{-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TupleSections #-} -- | -- Module : Data.Smash -- Copyright : (c) 2020 Emily Pillmore -- License : BSD-3-Clause -- -- Maintainer : Emily Pillmore <emilypi@cohomolo.gy> -- Stability : Experimental -- Portability : portable -- -- This module contains the definition for the 'Smash' datatype. In -- practice, this type is isomorphic to 'Maybe (a,b)' - the type with -- two possibly non-exclusive values and an empty case. module Data.Smash ( -- * Datatypes -- $general Smash(..) -- * Combinators , toSmash , fromSmash , smashFst , smashSnd , quotSmash , hulkSmash , isSmash , isNada -- ** Eliminators , smash -- * Filtering , smashes , filterNadas -- * Folding , foldSmashes , gatherSmashes -- * Partitioning , partitionSmashes , mapSmashes -- * Currying & Uncurrying , smashCurry , smashUncurry -- * Distributivity , distributeSmash , undistributeSmash , pairSmash , unpairSmash , pairSmashCan , unpairSmashCan -- * Associativity , reassocLR , reassocRL -- * Symmetry , swapSmash ) where import Control.Applicative (Alternative(..)) import Data.Bifunctor import Data.Bifoldable import Data.Bitraversable import Data.Can (Can(..), can) import Data.Data import Data.Hashable import Data.Wedge (Wedge(..)) import GHC.Generics {- $general Categorically, the 'Smash' datatype represents a special type of product, a <https://ncatlab.org/nlab/show/smash+product smash product>, in the category Hask* of pointed Hask types. The category Hask* consists of Hask types affixed with a dedicated base point - i.e. all objects look like 'Maybe a'. The smash product is a symmetric, monoidal tensor in Hask* that plays nicely with the product, 'Can', and coproduct, 'Wedge'. Pictorially, these datatypes look like this: @ 'Can': a | Non +---+---+ (a,b) | b 'Wedge': a | Nowhere +-------+ | b 'Smash': Nada +--------+ (a,b) @ The fact that smash products form a closed, symmetric monoidal tensor for Hask* means that we can speak in terms of the language of linear logic for this category. Namely, we can understand how 'Smash', 'Wedge', and 'Can' interact. 'Can' and 'Wedge' distribute nicely over each other, and 'Smash' distributes well over 'Wedge', but is only semi-distributable over 'Wedge''s linear counterpart, which is left out of the api. In this library, we focus on the fragment of this pointed linear logic that makes sense to use, and that will be useful to us as Haskell developers. -} -- | The 'Smash' data type represents A value which has either an -- empty case, or two values. The result is a type, 'Smash a b', which is -- isomorphic to 'Maybe (a,b)'. -- -- Categorically, the smash product (the quotient of a pointed product by -- a wedge sum) has interesting properties. It forms a closed -- symmetric-monoidal tensor in the category Hask* of pointed haskell -- types (i.e. 'Maybe' values). -- data Smash a b = Nada | Smash a b deriving ( Eq, Ord, Read, Show , Generic, Generic1 , Typeable, Data ) -- -------------------------------------------------------------------- -- -- Combinators -- | Convert a 'Maybe' value into a 'Smash' value -- toSmash :: Maybe (a,b) -> Smash a b toSmash Nothing = Nada toSmash (Just (a,b)) = Smash a b -- | Convert a 'Smash' value into a 'Maybe' value -- fromSmash :: Smash a b -> Maybe (a,b) fromSmash Nada = Nothing fromSmash (Smash a b) = Just (a,b) -- | Smash product of pointed type modulo its wedge -- quotSmash :: Can a b -> Smash a b quotSmash = can Nada (const Nada) (const Nada) Smash -- | Take the smash product of a wedge and two default values -- to place in either the left or right side of the final product -- hulkSmash :: a -> b -> Wedge a b -> Smash a b hulkSmash a b = \case Nowhere -> Nada Here c -> Smash c b There d -> Smash a d -- | Project the left value of a 'Smash' datatype. This is analogous -- to 'fst' for '(,)'. -- smashFst :: Smash a b -> Maybe a smashFst Nada = Nothing smashFst (Smash a _) = Just a -- | Project the right value of a 'Smash' datatype. This is analogous -- to 'snd' for '(,)'. -- smashSnd :: Smash a b -> Maybe b smashSnd Nada = Nothing smashSnd (Smash _ b) = Just b -- | Detect whether a 'Smash' value is empty -- isNada :: Smash a b -> Bool isNada Nada = True isNada _ = False -- | Detect whether a 'Smash' value is not empty -- isSmash :: Smash a b -> Bool isSmash = not . isNada -- -------------------------------------------------------------------- -- -- Eliminators -- | Case elimination for the 'Smash' datatype -- smash :: c -> (a -> b -> c) -> Smash a b -> c smash c _ Nada = c smash _ f (Smash a b) = f a b -- -------------------------------------------------------------------- -- -- Filtering -- | Given a 'Foldable' of 'Smash's, collect the values of the -- 'Smash' cases, if any. -- smashes :: Foldable f => f (Smash a b) -> [(a,b)] smashes = foldr go [] where go (Smash a b) acc = (a,b) : acc go _ acc = acc -- | Filter the 'Nada' cases of a 'Foldable' of 'Smash' values. -- filterNadas :: Foldable f => f (Smash a b) -> [Smash a b] filterNadas = foldr go [] where go Nada acc = acc go a acc = a:acc -- -------------------------------------------------------------------- -- -- Folding -- | Fold over the 'Smash' case of a 'Foldable' of 'Smash' products by -- some accumulatig function. -- foldSmashes :: Foldable f => (a -> b -> m -> m) -> m -> f (Smash a b) -> m foldSmashes f = foldr go where go (Smash a b) acc = f a b acc go _ acc = acc -- | Gather a 'Smash' product of two lists and product a list of 'Smash' -- values, mapping the 'Nada' case to the empty list and zipping -- the two lists together with the 'Smash' constructor otherwise. -- gatherSmashes :: Smash [a] [b] -> [Smash a b] gatherSmashes (Smash as bs) = zipWith Smash as bs gatherSmashes _ = [] -- -------------------------------------------------------------------- -- -- Partitioning -- | Given a 'Foldable' of 'Smash's, partition it into a tuple of alternatives -- their parts. -- partitionSmashes :: forall f t a b . ( Foldable t , Alternative f ) => t (Smash a b) -> (f a, f b) partitionSmashes = foldr go (empty, empty) where go Nada acc = acc go (Smash a b) (as, bs) = (pure a <|> as, pure b <|> bs) -- | Partition a structure by mapping its contents into 'Smash's, -- and folding over '(<|>)'. -- mapSmashes :: forall f t a b c . ( Alternative f , Traversable t ) => (a -> Smash b c) -> t a -> (f b, f c) mapSmashes f = partitionSmashes . fmap f -- -------------------------------------------------------------------- -- -- Currying & Uncurrying -- | "Curry" a map from a smash product to a pointed type. This is analogous -- to 'curry' for '(->)'. -- smashCurry :: (Smash a b -> Maybe c) -> Maybe a -> Maybe b -> Maybe c smashCurry f (Just a) (Just b) = f (Smash a b) smashCurry _ _ _ = Nothing -- | "Uncurry" a map of pointed types to a map of a smash product to a pointed type. -- This is analogous to 'uncurry' for '(->)'. -- smashUncurry :: (Maybe a -> Maybe b -> Maybe c) -> Smash a b -> Maybe c smashUncurry _ Nada = Nothing smashUncurry f (Smash a b) = f (Just a) (Just b) -- -------------------------------------------------------------------- -- -- Distributivity -- | A smash product of wedges is a wedge of smash products. -- Smash products distribute over coproducts ('Wedge's) in pointed Hask -- distributeSmash :: Smash (Wedge a b) c -> Wedge (Smash a c) (Smash b c) distributeSmash (Smash (Here a) c) = Here (Smash a c) distributeSmash (Smash (There b) c) = There (Smash b c) distributeSmash _ = Nowhere -- | A wedge of smash products is a smash product of wedges. -- Smash products distribute over coproducts ('Wedge's) in pointed Hask -- undistributeSmash :: Wedge (Smash a c) (Smash b c) -> Smash (Wedge a b) c undistributeSmash (Here (Smash a c)) = Smash (Here a) c undistributeSmash (There (Smash b c)) = Smash (There b) c undistributeSmash _ = Nada -- | Distribute a 'Smash' of a pair into a pair of 'Smash's -- pairSmash :: Smash (a,b) c -> (Smash a c, Smash b c) pairSmash Nada = (Nada, Nada) pairSmash (Smash (a,b) c) = (Smash a c, Smash b c) -- | Distribute a 'Smash' of a pair into a pair of 'Smash's -- unpairSmash :: (Smash a c, Smash b c) -> Smash (a,b) c unpairSmash (Smash a c, Smash b _) = Smash (a,b) c unpairSmash _ = Nada -- | Distribute a 'Smash' of a 'Can' into a 'Can' of 'Smash's -- pairSmashCan :: Smash (Can a b) c -> Can (Smash a c) (Smash b c) pairSmashCan Nada = Non pairSmashCan (Smash cc c) = case cc of Non -> Non One a -> One (Smash a c) Eno b -> Eno (Smash b c) Two a b -> Two (Smash a c) (Smash b c) -- | Unistribute a 'Can' of 'Smash's into a 'Smash' of 'Can's. -- unpairSmashCan :: Can (Smash a c) (Smash b c) -> Smash (Can a b) c unpairSmashCan cc = case cc of One (Smash a c) -> Smash (One a) c Eno (Smash b c) -> Smash (Eno b) c Two (Smash a c) (Smash b _) -> Smash (Two a b) c _ -> Nada -- -------------------------------------------------------------------- -- -- Associativity -- | Reassociate a 'Smash' product from left to right. -- reassocLR :: Smash (Smash a b) c -> Smash a (Smash b c) reassocLR (Smash (Smash a b) c) = Smash a (Smash b c) reassocLR _ = Nada -- | Reassociate a 'Smash' product from right to left. -- reassocRL :: Smash a (Smash b c) -> Smash (Smash a b) c reassocRL (Smash a (Smash b c)) = Smash (Smash a b) c reassocRL _ = Nada -- -------------------------------------------------------------------- -- -- Symmetry -- | Swap the positions of values in a 'Smash a b' to form a 'Smash b a'. -- swapSmash :: Smash a b -> Smash b a swapSmash Nada = Nada swapSmash (Smash a b) = Smash b a -- -------------------------------------------------------------------- -- -- Std instances instance (Hashable a, Hashable b) => Hashable (Smash a b) instance Functor (Smash a) where fmap _ Nada = Nada fmap f (Smash a b) = Smash a (f b) instance Monoid a => Applicative (Smash a) where pure = Smash mempty Nada <*> _ = Nada _ <*> Nada = Nada Smash a f <*> Smash c d = Smash (a <> c) (f d) instance Monoid a => Monad (Smash a) where return = pure (>>) = (*>) Nada >>= _ = Nada Smash a b >>= k = case k b of Nada -> Nada Smash c d -> Smash (a <> c) d instance (Semigroup a, Semigroup b) => Semigroup (Smash a b) where Nada <> b = b a <> Nada = a Smash a b <> Smash c d = Smash (a <> c) (b <> d) instance (Semigroup a, Semigroup b) => Monoid (Smash a b) where mempty = Nada -- -------------------------------------------------------------------- -- -- Bifunctors instance Bifunctor Smash where bimap f g = \case Nada -> Nada Smash a b -> Smash (f a) (g b) instance Bifoldable Smash where bifoldMap f g = \case Nada -> mempty Smash a b -> f a <> g b instance Bitraversable Smash where bitraverse f g = \case Nada -> pure Nada Smash a b -> Smash <$> f a <*> g b