{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module SizedGrid.Coord where
import SizedGrid.Coord.Class
import SizedGrid.Ordinal
import Control.Applicative (liftA2)
import Control.Applicative (empty)
import Control.Lens ((^.))
import Control.Monad.State
import Data.AdditiveGroup
import Data.Aeson
import Data.AffineSpace
import Data.Functor.Identity
import Data.List (intercalate)
import Data.Semigroup (Semigroup (..))
import qualified Data.Vector as V
import Generics.SOP hiding (Generic, S, Z)
import qualified Generics.SOP as SOP
import GHC.Exts (Constraint)
import GHC.Generics (Generic)
import qualified GHC.TypeLits as GHC
import System.Random (Random (..))
type family Length cs where
Length '[] = 0
Length (c ': cs) = (GHC.+) 1 (Length cs)
-- | A multideminsion coordinate
newtype Coord cs = Coord {unCoord :: NP I cs}
deriving (Generic)
instance All Eq cs => Eq (Coord cs) where
Coord a == Coord b =
and $
hcollapse $ hcliftA2 (Proxy :: Proxy Eq) (\(I x) (I y) -> K (x == y)) a b
instance (All Eq cs, All Ord cs) => Ord (Coord cs) where
compare (Coord a) (Coord b) =
mconcat $
hcollapse $
hcliftA2 (Proxy :: Proxy Ord) (\(I x) (I y) -> K (compare x y)) a b
instance All Show cs => Show (Coord cs) where
show (Coord a) =
"Coord [" ++
intercalate
", "
(hcollapse $ hcliftA (Proxy :: Proxy Show) (\(I x) -> K $ show x) a) ++
"]"
instance (All ToJSON cs) => ToJSON (Coord cs) where
toJSON (Coord a) =
Array $
V.fromList $
hcollapse $ hcmap (Proxy @ToJSON) (\(I x) -> K $ toJSON x) a
instance All FromJSON cs => FromJSON (Coord cs) where
parseJSON =
withArray "Coord" $ \v ->
case SOP.fromList $ V.toList v of
Just a ->
Coord <$>
hsequence
(hcmap (Proxy @FromJSON) (\(K x) -> parseJSON x) a)
Nothing -> empty
instance All Semigroup cs => Semigroup (Coord cs) where
Coord a <> Coord b = Coord $ hcliftA2 (Proxy :: Proxy Semigroup) (liftA2 (<>)) a b
instance (All Semigroup cs, All Monoid cs) => Monoid (Coord cs) where
mappend = (<>)
mempty = Coord $ hcpure (Proxy :: Proxy Monoid) (pure mempty)
instance (All AdditiveGroup cs) => AdditiveGroup (Coord cs) where
zeroV = Coord $ hcpure (Proxy :: Proxy AdditiveGroup) (pure zeroV)
Coord a ^+^ Coord b =
Coord $ hcliftA2 (Proxy :: Proxy AdditiveGroup) (liftA2 (^+^)) a b
negateV (Coord a) =
Coord $ hcliftA (Proxy :: Proxy AdditiveGroup) (fmap negateV) a
Coord a ^-^ Coord b =
Coord $ hcliftA2 (Proxy :: Proxy AdditiveGroup) (liftA2 (^-^)) a b
instance (All Random cs) => Random (Coord cs) where
random g =
let (c, g') =
runState
(hsequence $ hcpure (Proxy :: Proxy Random) (state random))
g
in (Coord c, g')
randomR (Coord mi, Coord ma) g =
let (c, g') =
runState
(hsequence $
hcliftA2
(Proxy :: Proxy Random)
(\(I a) (I b) -> state (randomR (a, b)))
mi
ma)
g
in (Coord c, g')
-- | The type of difference between two coords. A n-dimensional coord should have a `Diff` of an n-tuple of `Integers`. We use `Identity` and our 1-tuple. Unfortuantly, each instance is manual at the moment.
type family CoordDiff (cs :: [k]) :: *
type instance CoordDiff '[] = ()
type instance CoordDiff '[a] = Identity (Diff a)
type instance CoordDiff '[a, b] = (Diff a, Diff b)
type instance CoordDiff '[a, b, c] = (Diff a, Diff b, Diff c)
type instance CoordDiff '[a, b, c, d] =
(Diff a, Diff b, Diff c, Diff d)
type instance CoordDiff '[a, b, c, d, e] =
(Diff a, Diff b, Diff c, Diff d, Diff e)
type instance CoordDiff '[a, b, c, d, e, f] =
(Diff a, Diff b, Diff c, Diff d, Diff e, Diff f)
-- | Apply `Diff` to each element of a type level list. This is required as type families can't be partially applied.
type family MapDiff xs where
MapDiff '[] = '[]
MapDiff (x ': xs) = Diff x ': MapDiff xs
instance ( All AffineSpace cs
, AdditiveGroup (CoordDiff cs)
, IsProductType (CoordDiff cs) (MapDiff cs)
) =>
AffineSpace (Coord cs) where
type Diff (Coord cs) = CoordDiff cs
Coord a .-. Coord b =
let helper ::
All AffineSpace xs => NP I xs -> NP I xs -> NP I (MapDiff xs)
helper Nil Nil = Nil
helper (I x :* xs) (I y :* ys) = I (x .-. y) :* helper xs ys
in to $ SOP $ SOP.Z $ helper a b
Coord a .+^ b =
let helper :: All AffineSpace xs => NP I xs -> NP I (MapDiff xs) -> NP I xs
helper Nil Nil = Nil
helper (I x :* xs) (I y :* ys) = I (x .+^ y) :* helper xs ys
in case from b of
SOP (SOP.Z bs) -> Coord $ helper a bs
_ -> error "Error in adding Coord. Should be unreachable"
-- | Generate all possible coords in order
allCoord ::
forall cs. (All IsCoord cs)
=> [Coord cs]
allCoord = Coord <$> hsequence (hcpure (Proxy :: Proxy IsCoord) allCoordLike)
-- | The number of elements a coord can have. This is equal to the product of the `CoordSized` of each element
type family MaxCoordSize (cs :: [k]) :: GHC.Nat where
MaxCoordSize '[] = 1
MaxCoordSize (c ': cs) = (CoordSized c) GHC.* (MaxCoordSize cs)
-- | Convert a `Coord` to its position in a vector
coordPosition :: (All IsCoord cs) => Coord cs -> Int
coordPosition (Coord a) =
let helper :: (All IsCoord xs) => NP I xs -> Integer
helper Nil = 0
helper (I c :* (cs :: NP I ys)) =
ordinalToNum (c ^. asOrdinal) * sizeOfList cs + helper cs
sizeOfList :: All IsCoord xs => NP I xs -> Integer
sizeOfList =
product .
hcollapse .
hcmap
(Proxy :: Proxy IsCoord)
(\(I (_ :: a)) -> K $ 1 + maxCoordSize (Proxy :: Proxy a))
in fromIntegral $ helper a
-- | All Diffs of the members of the list must be equal
type family AllDiffSame a xs :: Constraint where
AllDiffSame _ '[] = ()
AllDiffSame a (x ': xs) = (Diff x ~ a, AllDiffSame a xs)
-- | Calculate the Moore neighbourhood around a point. Includes the center
moorePoints ::
forall a cs. (Enum a, Num a, AllDiffSame a cs, All AffineSpace cs)
=> a
-> Coord cs
-> [Coord cs]
moorePoints n (Coord cs) =
let helper :: (All AffineSpace xs, AllDiffSame a xs) => NP I xs -> [NP I xs]
helper Nil = [Nil]
helper (I a :* as) = do
delta :: a <- [-n .. n]
next <- helper as
return (I (a .+^ delta) :* next)
in map Coord $ helper cs
-- | Calculate the von Neuman neighbourhood around a point. Includes the center
vonNeumanPoints ::
forall a cs.
( Enum a
, Num a
, Ord a
, All Integral (MapDiff cs)
, AllDiffSame a cs
, All AffineSpace cs
, Ord (CoordDiff cs)
, IsProductType (CoordDiff cs) (MapDiff cs)
, AdditiveGroup (CoordDiff cs)
)
=> a
-> Coord cs
-> [Coord cs]
vonNeumanPoints n c =
let helper :: Coord cs -> Bool
helper new =
sum
(hcollapse $
hcmap
(Proxy :: Proxy Integral)
(\(I a) -> K (abs $ fromIntegral a)) $
from (min (new .-. c) (c .-. new))) <= n
in filter helper $ moorePoints n c