Copyright | (C) 2013-2014 Richard Eisenberg, Jan Stolarek |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Richard Eisenberg (eir@cis.upenn.edu) |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Defines functions and datatypes relating to the singleton for Either
,
including a singletons version of all the definitions in Data.Either
.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.Either
. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
- data family Sing (a :: k)
- type SEither = (Sing :: Either a b -> Type)
- either_ :: forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
- type family Either_ (a :: TyFun a c -> Type) (a :: TyFun b c -> Type) (a :: Either a b) :: c where ...
- sEither_ :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c)
- type family Lefts (a :: [Either a b]) :: [a] where ...
- sLefts :: forall t. Sing t -> Sing (Apply LeftsSym0 t :: [a])
- type family Rights (a :: [Either a b]) :: [b] where ...
- sRights :: forall t. Sing t -> Sing (Apply RightsSym0 t :: [b])
- type family PartitionEithers (a :: [Either a b]) :: ([a], [b]) where ...
- sPartitionEithers :: forall t. Sing t -> Sing (Apply PartitionEithersSym0 t :: ([a], [b]))
- type family IsLeft (a :: Either a b) :: Bool where ...
- sIsLeft :: forall t. Sing t -> Sing (Apply IsLeftSym0 t :: Bool)
- type family IsRight (a :: Either a b) :: Bool where ...
- sIsRight :: forall t. Sing t -> Sing (Apply IsRightSym0 t :: Bool)
- data LeftSym0 l
- type LeftSym1 t = Left t
- data RightSym0 l
- type RightSym1 t = Right t
- data Either_Sym0 l
- data Either_Sym1 l l
- data Either_Sym2 l l l
- type Either_Sym3 t t t = Either_ t t t
- data LeftsSym0 l
- type LeftsSym1 t = Lefts t
- data RightsSym0 l
- type RightsSym1 t = Rights t
- data IsLeftSym0 l
- type IsLeftSym1 t = IsLeft t
- data IsRightSym0 l
- type IsRightSym1 t = IsRight t
The Either
singleton
data family Sing (a :: k) Source #
The singleton kind-indexed data family.
data Sing Bool Source # | |
data Sing Ordering Source # | |
data Sing * Source # | |
data Sing Nat Source # | |
data Sing Symbol Source # | |
data Sing () Source # | |
data Sing [a0] Source # | |
data Sing (Maybe a0) Source # | |
data Sing (NonEmpty a0) Source # | |
data Sing (Either a0 b0) Source # | |
data Sing (a0, b0) Source # | |
data Sing ((~>) k1 k2) Source # | |
data Sing (a0, b0, c0) Source # | |
data Sing (a0, b0, c0, d0) Source # | |
data Sing (a0, b0, c0, d0, e0) Source # | |
data Sing (a0, b0, c0, d0, e0, f0) Source # | |
data Sing (a0, b0, c0, d0, e0, f0, g0) Source # | |
Though Haddock doesn't show it, the Sing
instance above declares
constructors
SLeft :: Sing a -> Sing (Left a) SRight :: Sing b -> Sing (Right b)
Singletons from Data.Either
type family Either_ (a :: TyFun a c -> Type) (a :: TyFun b c -> Type) (a :: Either a b) :: c where ... Source #
sEither_ :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c) Source #
The preceding two definitions are derived from the function either
in
Data.Either
. The extra underscore is to avoid name clashes with the type
Either
.
type family PartitionEithers (a :: [Either a b]) :: ([a], [b]) where ... Source #
PartitionEithers a_1627830495 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Either_Sym0 (Let1627830502LeftSym1 a_1627830495)) (Let1627830502RightSym1 a_1627830495))) (Apply (Apply Tuple2Sym0 '[]) '[])) a_1627830495 |
Defunctionalization symbols
data Either_Sym0 l Source #
SuppressUnusedWarnings (TyFun (TyFun a1627829180 c1627829181 -> Type) (TyFun (TyFun b1627829182 c1627829181 -> Type) (TyFun (Either a1627829180 b1627829182) c1627829181 -> Type) -> Type) -> *) (Either_Sym0 a1627829180 b1627829182 c1627829181) Source # | |
type Apply (TyFun a1627829180 c1627829181 -> Type) (TyFun (TyFun b1627829182 c1627829181 -> Type) (TyFun (Either a1627829180 b1627829182) c1627829181 -> Type) -> Type) (Either_Sym0 a1627829180 b1627829182 c1627829181) l0 Source # | |
data Either_Sym1 l l Source #
SuppressUnusedWarnings ((TyFun a1627829180 c1627829181 -> Type) -> TyFun (TyFun b1627829182 c1627829181 -> Type) (TyFun (Either a1627829180 b1627829182) c1627829181 -> Type) -> *) (Either_Sym1 b1627829182 a1627829180 c1627829181) Source # | |
type Apply (TyFun b1627829182 c1627829181 -> Type) (TyFun (Either a1627829180 b1627829182) c1627829181 -> Type) (Either_Sym1 b1627829182 a1627829180 c1627829181 l1) l0 Source # | |
data Either_Sym2 l l l Source #
SuppressUnusedWarnings ((TyFun a1627829180 c1627829181 -> Type) -> (TyFun b1627829182 c1627829181 -> Type) -> TyFun (Either a1627829180 b1627829182) c1627829181 -> *) (Either_Sym2 b1627829182 a1627829180 c1627829181) Source # | |
type Apply (Either a1627829180 b1627829182) c1627829181 (Either_Sym2 b1627829182 a1627829180 c1627829181 l1 l2) l0 Source # | |
type Either_Sym3 t t t = Either_ t t t Source #
data RightsSym0 l Source #
SuppressUnusedWarnings (TyFun [Either a1627830452 b1627830453] [b1627830453] -> *) (RightsSym0 a1627830452 b1627830453) Source # | |
type Apply [Either a1627830452 b1627830453] [b1627830453] (RightsSym0 a1627830452 b1627830453) l0 Source # | |
type RightsSym1 t = Rights t Source #
data IsLeftSym0 l Source #
SuppressUnusedWarnings (TyFun (Either a1627830448 b1627830449) Bool -> *) (IsLeftSym0 a1627830448 b1627830449) Source # | |
type Apply (Either a1627830448 b1627830449) Bool (IsLeftSym0 a1627830448 b1627830449) l0 Source # | |
type IsLeftSym1 t = IsLeft t Source #
data IsRightSym0 l Source #
SuppressUnusedWarnings (TyFun (Either a1627830446 b1627830447) Bool -> *) (IsRightSym0 a1627830446 b1627830447) Source # | |
type Apply (Either a1627830446 b1627830447) Bool (IsRightSym0 a1627830446 b1627830447) l0 Source # | |
type IsRightSym1 t = IsRight t Source #