singletons-2.7: A framework for generating singleton types
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Singletons.Prelude.Foldable

Description

Defines the promoted and singled versions of the Foldable type class.

Synopsis

Documentation

class PFoldable t Source #

Associated Types

type Fold (arg :: t m) :: m Source #

type Fold a = Apply Fold_6989586621680492512Sym0 a

type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #

type FoldMap a a = Apply (Apply FoldMap_6989586621680492522Sym0 a) a

type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr a a a = Apply (Apply (Apply Foldr_6989586621680492536Sym0 a) a) a

type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr' a a a = Apply (Apply (Apply Foldr'_6989586621680492551Sym0 a) a) a

type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl a a a = Apply (Apply (Apply Foldl_6989586621680492574Sym0 a) a) a

type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl' a a a = Apply (Apply (Apply Foldl'_6989586621680492589Sym0 a) a) a

type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldr1 a a = Apply (Apply Foldr1_6989586621680492611Sym0 a) a

type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldl1 a a = Apply (Apply Foldl1_6989586621680492632Sym0 a) a

type ToList (arg :: t a) :: [a] Source #

type ToList a = Apply ToList_6989586621680492652Sym0 a

type Null (arg :: t a) :: Bool Source #

type Null a = Apply Null_6989586621680492661Sym0 a

type Length (arg :: t a) :: Nat Source #

type Length a = Apply Length_6989586621680492678Sym0 a

type Elem (arg :: a) (arg :: t a) :: Bool Source #

type Elem a a = Apply (Apply Elem_6989586621680492697Sym0 a) a

type Maximum (arg :: t a) :: a Source #

type Maximum a = Apply Maximum_6989586621680492711Sym0 a

type Minimum (arg :: t a) :: a Source #

type Minimum a = Apply Minimum_6989586621680492726Sym0 a

type Sum (arg :: t a) :: a Source #

type Sum a = Apply Sum_6989586621680492741Sym0 a

type Product (arg :: t a) :: a Source #

type Product a = Apply Product_6989586621680492750Sym0 a

Instances

Instances details
PFoldable [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg :: m Source #

type Foldr arg arg arg :: b Source #

type Foldr' arg arg arg :: b Source #

type Foldl arg arg arg :: b Source #

type Foldl' arg arg arg :: b Source #

type Foldr1 arg arg :: a Source #

type Foldl1 arg arg :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Nat Source #

type Elem arg arg :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

class SFoldable t where Source #

Minimal complete definition

Nothing

Methods

sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m) Source #

default sFold :: forall m (t :: t m). ((Apply FoldSym0 t :: m) ~ Apply Fold_6989586621680492512Sym0 t, SMonoid m) => Sing t -> Sing (Apply FoldSym0 t :: m) Source #

sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680492522Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680492536Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #

default sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr'_6989586621680492551Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #

sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680492574Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

default sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl'_6989586621680492589Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680492611Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680492632Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #

default sToList :: forall a (t :: t a). (Apply ToListSym0 t :: [a]) ~ Apply ToList_6989586621680492652Sym0 t => Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #

sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

default sNull :: forall a (t :: t a). (Apply NullSym0 t :: Bool) ~ Apply Null_6989586621680492661Sym0 t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #

default sLength :: forall a (t :: t a). (Apply LengthSym0 t :: Nat) ~ Apply Length_6989586621680492678Sym0 t => Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #

sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680492697Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680492711Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680492726Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #

default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680492741Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #

sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

default sProduct :: forall a (t :: t a). ((Apply ProductSym0 t :: a) ~ Apply Product_6989586621680492750Sym0 t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

Instances

Instances details
SFoldable [] Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: [m]). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: [a]). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: [a]). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: [a]). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: [a]). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Maybe Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Maybe m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Maybe a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Maybe a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Maybe a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Maybe a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Maybe a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Min Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Min m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Min a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Min a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Min a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Min a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Min a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Max Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Max m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Max a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Max a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Max a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Max a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Max a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Option Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Option m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Option a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Option a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Option a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Option a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Option a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Option a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Option a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Option a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Option a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Option a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Option a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Identity Source # 
Instance details

Defined in Data.Singletons.Prelude.Identity

Methods

sFold :: forall m (t :: Identity m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Identity a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Identity a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Identity a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Identity a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Identity a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable First Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Dual Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Dual m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Dual a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Dual a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Dual a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Dual a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Dual a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Sum Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Sum m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Sum a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Sum a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Sum a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Sum a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Sum a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable Product Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Product m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Product a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Product a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Product a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Product a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Product a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable NonEmpty Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: NonEmpty m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: NonEmpty a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: NonEmpty a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Either a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Either a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Either a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Either a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable ((,) a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: (a, m)). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: (a, a0)). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: (a, a0)). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Arg a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Semigroup

Methods

sFold :: forall m (t :: Arg a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Arg a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a0 (t :: a0) (t :: Arg a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sFold :: forall m (t :: Proxy m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m (t :: a ~> m) (t :: Proxy a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Proxy a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Proxy a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Proxy a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Proxy a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Proxy a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Proxy a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Proxy a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Proxy a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Const

Methods

sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source #

sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source #

sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source #

sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source #

sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source #

sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source #

sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source #

sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source #

sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source #

sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source #

sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source #

sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source #

sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source #

sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source #

sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source #

sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source #

type family FoldrM a a a where ... Source #

Equations

FoldrM f z0 xs = Apply (Apply (Apply (Apply FoldlSym0 (Let6989586621680492431F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b) Source #

type family FoldlM a a a where ... Source #

Equations

FoldlM f z0 xs = Apply (Apply (Apply (Apply FoldrSym0 (Let6989586621680492413F'Sym3 f z0 xs)) ReturnSym0) xs) z0 

sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b) Source #

type family Traverse_ a a where ... Source #

Equations

Traverse_ f a_6989586621680492394 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (*>@#@$)) f)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680492394 

sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ()) Source #

type family For_ a a where ... Source #

Equations

For_ a_6989586621680492383 a_6989586621680492385 = Apply (Apply (Apply FlipSym0 Traverse_Sym0) a_6989586621680492383) a_6989586621680492385 

sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ()) Source #

type family SequenceA_ a where ... Source #

Equations

SequenceA_ a_6989586621680492357 = Apply (Apply (Apply FoldrSym0 (*>@#@$)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680492357 

sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ()) Source #

type family Asum a where ... Source #

Equations

Asum a_6989586621680492345 = Apply (Apply (Apply FoldrSym0 (<|>@#@$)) EmptySym0) a_6989586621680492345 

sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a) Source #

type family MapM_ a a where ... Source #

Equations

MapM_ f a_6989586621680492374 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (>>@#@$)) f)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680492374 

sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #

type family ForM_ a a where ... Source #

Equations

ForM_ a_6989586621680492363 a_6989586621680492365 = Apply (Apply (Apply FlipSym0 MapM_Sym0) a_6989586621680492363) a_6989586621680492365 

sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ()) Source #

type family Sequence_ a where ... Source #

Equations

Sequence_ a_6989586621680492351 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680492351 

sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #

type family Msum a where ... Source #

Equations

Msum a_6989586621680492339 = Apply AsumSym0 a_6989586621680492339 

sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a) Source #

type family Concat a where ... Source #

Equations

Concat xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621680492334Sym0 xs)) NilSym0) xs 

sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #

type family ConcatMap a a where ... Source #

Equations

ConcatMap f xs = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621680492325Sym0 f) xs)) NilSym0) xs 

sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #

type family And a where ... Source #

Equations

And a_6989586621680492312 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 All_Sym0)) a_6989586621680492312 

sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool) Source #

type family Or a where ... Source #

Equations

Or a_6989586621680492306 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 Any_Sym0)) a_6989586621680492306 

sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool) Source #

type family Any a a where ... Source #

Equations

Any p a_6989586621680492297 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) Any_Sym0) p))) a_6989586621680492297 

sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #

type family All a a where ... Source #

Equations

All p a_6989586621680492288 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) All_Sym0) p))) a_6989586621680492288 

sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #

type family MaximumBy a a where ... Source #

Equations

MaximumBy cmp a_6989586621680492268 = Apply (Apply Foldl1Sym0 (Let6989586621680492277Max'Sym2 cmp a_6989586621680492268)) a_6989586621680492268 

sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a) Source #

type family MinimumBy a a where ... Source #

Equations

MinimumBy cmp a_6989586621680492248 = Apply (Apply Foldl1Sym0 (Let6989586621680492257Min'Sym2 cmp a_6989586621680492248)) a_6989586621680492248 

sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a) Source #

type family NotElem a a where ... Source #

Equations

NotElem x a_6989586621680492239 = Apply (Apply (Apply (.@#@$) NotSym0) (Apply ElemSym0 x)) a_6989586621680492239 

sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #

type family Find a a where ... Source #

Equations

Find p a_6989586621680492221 = Apply (Apply (Apply (.@#@$) GetFirstSym0) (Apply FoldMapSym0 (Apply (Apply Lambda_6989586621680492230Sym0 p) a_6989586621680492221))) a_6989586621680492221 

sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a) Source #

Defunctionalization symbols

data FoldSym0 a6989586621680492441 Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldSym0 :: TyFun (t m) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldSym0 :: TyFun (t m) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldSym0 :: TyFun (t m) m -> Type) (a6989586621680492441 :: t m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldSym0 :: TyFun (t m) m -> Type) (a6989586621680492441 :: t m) = FoldSym1 a6989586621680492441

type FoldSym1 (a6989586621680492441 :: t m) = Fold a6989586621680492441 :: m Source #

data FoldMapSym0 a6989586621680492445 Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680492445 :: a ~> m) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680492445 :: a ~> m) = FoldMapSym1 a6989586621680492445 :: TyFun (t a) m -> Type

data FoldMapSym1 a6989586621680492445 a6989586621680492446 Source #

Instances

Instances details
(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d :: TyFun (t a) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldMapSym1 d) Source #

SuppressUnusedWarnings (FoldMapSym1 a6989586621680492445 :: TyFun (t a) m -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym1 a6989586621680492445 :: TyFun (t a) m -> Type) (a6989586621680492446 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldMapSym1 a6989586621680492445 :: TyFun (t a) m -> Type) (a6989586621680492446 :: t a) = FoldMapSym2 a6989586621680492445 a6989586621680492446

type FoldMapSym2 (a6989586621680492445 :: (~>) a m) (a6989586621680492446 :: t a) = FoldMap a6989586621680492445 a6989586621680492446 :: m Source #

data FoldrSym0 a6989586621680492451 Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680492451 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680492451 :: a ~> (b ~> b)) = FoldrSym1 a6989586621680492451 :: TyFun b (t a ~> b) -> Type

data FoldrSym1 a6989586621680492451 a6989586621680492452 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrSym1 d) Source #

SuppressUnusedWarnings (FoldrSym1 a6989586621680492451 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym1 a6989586621680492451 :: TyFun b (t a ~> b) -> Type) (a6989586621680492452 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym1 a6989586621680492451 :: TyFun b (t a ~> b) -> Type) (a6989586621680492452 :: b) = FoldrSym2 a6989586621680492451 a6989586621680492452 :: TyFun (t a) b -> Type

data FoldrSym2 a6989586621680492451 a6989586621680492452 a6989586621680492453 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrSym2 d1 d2) Source #

SuppressUnusedWarnings (FoldrSym2 a6989586621680492451 a6989586621680492452 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym2 a6989586621680492451 a6989586621680492452 :: TyFun (t a) b -> Type) (a6989586621680492453 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrSym2 a6989586621680492451 a6989586621680492452 :: TyFun (t a) b -> Type) (a6989586621680492453 :: t a) = FoldrSym3 a6989586621680492451 a6989586621680492452 a6989586621680492453

type FoldrSym3 (a6989586621680492451 :: (~>) a ((~>) b b)) (a6989586621680492452 :: b) (a6989586621680492453 :: t a) = Foldr a6989586621680492451 a6989586621680492452 a6989586621680492453 :: b Source #

data Foldr'Sym0 a6989586621680492458 Source #

Instances

Instances details
SFoldable t => SingI (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680492458 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680492458 :: a ~> (b ~> b)) = Foldr'Sym1 a6989586621680492458 :: TyFun b (t a ~> b) -> Type

data Foldr'Sym1 a6989586621680492458 a6989586621680492459 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldr'Sym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr'Sym1 d) Source #

SuppressUnusedWarnings (Foldr'Sym1 a6989586621680492458 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym1 a6989586621680492458 :: TyFun b (t a ~> b) -> Type) (a6989586621680492459 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym1 a6989586621680492458 :: TyFun b (t a ~> b) -> Type) (a6989586621680492459 :: b) = Foldr'Sym2 a6989586621680492458 a6989586621680492459 :: TyFun (t a) b -> Type

data Foldr'Sym2 a6989586621680492458 a6989586621680492459 a6989586621680492460 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (Foldr'Sym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr'Sym2 d1 d2) Source #

SuppressUnusedWarnings (Foldr'Sym2 a6989586621680492458 a6989586621680492459 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym2 a6989586621680492458 a6989586621680492459 :: TyFun (t a) b -> Type) (a6989586621680492460 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr'Sym2 a6989586621680492458 a6989586621680492459 :: TyFun (t a) b -> Type) (a6989586621680492460 :: t a) = Foldr'Sym3 a6989586621680492458 a6989586621680492459 a6989586621680492460

type Foldr'Sym3 (a6989586621680492458 :: (~>) a ((~>) b b)) (a6989586621680492459 :: b) (a6989586621680492460 :: t a) = Foldr' a6989586621680492458 a6989586621680492459 a6989586621680492460 :: b Source #

data FoldlSym0 a6989586621680492465 Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680492465 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680492465 :: b ~> (a ~> b)) = FoldlSym1 a6989586621680492465 :: TyFun b (t a ~> b) -> Type

data FoldlSym1 a6989586621680492465 a6989586621680492466 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlSym1 d) Source #

SuppressUnusedWarnings (FoldlSym1 a6989586621680492465 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym1 a6989586621680492465 :: TyFun b (t a ~> b) -> Type) (a6989586621680492466 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym1 a6989586621680492465 :: TyFun b (t a ~> b) -> Type) (a6989586621680492466 :: b) = FoldlSym2 a6989586621680492465 a6989586621680492466 :: TyFun (t a) b -> Type

data FoldlSym2 a6989586621680492465 a6989586621680492466 a6989586621680492467 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlSym2 d1 d2) Source #

SuppressUnusedWarnings (FoldlSym2 a6989586621680492465 a6989586621680492466 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym2 a6989586621680492465 a6989586621680492466 :: TyFun (t a) b -> Type) (a6989586621680492467 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlSym2 a6989586621680492465 a6989586621680492466 :: TyFun (t a) b -> Type) (a6989586621680492467 :: t a) = FoldlSym3 a6989586621680492465 a6989586621680492466 a6989586621680492467

type FoldlSym3 (a6989586621680492465 :: (~>) b ((~>) a b)) (a6989586621680492466 :: b) (a6989586621680492467 :: t a) = Foldl a6989586621680492465 a6989586621680492466 a6989586621680492467 :: b Source #

data Foldl'Sym0 a6989586621680492472 Source #

Instances

Instances details
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680492472 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680492472 :: b ~> (a ~> b)) = Foldl'Sym1 a6989586621680492472 :: TyFun b (t a ~> b) -> Type

data Foldl'Sym1 a6989586621680492472 a6989586621680492473 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldl'Sym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl'Sym1 d) Source #

SuppressUnusedWarnings (Foldl'Sym1 a6989586621680492472 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym1 a6989586621680492472 :: TyFun b (t a ~> b) -> Type) (a6989586621680492473 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym1 a6989586621680492472 :: TyFun b (t a ~> b) -> Type) (a6989586621680492473 :: b) = Foldl'Sym2 a6989586621680492472 a6989586621680492473 :: TyFun (t a) b -> Type

data Foldl'Sym2 a6989586621680492472 a6989586621680492473 a6989586621680492474 Source #

Instances

Instances details
(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl'Sym2 d1 d2) Source #

SuppressUnusedWarnings (Foldl'Sym2 a6989586621680492472 a6989586621680492473 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym2 a6989586621680492472 a6989586621680492473 :: TyFun (t a) b -> Type) (a6989586621680492474 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl'Sym2 a6989586621680492472 a6989586621680492473 :: TyFun (t a) b -> Type) (a6989586621680492474 :: t a) = Foldl'Sym3 a6989586621680492472 a6989586621680492473 a6989586621680492474

type Foldl'Sym3 (a6989586621680492472 :: (~>) b ((~>) a b)) (a6989586621680492473 :: b) (a6989586621680492474 :: t a) = Foldl' a6989586621680492472 a6989586621680492473 a6989586621680492474 :: b Source #

data Foldr1Sym0 a6989586621680492478 Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680492478 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680492478 :: a ~> (a ~> a)) = Foldr1Sym1 a6989586621680492478 :: TyFun (t a) a -> Type

data Foldr1Sym1 a6989586621680492478 a6989586621680492479 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldr1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldr1Sym1 d) Source #

SuppressUnusedWarnings (Foldr1Sym1 a6989586621680492478 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym1 a6989586621680492478 :: TyFun (t a) a -> Type) (a6989586621680492479 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldr1Sym1 a6989586621680492478 :: TyFun (t a) a -> Type) (a6989586621680492479 :: t a) = Foldr1Sym2 a6989586621680492478 a6989586621680492479

type Foldr1Sym2 (a6989586621680492478 :: (~>) a ((~>) a a)) (a6989586621680492479 :: t a) = Foldr1 a6989586621680492478 a6989586621680492479 :: a Source #

data Foldl1Sym0 a6989586621680492483 Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680492483 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680492483 :: a ~> (a ~> a)) = Foldl1Sym1 a6989586621680492483 :: TyFun (t a) a -> Type

data Foldl1Sym1 a6989586621680492483 a6989586621680492484 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (Foldl1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (Foldl1Sym1 d) Source #

SuppressUnusedWarnings (Foldl1Sym1 a6989586621680492483 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym1 a6989586621680492483 :: TyFun (t a) a -> Type) (a6989586621680492484 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Foldl1Sym1 a6989586621680492483 :: TyFun (t a) a -> Type) (a6989586621680492484 :: t a) = Foldl1Sym2 a6989586621680492483 a6989586621680492484

type Foldl1Sym2 (a6989586621680492483 :: (~>) a ((~>) a a)) (a6989586621680492484 :: t a) = Foldl1 a6989586621680492483 a6989586621680492484 :: a Source #

data ToListSym0 a6989586621680492487 Source #

Instances

Instances details
SFoldable t => SingI (ToListSym0 :: TyFun (t a) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ToListSym0 :: TyFun (t a) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (a6989586621680492487 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (a6989586621680492487 :: t a) = ToListSym1 a6989586621680492487

type ToListSym1 (a6989586621680492487 :: t a) = ToList a6989586621680492487 :: [a] Source #

data NullSym0 a6989586621680492490 Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680492490 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680492490 :: t a) = NullSym1 a6989586621680492490

type NullSym1 (a6989586621680492490 :: t a) = Null a6989586621680492490 :: Bool Source #

data LengthSym0 a6989586621680492493 Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (LengthSym0 :: TyFun (t a) Nat -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (a6989586621680492493 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (a6989586621680492493 :: t a) = LengthSym1 a6989586621680492493

type LengthSym1 (a6989586621680492493 :: t a) = Length a6989586621680492493 :: Nat Source #

data ElemSym0 a6989586621680492497 Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680492497 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680492497 :: a) = ElemSym1 a6989586621680492497 :: TyFun (t a) Bool -> Type

data ElemSym1 a6989586621680492497 a6989586621680492498 Source #

Instances

Instances details
(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ElemSym1 d) Source #

SuppressUnusedWarnings (ElemSym1 a6989586621680492497 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym1 a6989586621680492497 :: TyFun (t a) Bool -> Type) (a6989586621680492498 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ElemSym1 a6989586621680492497 :: TyFun (t a) Bool -> Type) (a6989586621680492498 :: t a) = ElemSym2 a6989586621680492497 a6989586621680492498

type ElemSym2 (a6989586621680492497 :: a) (a6989586621680492498 :: t a) = Elem a6989586621680492497 a6989586621680492498 :: Bool Source #

data MaximumSym0 a6989586621680492501 Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680492501 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680492501 :: t a) = MaximumSym1 a6989586621680492501

type MaximumSym1 (a6989586621680492501 :: t a) = Maximum a6989586621680492501 :: a Source #

data MinimumSym0 a6989586621680492504 Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680492504 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680492504 :: t a) = MinimumSym1 a6989586621680492504

type MinimumSym1 (a6989586621680492504 :: t a) = Minimum a6989586621680492504 :: a Source #

data SumSym0 a6989586621680492507 Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680492507 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680492507 :: t a) = SumSym1 a6989586621680492507

type SumSym1 (a6989586621680492507 :: t a) = Sum a6989586621680492507 :: a Source #

data ProductSym0 a6989586621680492510 Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680492510 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680492510 :: t a) = ProductSym1 a6989586621680492510

type ProductSym1 (a6989586621680492510 :: t a) = Product a6989586621680492510 :: a Source #

data FoldrMSym0 a6989586621680492425 Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621680492425 :: a ~> (b ~> m b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621680492425 :: a ~> (b ~> m b)) = FoldrMSym1 a6989586621680492425 :: TyFun b (t a ~> m b) -> Type

data FoldrMSym1 a6989586621680492425 a6989586621680492426 Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldrMSym1 d :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrMSym1 d) Source #

SuppressUnusedWarnings (FoldrMSym1 a6989586621680492425 :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym1 a6989586621680492425 :: TyFun b (t a ~> m b) -> Type) (a6989586621680492426 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym1 a6989586621680492425 :: TyFun b (t a ~> m b) -> Type) (a6989586621680492426 :: b) = FoldrMSym2 a6989586621680492425 a6989586621680492426 :: TyFun (t a) (m b) -> Type

data FoldrMSym2 a6989586621680492425 a6989586621680492426 a6989586621680492427 Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldrMSym2 d1 d2 :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldrMSym2 d1 d2) Source #

SuppressUnusedWarnings (FoldrMSym2 a6989586621680492425 a6989586621680492426 :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym2 a6989586621680492425 a6989586621680492426 :: TyFun (t a) (m b) -> Type) (a6989586621680492427 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldrMSym2 a6989586621680492425 a6989586621680492426 :: TyFun (t a) (m b) -> Type) (a6989586621680492427 :: t a) = FoldrMSym3 a6989586621680492425 a6989586621680492426 a6989586621680492427

type FoldrMSym3 (a6989586621680492425 :: (~>) a ((~>) b (m b))) (a6989586621680492426 :: b) (a6989586621680492427 :: t a) = FoldrM a6989586621680492425 a6989586621680492426 a6989586621680492427 :: m b Source #

data FoldlMSym0 a6989586621680492407 Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621680492407 :: b ~> (a ~> m b)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621680492407 :: b ~> (a ~> m b)) = FoldlMSym1 a6989586621680492407 :: TyFun b (t a ~> m b) -> Type

data FoldlMSym1 a6989586621680492407 a6989586621680492408 Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (FoldlMSym1 d :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym1 d) Source #

SuppressUnusedWarnings (FoldlMSym1 a6989586621680492407 :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680492407 :: TyFun b (t a ~> m b) -> Type) (a6989586621680492408 :: b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym1 a6989586621680492407 :: TyFun b (t a ~> m b) -> Type) (a6989586621680492408 :: b) = FoldlMSym2 a6989586621680492407 a6989586621680492408 :: TyFun (t a) (m b) -> Type

data FoldlMSym2 a6989586621680492407 a6989586621680492408 a6989586621680492409 Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldlMSym2 d1 d2 :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FoldlMSym2 d1 d2) Source #

SuppressUnusedWarnings (FoldlMSym2 a6989586621680492407 a6989586621680492408 :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680492407 a6989586621680492408 :: TyFun (t a) (m b) -> Type) (a6989586621680492409 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FoldlMSym2 a6989586621680492407 a6989586621680492408 :: TyFun (t a) (m b) -> Type) (a6989586621680492409 :: t a) = FoldlMSym3 a6989586621680492407 a6989586621680492408 a6989586621680492409

type FoldlMSym3 (a6989586621680492407 :: (~>) b ((~>) a (m b))) (a6989586621680492408 :: b) (a6989586621680492409 :: t a) = FoldlM a6989586621680492407 a6989586621680492408 a6989586621680492409 :: m b Source #

data Traverse_Sym0 a6989586621680492399 Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) (a6989586621680492399 :: a ~> f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) (a6989586621680492399 :: a ~> f b) = Traverse_Sym1 a6989586621680492399 :: TyFun (t a) (f ()) -> Type

data Traverse_Sym1 a6989586621680492399 a6989586621680492400 Source #

Instances

Instances details
(SFoldable t, SApplicative f, SingI d) => SingI (Traverse_Sym1 d :: TyFun (t a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Traverse_Sym1 a6989586621680492399 :: TyFun (t a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym1 a6989586621680492399 :: TyFun (t a) (f ()) -> Type) (a6989586621680492400 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Traverse_Sym1 a6989586621680492399 :: TyFun (t a) (f ()) -> Type) (a6989586621680492400 :: t a) = Traverse_Sym2 a6989586621680492399 a6989586621680492400

type Traverse_Sym2 (a6989586621680492399 :: (~>) a (f b)) (a6989586621680492400 :: t a) = Traverse_ a6989586621680492399 a6989586621680492400 :: f () Source #

data For_Sym0 a6989586621680492390 Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) (a6989586621680492390 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) (a6989586621680492390 :: t a) = For_Sym1 a6989586621680492390 :: TyFun (a ~> f b) (f ()) -> Type

data For_Sym1 a6989586621680492390 a6989586621680492391 Source #

Instances

Instances details
(SFoldable t, SApplicative f, SingI d) => SingI (For_Sym1 d :: TyFun (a ~> f b) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (For_Sym1 d) Source #

SuppressUnusedWarnings (For_Sym1 a6989586621680492390 :: TyFun (a ~> f b) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym1 a6989586621680492390 :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680492391 :: a ~> f b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (For_Sym1 a6989586621680492390 :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680492391 :: a ~> f b) = For_Sym2 a6989586621680492390 a6989586621680492391

type For_Sym2 (a6989586621680492390 :: t a) (a6989586621680492391 :: (~>) a (f b)) = For_ a6989586621680492390 a6989586621680492391 :: f () Source #

data SequenceA_Sym0 a6989586621680492361 Source #

Instances

Instances details
(SFoldable t, SApplicative f) => SingI (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680492361 :: t (f a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680492361 :: t (f a)) = SequenceA_Sym1 a6989586621680492361

type SequenceA_Sym1 (a6989586621680492361 :: t (f a)) = SequenceA_ a6989586621680492361 :: f () Source #

data AsumSym0 a6989586621680492349 Source #

Instances

Instances details
(SFoldable t, SAlternative f) => SingI (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680492349 :: t (f a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680492349 :: t (f a)) = AsumSym1 a6989586621680492349

type AsumSym1 (a6989586621680492349 :: t (f a)) = Asum a6989586621680492349 :: f a Source #

data MapM_Sym0 a6989586621680492379 Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621680492379 :: a ~> m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621680492379 :: a ~> m b) = MapM_Sym1 a6989586621680492379 :: TyFun (t a) (m ()) -> Type

data MapM_Sym1 a6989586621680492379 a6989586621680492380 Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (MapM_Sym1 d) Source #

SuppressUnusedWarnings (MapM_Sym1 a6989586621680492379 :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680492379 :: TyFun (t a) (m ()) -> Type) (a6989586621680492380 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MapM_Sym1 a6989586621680492379 :: TyFun (t a) (m ()) -> Type) (a6989586621680492380 :: t a) = MapM_Sym2 a6989586621680492379 a6989586621680492380

type MapM_Sym2 (a6989586621680492379 :: (~>) a (m b)) (a6989586621680492380 :: t a) = MapM_ a6989586621680492379 a6989586621680492380 :: m () Source #

data ForM_Sym0 a6989586621680492370 Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) (a6989586621680492370 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) (a6989586621680492370 :: t a) = ForM_Sym1 a6989586621680492370 :: TyFun (a ~> m b) (m ()) -> Type

data ForM_Sym1 a6989586621680492370 a6989586621680492371 Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI (ForM_Sym1 d :: TyFun (a ~> m b) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (ForM_Sym1 d) Source #

SuppressUnusedWarnings (ForM_Sym1 a6989586621680492370 :: TyFun (a ~> m b) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym1 a6989586621680492370 :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680492371 :: a ~> m b) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ForM_Sym1 a6989586621680492370 :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680492371 :: a ~> m b) = ForM_Sym2 a6989586621680492370 a6989586621680492371

type ForM_Sym2 (a6989586621680492370 :: t a) (a6989586621680492371 :: (~>) a (m b)) = ForM_ a6989586621680492370 a6989586621680492371 :: m () Source #

data Sequence_Sym0 a6989586621680492355 Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680492355 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680492355 :: t (m a)) = Sequence_Sym1 a6989586621680492355

type Sequence_Sym1 (a6989586621680492355 :: t (m a)) = Sequence_ a6989586621680492355 :: m () Source #

data MsumSym0 a6989586621680492343 Source #

Instances

Instances details
(SFoldable t, SMonadPlus m) => SingI (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680492343 :: t (m a)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680492343 :: t (m a)) = MsumSym1 a6989586621680492343

type MsumSym1 (a6989586621680492343 :: t (m a)) = Msum a6989586621680492343 :: m a Source #

data ConcatSym0 a6989586621680492332 Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680492332 :: t [a]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680492332 :: t [a]) = ConcatSym1 a6989586621680492332

type ConcatSym1 (a6989586621680492332 :: t [a]) = Concat a6989586621680492332 :: [a] Source #

data ConcatMapSym0 a6989586621680492321 Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680492321 :: a ~> [b]) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680492321 :: a ~> [b]) = ConcatMapSym1 a6989586621680492321 :: TyFun (t a) [b] -> Type

data ConcatMapSym1 a6989586621680492321 a6989586621680492322 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (ConcatMapSym1 a6989586621680492321 :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym1 a6989586621680492321 :: TyFun (t a) [b] -> Type) (a6989586621680492322 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (ConcatMapSym1 a6989586621680492321 :: TyFun (t a) [b] -> Type) (a6989586621680492322 :: t a) = ConcatMapSym2 a6989586621680492321 a6989586621680492322

type ConcatMapSym2 (a6989586621680492321 :: (~>) a [b]) (a6989586621680492322 :: t a) = ConcatMap a6989586621680492321 a6989586621680492322 :: [b] Source #

data AndSym0 a6989586621680492316 Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680492316 :: t Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680492316 :: t Bool) = AndSym1 a6989586621680492316

type AndSym1 (a6989586621680492316 :: t Bool) = And a6989586621680492316 :: Bool Source #

data OrSym0 a6989586621680492310 Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing OrSym0 Source #

SuppressUnusedWarnings (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680492310 :: t Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680492310 :: t Bool) = OrSym1 a6989586621680492310

type OrSym1 (a6989586621680492310 :: t Bool) = Or a6989586621680492310 :: Bool Source #

data AnySym0 a6989586621680492302 Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680492302 :: a ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680492302 :: a ~> Bool) = AnySym1 a6989586621680492302 :: TyFun (t a) Bool -> Type

data AnySym1 a6989586621680492302 a6989586621680492303 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (AnySym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (AnySym1 d) Source #

SuppressUnusedWarnings (AnySym1 a6989586621680492302 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym1 a6989586621680492302 :: TyFun (t a) Bool -> Type) (a6989586621680492303 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AnySym1 a6989586621680492302 :: TyFun (t a) Bool -> Type) (a6989586621680492303 :: t a) = AnySym2 a6989586621680492302 a6989586621680492303

type AnySym2 (a6989586621680492302 :: (~>) a Bool) (a6989586621680492303 :: t a) = Any a6989586621680492302 a6989586621680492303 :: Bool Source #

data AllSym0 a6989586621680492293 Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680492293 :: a ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680492293 :: a ~> Bool) = AllSym1 a6989586621680492293 :: TyFun (t a) Bool -> Type

data AllSym1 a6989586621680492293 a6989586621680492294 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (AllSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (AllSym1 d) Source #

SuppressUnusedWarnings (AllSym1 a6989586621680492293 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym1 a6989586621680492293 :: TyFun (t a) Bool -> Type) (a6989586621680492294 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (AllSym1 a6989586621680492293 :: TyFun (t a) Bool -> Type) (a6989586621680492294 :: t a) = AllSym2 a6989586621680492293 a6989586621680492294

type AllSym2 (a6989586621680492293 :: (~>) a Bool) (a6989586621680492294 :: t a) = All a6989586621680492293 a6989586621680492294 :: Bool Source #

data MaximumBySym0 a6989586621680492273 Source #

Instances

Instances details
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680492273 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680492273 :: a ~> (a ~> Ordering)) = MaximumBySym1 a6989586621680492273 :: TyFun (t a) a -> Type

data MaximumBySym1 a6989586621680492273 a6989586621680492274 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (MaximumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MaximumBySym1 a6989586621680492273 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym1 a6989586621680492273 :: TyFun (t a) a -> Type) (a6989586621680492274 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MaximumBySym1 a6989586621680492273 :: TyFun (t a) a -> Type) (a6989586621680492274 :: t a) = MaximumBySym2 a6989586621680492273 a6989586621680492274

type MaximumBySym2 (a6989586621680492273 :: (~>) a ((~>) a Ordering)) (a6989586621680492274 :: t a) = MaximumBy a6989586621680492273 a6989586621680492274 :: a Source #

data MinimumBySym0 a6989586621680492253 Source #

Instances

Instances details
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680492253 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680492253 :: a ~> (a ~> Ordering)) = MinimumBySym1 a6989586621680492253 :: TyFun (t a) a -> Type

data MinimumBySym1 a6989586621680492253 a6989586621680492254 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (MinimumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (MinimumBySym1 a6989586621680492253 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym1 a6989586621680492253 :: TyFun (t a) a -> Type) (a6989586621680492254 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (MinimumBySym1 a6989586621680492253 :: TyFun (t a) a -> Type) (a6989586621680492254 :: t a) = MinimumBySym2 a6989586621680492253 a6989586621680492254

type MinimumBySym2 (a6989586621680492253 :: (~>) a ((~>) a Ordering)) (a6989586621680492254 :: t a) = MinimumBy a6989586621680492253 a6989586621680492254 :: a Source #

data NotElemSym0 a6989586621680492244 Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680492244 :: a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680492244 :: a) = NotElemSym1 a6989586621680492244 :: TyFun (t a) Bool -> Type

data NotElemSym1 a6989586621680492244 a6989586621680492245 Source #

Instances

Instances details
(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (NotElemSym1 d) Source #

SuppressUnusedWarnings (NotElemSym1 a6989586621680492244 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym1 a6989586621680492244 :: TyFun (t a) Bool -> Type) (a6989586621680492245 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (NotElemSym1 a6989586621680492244 :: TyFun (t a) Bool -> Type) (a6989586621680492245 :: t a) = NotElemSym2 a6989586621680492244 a6989586621680492245

type NotElemSym2 (a6989586621680492244 :: a) (a6989586621680492245 :: t a) = NotElem a6989586621680492244 a6989586621680492245 :: Bool Source #

data FindSym0 a6989586621680492226 Source #

Instances

Instances details
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

SuppressUnusedWarnings (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680492226 :: a ~> Bool) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680492226 :: a ~> Bool) = FindSym1 a6989586621680492226 :: TyFun (t a) (Maybe a) -> Type

data FindSym1 a6989586621680492226 a6989586621680492227 Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI (FindSym1 d :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

Methods

sing :: Sing (FindSym1 d) Source #

SuppressUnusedWarnings (FindSym1 a6989586621680492226 :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym1 a6989586621680492226 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680492227 :: t a) Source # 
Instance details

Defined in Data.Singletons.Prelude.Foldable

type Apply (FindSym1 a6989586621680492226 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680492227 :: t a) = FindSym2 a6989586621680492226 a6989586621680492227

type FindSym2 (a6989586621680492226 :: (~>) a Bool) (a6989586621680492227 :: t a) = Find a6989586621680492226 a6989586621680492227 :: Maybe a Source #