singletons-2.5.1: A framework for generating singleton types

Copyright(C) 2013 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Eq

Contents

Description

Defines the SEq singleton version of the Eq type class.

Synopsis
  • class PEq a where
    • type (x :: a) == (y :: a) :: Bool
    • type (x :: a) /= (y :: a) :: Bool
  • class SEq k where
  • type family DefaultEq (a :: k) (b :: k) :: Bool where ...
  • data (==@#@$) :: forall a6989586621679359331. (~>) a6989586621679359331 ((~>) a6989586621679359331 Bool)
  • data (==@#@$$) (x6989586621679359332 :: a6989586621679359331) :: (~>) a6989586621679359331 Bool
  • type (==@#@$$$) (x6989586621679359332 :: a6989586621679359331) (y6989586621679359333 :: a6989586621679359331) = (==) x6989586621679359332 y6989586621679359333
  • data (/=@#@$) :: forall a6989586621679359331. (~>) a6989586621679359331 ((~>) a6989586621679359331 Bool)
  • data (/=@#@$$) (x6989586621679359334 :: a6989586621679359331) :: (~>) a6989586621679359331 Bool
  • type (/=@#@$$$) (x6989586621679359334 :: a6989586621679359331) (y6989586621679359335 :: a6989586621679359331) = (/=) x6989586621679359334 y6989586621679359335
  • data DefaultEqSym0 :: forall k6989586621679359325. (~>) k6989586621679359325 ((~>) k6989586621679359325 Bool)
  • data DefaultEqSym1 (a6989586621679359326 :: k6989586621679359325) :: (~>) k6989586621679359325 Bool
  • type DefaultEqSym2 (a6989586621679359326 :: k6989586621679359325) (b6989586621679359327 :: k6989586621679359325) = DefaultEq a6989586621679359326 b6989586621679359327

Documentation

class PEq a Source #

The promoted analogue of Eq. If you supply no definition for '(==)', then it defaults to a use of DefaultEq.

Associated Types

type (x :: a) == (y :: a) :: Bool infix 4 Source #

type (x :: a) /= (y :: a) :: Bool infix 4 Source #

Instances
PEq Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Nat Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Symbol Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq () Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Void Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq [a] Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (TYPE rep) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

PEq (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Associated Types

type x == y :: Bool Source #

type x /= y :: Bool Source #

class SEq k where Source #

The singleton analogue of Eq. Unlike the definition for Eq, it is required that instances define a body for '(%==)'. You may also supply a body for '(%/=)'.

Minimal complete definition

(%==)

Methods

(%==) :: forall (a :: k) (b :: k). Sing a -> Sing b -> Sing (a == b) infix 4 Source #

Boolean equality on singletons

(%/=) :: forall (a :: k) (b :: k). Sing a -> Sing b -> Sing (a /= b) infix 4 Source #

Boolean disequality on singletons

(%/=) :: forall (a :: k) (b :: k). (a /= b) ~ Not (a == b) => Sing a -> Sing b -> Sing (a /= b) infix 4 Source #

Boolean disequality on singletons

Instances
SEq Bool Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Ordering Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Nat Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Symbol Source # 
Instance details

Defined in Data.Singletons.TypeLits.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq () Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Void Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Bool => SEq All Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq Bool => SEq Any Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

(SEq a, SEq [a]) => SEq [a] Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Maybe a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq (TYPE rep) Source # 
Instance details

Defined in Data.Singletons.TypeRepTYPE

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq a => SEq (Min a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Max a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq m => SEq (WrappedMonoid m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a -> Sing b -> Sing (a == b) Source #

(%/=) :: Sing a -> Sing b -> Sing (a /= b) Source #

SEq (Maybe a) => SEq (Option a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Identity a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq (Maybe a) => SEq (First a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq (Maybe a) => SEq (Last a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monoid

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Dual a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Sum a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Product a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup.Internal

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

SEq a => SEq (Down a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Ord

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

(SEq a, SEq [a]) => SEq (NonEmpty a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b -> Sing (a0 == b) Source #

(%/=) :: Sing a0 -> Sing b -> Sing (a0 /= b) Source #

(SEq a, SEq b) => SEq (Either a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b) => SEq (a, b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

SEq a => SEq (Arg a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c) => SEq (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

SEq a => SEq (Const a b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c, SEq d) => SEq (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e) => SEq (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e, SEq f) => SEq (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e, SEq f, SEq g) => SEq (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

(%==) :: Sing a0 -> Sing b0 -> Sing (a0 == b0) Source #

(%/=) :: Sing a0 -> Sing b0 -> Sing (a0 /= b0) Source #

type family DefaultEq (a :: k) (b :: k) :: Bool where ... Source #

A sensible way to compute Boolean equality for types of any kind. Note that this definition is slightly different from the '(DTE.==)' type family from Data.Type.Equality in base, as '(DTE.==)' attempts to distinguish applications of type constructors from other types. As a result, a == a does not reduce to True for every a, but DefaultEq a a does reduce to True for every a. The latter behavior is more desirable for singletons' purposes, so we use it instead of '(DTE.==)'.

Equations

DefaultEq a a = True 
DefaultEq a b = False 

Defunctionalization symbols

data (==@#@$) :: forall a6989586621679359331. (~>) a6989586621679359331 ((~>) a6989586621679359331 Bool) infix 4 Source #

Instances
SEq a => SingI ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

SuppressUnusedWarnings ((==@#@$) :: TyFun a6989586621679359331 (a6989586621679359331 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((==@#@$) :: TyFun a6989586621679359331 (a6989586621679359331 ~> Bool) -> Type) (x6989586621679359332 :: a6989586621679359331) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((==@#@$) :: TyFun a6989586621679359331 (a6989586621679359331 ~> Bool) -> Type) (x6989586621679359332 :: a6989586621679359331) = (==@#@$$) x6989586621679359332

data (==@#@$$) (x6989586621679359332 :: a6989586621679359331) :: (~>) a6989586621679359331 Bool infix 4 Source #

Instances
(SEq a, SingI x) => SingI ((==@#@$$) x :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

sing :: Sing ((==@#@$$) x) Source #

SuppressUnusedWarnings ((==@#@$$) x6989586621679359332 :: TyFun a6989586621679359331 Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((==@#@$$) x6989586621679359332 :: TyFun a Bool -> Type) (y6989586621679359333 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((==@#@$$) x6989586621679359332 :: TyFun a Bool -> Type) (y6989586621679359333 :: a) = x6989586621679359332 == y6989586621679359333

type (==@#@$$$) (x6989586621679359332 :: a6989586621679359331) (y6989586621679359333 :: a6989586621679359331) = (==) x6989586621679359332 y6989586621679359333 Source #

data (/=@#@$) :: forall a6989586621679359331. (~>) a6989586621679359331 ((~>) a6989586621679359331 Bool) infix 4 Source #

Instances
SEq a => SingI ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

SuppressUnusedWarnings ((/=@#@$) :: TyFun a6989586621679359331 (a6989586621679359331 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((/=@#@$) :: TyFun a6989586621679359331 (a6989586621679359331 ~> Bool) -> Type) (x6989586621679359334 :: a6989586621679359331) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((/=@#@$) :: TyFun a6989586621679359331 (a6989586621679359331 ~> Bool) -> Type) (x6989586621679359334 :: a6989586621679359331) = (/=@#@$$) x6989586621679359334

data (/=@#@$$) (x6989586621679359334 :: a6989586621679359331) :: (~>) a6989586621679359331 Bool infix 4 Source #

Instances
(SEq a, SingI x) => SingI ((/=@#@$$) x :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

Methods

sing :: Sing ((/=@#@$$) x) Source #

SuppressUnusedWarnings ((/=@#@$$) x6989586621679359334 :: TyFun a6989586621679359331 Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((/=@#@$$) x6989586621679359334 :: TyFun a Bool -> Type) (y6989586621679359335 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply ((/=@#@$$) x6989586621679359334 :: TyFun a Bool -> Type) (y6989586621679359335 :: a) = x6989586621679359334 /= y6989586621679359335

type (/=@#@$$$) (x6989586621679359334 :: a6989586621679359331) (y6989586621679359335 :: a6989586621679359331) = (/=) x6989586621679359334 y6989586621679359335 Source #

data DefaultEqSym0 :: forall k6989586621679359325. (~>) k6989586621679359325 ((~>) k6989586621679359325 Bool) Source #

Instances
SuppressUnusedWarnings (DefaultEqSym0 :: TyFun k6989586621679359325 (k6989586621679359325 ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply (DefaultEqSym0 :: TyFun k6989586621679359325 (k6989586621679359325 ~> Bool) -> Type) (a6989586621679359326 :: k6989586621679359325) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply (DefaultEqSym0 :: TyFun k6989586621679359325 (k6989586621679359325 ~> Bool) -> Type) (a6989586621679359326 :: k6989586621679359325) = DefaultEqSym1 a6989586621679359326

data DefaultEqSym1 (a6989586621679359326 :: k6989586621679359325) :: (~>) k6989586621679359325 Bool Source #

Instances
SuppressUnusedWarnings (DefaultEqSym1 a6989586621679359326 :: TyFun k6989586621679359325 Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply (DefaultEqSym1 a6989586621679359326 :: TyFun k Bool -> Type) (b6989586621679359327 :: k) Source # 
Instance details

Defined in Data.Singletons.Prelude.Eq

type Apply (DefaultEqSym1 a6989586621679359326 :: TyFun k Bool -> Type) (b6989586621679359327 :: k) = DefaultEq a6989586621679359326 b6989586621679359327

type DefaultEqSym2 (a6989586621679359326 :: k6989586621679359325) (b6989586621679359327 :: k6989586621679359325) = DefaultEq a6989586621679359326 b6989586621679359327 Source #