Copyright | (C) 2013-2014 Richard Eisenberg, Jan Stolarek |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Richard Eisenberg (eir@cis.upenn.edu) |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Defines functions and datatypes relating to the singleton for Bool
,
including a singletons version of all the definitions in Data.Bool
.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.Bool
. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
- data family Sing a
- type SBool = (Sing :: Bool -> *)
- type family If cond tru fls :: k
- sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c)
- type family Not a :: Bool
- sNot :: forall t. Sing t -> Sing (Apply NotSym0 t :: Bool)
- type family a :&& a :: Bool
- type family a :|| a :: Bool
- (%:&&) :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply (:&&$) t) t :: Bool)
- (%:||) :: forall t t. Sing t -> Sing t -> Sing (Apply (Apply (:||$) t) t :: Bool)
- bool_ :: forall a. a -> a -> Bool -> a
- type family Bool_ a a a :: a
- sBool_ :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Bool_Sym0 t) t) t :: a)
- type family Otherwise :: Bool
- sOtherwise :: Sing (OtherwiseSym0 :: Bool)
- type TrueSym0 = True
- type FalseSym0 = False
- data NotSym0 l
- type NotSym1 t = Not t
- data (:&&$) l
- data l :&&$$ l
- type (:&&$$$) t t = (:&&) t t
- data (:||$) l
- data l :||$$ l
- type (:||$$$) t t = (:||) t t
- data Bool_Sym0 l
- data Bool_Sym1 l l
- data Bool_Sym2 l l l
- type Bool_Sym3 t t t = Bool_ t t t
- type OtherwiseSym0 = Otherwise
The Bool
singleton
The singleton kind-indexed data family.
data Sing Bool where Source | |
data Sing Ordering where Source | |
data Sing * where Source | |
data Sing Nat where Source | |
data Sing Symbol where
| |
data Sing () where Source | |
data Sing [a0] where Source | |
data Sing (Maybe a0) where Source | |
data Sing (TyFun k1 k2 -> *) = SLambda {} Source | |
data Sing (Either a0 b0) where Source | |
data Sing ((,) a0 b0) where Source | |
data Sing ((,,) a0 b0 c0) where Source | |
data Sing ((,,,) a0 b0 c0 d0) where Source | |
data Sing ((,,,,) a0 b0 c0 d0 e0) where Source | |
data Sing ((,,,,,) a0 b0 c0 d0 e0 f0) where Source | |
data Sing ((,,,,,,) a0 b0 c0 d0 e0 f0 g0) where Source |
Though Haddock doesn't show it, the Sing
instance above declares
constructors
SFalse :: Sing False STrue :: Sing True
Conditionals
Singletons from Data.Bool
The following are derived from the function bool
in Data.Bool
. The extra
underscore is to avoid name clashes with the type Bool
.
sBool_ :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Bool_Sym0 t) t) t :: a) Source
sOtherwise :: Sing (OtherwiseSym0 :: Bool) Source
Defunctionalization symbols
type OtherwiseSym0 = Otherwise Source