singletons-2.5.1: A framework for generating singleton types

Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Monad.Zip

Contents

Description

Defines the promoted and singled versions of the MonadZip type class.

Synopsis
  • class PMonad m => PMonadZip (m :: Type -> Type) where
    • type Mzip (arg :: m a) (arg :: m b) :: m (a, b)
    • type MzipWith (arg :: (~>) a ((~>) b c)) (arg :: m a) (arg :: m b) :: m c
    • type Munzip (arg :: m (a, b)) :: (m a, m b)
  • class SMonad m => SMonadZip (m :: Type -> Type) where
  • data MzipSym0 :: forall a6989586621681057604 b6989586621681057605 m6989586621681057603. (~>) (m6989586621681057603 a6989586621681057604) ((~>) (m6989586621681057603 b6989586621681057605) (m6989586621681057603 (a6989586621681057604, b6989586621681057605)))
  • data MzipSym1 (arg6989586621681057679 :: m6989586621681057603 a6989586621681057604) :: forall b6989586621681057605. (~>) (m6989586621681057603 b6989586621681057605) (m6989586621681057603 (a6989586621681057604, b6989586621681057605))
  • type MzipSym2 (arg6989586621681057679 :: m6989586621681057603 a6989586621681057604) (arg6989586621681057680 :: m6989586621681057603 b6989586621681057605) = Mzip arg6989586621681057679 arg6989586621681057680
  • data MzipWithSym0 :: forall a6989586621681057606 b6989586621681057607 c6989586621681057608 m6989586621681057603. (~>) ((~>) a6989586621681057606 ((~>) b6989586621681057607 c6989586621681057608)) ((~>) (m6989586621681057603 a6989586621681057606) ((~>) (m6989586621681057603 b6989586621681057607) (m6989586621681057603 c6989586621681057608)))
  • data MzipWithSym1 (arg6989586621681057683 :: (~>) a6989586621681057606 ((~>) b6989586621681057607 c6989586621681057608)) :: forall m6989586621681057603. (~>) (m6989586621681057603 a6989586621681057606) ((~>) (m6989586621681057603 b6989586621681057607) (m6989586621681057603 c6989586621681057608))
  • data MzipWithSym2 (arg6989586621681057683 :: (~>) a6989586621681057606 ((~>) b6989586621681057607 c6989586621681057608)) (arg6989586621681057684 :: m6989586621681057603 a6989586621681057606) :: (~>) (m6989586621681057603 b6989586621681057607) (m6989586621681057603 c6989586621681057608)
  • type MzipWithSym3 (arg6989586621681057683 :: (~>) a6989586621681057606 ((~>) b6989586621681057607 c6989586621681057608)) (arg6989586621681057684 :: m6989586621681057603 a6989586621681057606) (arg6989586621681057685 :: m6989586621681057603 b6989586621681057607) = MzipWith arg6989586621681057683 arg6989586621681057684 arg6989586621681057685
  • data MunzipSym0 :: forall a6989586621681057609 b6989586621681057610 m6989586621681057603. (~>) (m6989586621681057603 (a6989586621681057609, b6989586621681057610)) (m6989586621681057603 a6989586621681057609, m6989586621681057603 b6989586621681057610)
  • type MunzipSym1 (arg6989586621681057689 :: m6989586621681057603 (a6989586621681057609, b6989586621681057610)) = Munzip arg6989586621681057689

Documentation

class PMonad m => PMonadZip (m :: Type -> Type) Source #

Associated Types

type Mzip (arg :: m a) (arg :: m b) :: m (a, b) Source #

type MzipWith (arg :: (~>) a ((~>) b c)) (arg :: m a) (arg :: m b) :: m c Source #

type Munzip (arg :: m (a, b)) :: (m a, m b) Source #

Instances
PMonadZip [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

PMonadZip Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

PMonadZip Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

PMonadZip First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

PMonadZip Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

PMonadZip Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

PMonadZip Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

PMonadZip Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

PMonadZip NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.List.NonEmpty

Associated Types

type Mzip arg arg :: m (a, b) Source #

type MzipWith arg arg arg :: m c Source #

type Munzip arg :: (m a, m b) Source #

class SMonad m => SMonadZip (m :: Type -> Type) where Source #

Minimal complete definition

Nothing

Methods

sMzip :: forall a b (t :: m a) (t :: m b). Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t :: m (a, b)) Source #

sMzipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: m a) (t :: m b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t :: m c) Source #

sMunzip :: forall a b (t :: m (a, b)). Sing t -> Sing (Apply MunzipSym0 t :: (m a, m b)) Source #

sMzip :: forall a b (t :: m a) (t :: m b). (Apply (Apply MzipSym0 t) t :: m (a, b)) ~ Apply (Apply Mzip_6989586621681057703Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t :: m (a, b)) Source #

sMzipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: m a) (t :: m b). (Apply (Apply (Apply MzipWithSym0 t) t) t :: m c) ~ Apply (Apply (Apply MzipWith_6989586621681057719Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t :: m c) Source #

sMunzip :: forall a b (t :: m (a, b)). (Apply MunzipSym0 t :: (m a, m b)) ~ Apply Munzip_6989586621681057728Sym0 t => Sing t -> Sing (Apply MunzipSym0 t :: (m a, m b)) Source #

Instances
SMonadZip [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

SMonadZip Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

SMonadZip Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

SMonadZip First Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

SMonadZip Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

SMonadZip Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

SMonadZip Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

SMonadZip Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

SMonadZip NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.List.NonEmpty

Methods

sMzip :: Sing t -> Sing t -> Sing (Apply (Apply MzipSym0 t) t) Source #

sMzipWith :: Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MzipWithSym0 t) t) t) Source #

sMunzip :: Sing t -> Sing (Apply MunzipSym0 t) Source #

Defunctionalization symbols

data MzipSym0 :: forall a6989586621681057604 b6989586621681057605 m6989586621681057603. (~>) (m6989586621681057603 a6989586621681057604) ((~>) (m6989586621681057603 b6989586621681057605) (m6989586621681057603 (a6989586621681057604, b6989586621681057605))) Source #

Instances
SMonadZip m => SingI (MzipSym0 :: TyFun (m a) (m b ~> m (a, b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

SuppressUnusedWarnings (MzipSym0 :: TyFun (m6989586621681057603 a6989586621681057604) (m6989586621681057603 b6989586621681057605 ~> m6989586621681057603 (a6989586621681057604, b6989586621681057605)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipSym0 :: TyFun (m6989586621681057603 a6989586621681057604) (m6989586621681057603 b6989586621681057605 ~> m6989586621681057603 (a6989586621681057604, b6989586621681057605)) -> Type) (arg6989586621681057679 :: m6989586621681057603 a6989586621681057604) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipSym0 :: TyFun (m6989586621681057603 a6989586621681057604) (m6989586621681057603 b6989586621681057605 ~> m6989586621681057603 (a6989586621681057604, b6989586621681057605)) -> Type) (arg6989586621681057679 :: m6989586621681057603 a6989586621681057604) = (MzipSym1 arg6989586621681057679 b6989586621681057605 :: TyFun (m6989586621681057603 b6989586621681057605) (m6989586621681057603 (a6989586621681057604, b6989586621681057605)) -> Type)

data MzipSym1 (arg6989586621681057679 :: m6989586621681057603 a6989586621681057604) :: forall b6989586621681057605. (~>) (m6989586621681057603 b6989586621681057605) (m6989586621681057603 (a6989586621681057604, b6989586621681057605)) Source #

Instances
(SMonadZip m, SingI d) => SingI (MzipSym1 d b :: TyFun (m b) (m (a, b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sing :: Sing (MzipSym1 d b) Source #

SuppressUnusedWarnings (MzipSym1 arg6989586621681057679 b6989586621681057605 :: TyFun (m6989586621681057603 b6989586621681057605) (m6989586621681057603 (a6989586621681057604, b6989586621681057605)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipSym1 arg6989586621681057679 b :: TyFun (m b) (m (a, b)) -> Type) (arg6989586621681057680 :: m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipSym1 arg6989586621681057679 b :: TyFun (m b) (m (a, b)) -> Type) (arg6989586621681057680 :: m b) = Mzip arg6989586621681057679 arg6989586621681057680

type MzipSym2 (arg6989586621681057679 :: m6989586621681057603 a6989586621681057604) (arg6989586621681057680 :: m6989586621681057603 b6989586621681057605) = Mzip arg6989586621681057679 arg6989586621681057680 Source #

data MzipWithSym0 :: forall a6989586621681057606 b6989586621681057607 c6989586621681057608 m6989586621681057603. (~>) ((~>) a6989586621681057606 ((~>) b6989586621681057607 c6989586621681057608)) ((~>) (m6989586621681057603 a6989586621681057606) ((~>) (m6989586621681057603 b6989586621681057607) (m6989586621681057603 c6989586621681057608))) Source #

Instances
SMonadZip m => SingI (MzipWithSym0 :: TyFun (a ~> (b ~> c)) (m a ~> (m b ~> m c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

SuppressUnusedWarnings (MzipWithSym0 :: TyFun (a6989586621681057606 ~> (b6989586621681057607 ~> c6989586621681057608)) (m6989586621681057603 a6989586621681057606 ~> (m6989586621681057603 b6989586621681057607 ~> m6989586621681057603 c6989586621681057608)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipWithSym0 :: TyFun (a6989586621681057606 ~> (b6989586621681057607 ~> c6989586621681057608)) (m6989586621681057603 a6989586621681057606 ~> (m6989586621681057603 b6989586621681057607 ~> m6989586621681057603 c6989586621681057608)) -> Type) (arg6989586621681057683 :: a6989586621681057606 ~> (b6989586621681057607 ~> c6989586621681057608)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipWithSym0 :: TyFun (a6989586621681057606 ~> (b6989586621681057607 ~> c6989586621681057608)) (m6989586621681057603 a6989586621681057606 ~> (m6989586621681057603 b6989586621681057607 ~> m6989586621681057603 c6989586621681057608)) -> Type) (arg6989586621681057683 :: a6989586621681057606 ~> (b6989586621681057607 ~> c6989586621681057608)) = (MzipWithSym1 arg6989586621681057683 m6989586621681057603 :: TyFun (m6989586621681057603 a6989586621681057606) (m6989586621681057603 b6989586621681057607 ~> m6989586621681057603 c6989586621681057608) -> Type)

data MzipWithSym1 (arg6989586621681057683 :: (~>) a6989586621681057606 ((~>) b6989586621681057607 c6989586621681057608)) :: forall m6989586621681057603. (~>) (m6989586621681057603 a6989586621681057606) ((~>) (m6989586621681057603 b6989586621681057607) (m6989586621681057603 c6989586621681057608)) Source #

Instances
(SMonadZip m, SingI d) => SingI (MzipWithSym1 d m :: TyFun (m a) (m b ~> m c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sing :: Sing (MzipWithSym1 d m) Source #

SuppressUnusedWarnings (MzipWithSym1 arg6989586621681057683 m6989586621681057603 :: TyFun (m6989586621681057603 a6989586621681057606) (m6989586621681057603 b6989586621681057607 ~> m6989586621681057603 c6989586621681057608) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipWithSym1 arg6989586621681057683 m6989586621681057603 :: TyFun (m6989586621681057603 a6989586621681057606) (m6989586621681057603 b6989586621681057607 ~> m6989586621681057603 c6989586621681057608) -> Type) (arg6989586621681057684 :: m6989586621681057603 a6989586621681057606) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipWithSym1 arg6989586621681057683 m6989586621681057603 :: TyFun (m6989586621681057603 a6989586621681057606) (m6989586621681057603 b6989586621681057607 ~> m6989586621681057603 c6989586621681057608) -> Type) (arg6989586621681057684 :: m6989586621681057603 a6989586621681057606) = MzipWithSym2 arg6989586621681057683 arg6989586621681057684

data MzipWithSym2 (arg6989586621681057683 :: (~>) a6989586621681057606 ((~>) b6989586621681057607 c6989586621681057608)) (arg6989586621681057684 :: m6989586621681057603 a6989586621681057606) :: (~>) (m6989586621681057603 b6989586621681057607) (m6989586621681057603 c6989586621681057608) Source #

Instances
(SMonadZip m, SingI d1, SingI d2) => SingI (MzipWithSym2 d1 d2 :: TyFun (m b) (m c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

Methods

sing :: Sing (MzipWithSym2 d1 d2) Source #

SuppressUnusedWarnings (MzipWithSym2 arg6989586621681057684 arg6989586621681057683 :: TyFun (m6989586621681057603 b6989586621681057607) (m6989586621681057603 c6989586621681057608) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipWithSym2 arg6989586621681057684 arg6989586621681057683 :: TyFun (m b) (m c) -> Type) (arg6989586621681057685 :: m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MzipWithSym2 arg6989586621681057684 arg6989586621681057683 :: TyFun (m b) (m c) -> Type) (arg6989586621681057685 :: m b) = MzipWith arg6989586621681057684 arg6989586621681057683 arg6989586621681057685

type MzipWithSym3 (arg6989586621681057683 :: (~>) a6989586621681057606 ((~>) b6989586621681057607 c6989586621681057608)) (arg6989586621681057684 :: m6989586621681057603 a6989586621681057606) (arg6989586621681057685 :: m6989586621681057603 b6989586621681057607) = MzipWith arg6989586621681057683 arg6989586621681057684 arg6989586621681057685 Source #

data MunzipSym0 :: forall a6989586621681057609 b6989586621681057610 m6989586621681057603. (~>) (m6989586621681057603 (a6989586621681057609, b6989586621681057610)) (m6989586621681057603 a6989586621681057609, m6989586621681057603 b6989586621681057610) Source #

Instances
SMonadZip m => SingI (MunzipSym0 :: TyFun (m (a, b)) (m a, m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

SuppressUnusedWarnings (MunzipSym0 :: TyFun (m6989586621681057603 (a6989586621681057609, b6989586621681057610)) (m6989586621681057603 a6989586621681057609, m6989586621681057603 b6989586621681057610) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MunzipSym0 :: TyFun (m (a, b)) (m a, m b) -> Type) (arg6989586621681057689 :: m (a, b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Monad.Zip

type Apply (MunzipSym0 :: TyFun (m (a, b)) (m a, m b) -> Type) (arg6989586621681057689 :: m (a, b)) = Munzip arg6989586621681057689

type MunzipSym1 (arg6989586621681057689 :: m6989586621681057603 (a6989586621681057609, b6989586621681057610)) = Munzip arg6989586621681057689 Source #