) -> TyFun k (TyFun [k] [k] -> *) -> *) (DeleteBySym1 k) | |
type Apply (TyFun [k] [k] -> *) k (DeleteBySym1 k l1) l0 = DeleteBySym2 k l1 l0 |
data DeleteBySym2 l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Bool -> *) -> *) -> k -> TyFun [k] [k] -> *) (DeleteBySym2 k) | |
type Apply [k] [k] (DeleteBySym2 k l1 l2) l0 = DeleteBySym3 k l1 l2 l0 |
type DeleteBySym3 t t t = DeleteBy t t t Source
data DeleteFirstsBySym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Bool -> *) -> *) (TyFun [k] (TyFun [k] [k] -> *) -> *) -> *) (DeleteFirstsBySym0 k) | |
type Apply (TyFun [k] (TyFun [k] [k] -> *) -> *) (TyFun k (TyFun k Bool -> *) -> *) (DeleteFirstsBySym0 k) l0 = DeleteFirstsBySym1 k l0 |
data DeleteFirstsBySym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Bool -> *) -> *) -> TyFun [k] (TyFun [k] [k] -> *) -> *) (DeleteFirstsBySym1 k) | |
type Apply (TyFun [k] [k] -> *) [k] (DeleteFirstsBySym1 k l1) l0 = DeleteFirstsBySym2 k l1 l0 |
data DeleteFirstsBySym2 l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Bool -> *) -> *) -> [k] -> TyFun [k] [k] -> *) (DeleteFirstsBySym2 k) | |
type Apply [k] [k] (DeleteFirstsBySym2 k l1 l2) l0 = DeleteFirstsBySym3 k l1 l2 l0 |
type DeleteFirstsBySym3 t t t = DeleteFirstsBy t t t Source
data SortBySym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun [k] [k] -> *) -> *) (SortBySym0 k) | |
type Apply (TyFun [k] [k] -> *) (TyFun k (TyFun k Ordering -> *) -> *) (SortBySym0 k) l0 = SortBySym1 k l0 |
data SortBySym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun [k] [k] -> *) (SortBySym1 k) | |
type Apply [k] [k] (SortBySym1 k l1) l0 = SortBySym2 k l1 l0 |
type SortBySym2 t t = SortBy t t Source
data InsertBySym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun k (TyFun [k] [k] -> *) -> *) -> *) (InsertBySym0 k) | |
type Apply (TyFun k (TyFun [k] [k] -> *) -> *) (TyFun k (TyFun k Ordering -> *) -> *) (InsertBySym0 k) l0 = InsertBySym1 k l0 |
data InsertBySym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun k (TyFun [k] [k] -> *) -> *) (InsertBySym1 k) | |
type Apply (TyFun [k] [k] -> *) k (InsertBySym1 k l1) l0 = InsertBySym2 k l1 l0 |
data InsertBySym2 l l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> k -> TyFun [k] [k] -> *) (InsertBySym2 k) | |
type Apply [k] [k] (InsertBySym2 k l1 l2) l0 = InsertBySym3 k l1 l2 l0 |
type InsertBySym3 t t t = InsertBy t t t Source
data MaximumBySym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun [k] k -> *) -> *) (MaximumBySym0 k) | |
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k Ordering -> *) -> *) (MaximumBySym0 k) l0 = MaximumBySym1 k l0 |
data MaximumBySym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun [k] k -> *) (MaximumBySym1 k) | |
type Apply k [k] (MaximumBySym1 k l1) l0 = MaximumBySym2 k l1 l0 |
type MaximumBySym2 t t = MaximumBy t t Source
data MinimumBySym0 l Source
SuppressUnusedWarnings (TyFun (TyFun k (TyFun k Ordering -> *) -> *) (TyFun [k] k -> *) -> *) (MinimumBySym0 k) | |
type Apply (TyFun [k] k -> *) (TyFun k (TyFun k Ordering -> *) -> *) (MinimumBySym0 k) l0 = MinimumBySym1 k l0 |
data MinimumBySym1 l l Source
SuppressUnusedWarnings ((TyFun k (TyFun k Ordering -> *) -> *) -> TyFun [k] k -> *) (MinimumBySym1 k) | |
type Apply k [k] (MinimumBySym1 k l1) l0 = MinimumBySym2 k l1 l0 |
type MinimumBySym2 t t = MinimumBy t t Source