{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE Safe #-}
module Data.Smash
(
Smash(..)
, type (⨳)
, toSmash
, fromSmash
, smashFst
, smashSnd
, quotSmash
, hulkSmash
, isSmash
, isNada
, smashDiag
, smashDiag'
, smash
, smashes
, filterNadas
, foldSmashes
, gatherSmashes
, unfoldr
, unfoldrM
, iterateUntil
, iterateUntilM
, accumUntil
, accumUntilM
, partitionSmashes
, mapSmashes
, smashCurry
, smashUncurry
, distributeSmash
, undistributeSmash
, pairSmash
, unpairSmash
, pairSmashCan
, unpairSmashCan
, reassocLR
, reassocRL
, swapSmash
) where
import Control.Applicative (Alternative(..))
import Control.DeepSeq
import Control.Monad.Zip
import Data.Biapplicative
import Data.Bifoldable
import Data.Binary (Binary(..))
import Data.Bitraversable
import Data.Can (Can(..), can)
import Data.Data
import Data.Functor.Classes
import Data.Functor.Identity
import Data.Hashable
import Data.Wedge (Wedge(..))
import GHC.Generics
import GHC.Read
import Text.Read hiding (get)
import Data.Smash.Internal
import qualified Language.Haskell.TH.Syntax as TH
import Control.Monad
import Data.Hashable.Lifted
data Smash a b = Nada | Smash a b
deriving
( Smash a b -> Smash a b -> Bool
(Smash a b -> Smash a b -> Bool)
-> (Smash a b -> Smash a b -> Bool) -> Eq (Smash a b)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall a b. (Eq a, Eq b) => Smash a b -> Smash a b -> Bool
/= :: Smash a b -> Smash a b -> Bool
$c/= :: forall a b. (Eq a, Eq b) => Smash a b -> Smash a b -> Bool
== :: Smash a b -> Smash a b -> Bool
$c== :: forall a b. (Eq a, Eq b) => Smash a b -> Smash a b -> Bool
Eq, Eq (Smash a b)
Eq (Smash a b) =>
(Smash a b -> Smash a b -> Ordering)
-> (Smash a b -> Smash a b -> Bool)
-> (Smash a b -> Smash a b -> Bool)
-> (Smash a b -> Smash a b -> Bool)
-> (Smash a b -> Smash a b -> Bool)
-> (Smash a b -> Smash a b -> Smash a b)
-> (Smash a b -> Smash a b -> Smash a b)
-> Ord (Smash a b)
Smash a b -> Smash a b -> Bool
Smash a b -> Smash a b -> Ordering
Smash a b -> Smash a b -> Smash a b
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall a b. (Ord a, Ord b) => Eq (Smash a b)
forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Bool
forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Ordering
forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Smash a b
min :: Smash a b -> Smash a b -> Smash a b
$cmin :: forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Smash a b
max :: Smash a b -> Smash a b -> Smash a b
$cmax :: forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Smash a b
>= :: Smash a b -> Smash a b -> Bool
$c>= :: forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Bool
> :: Smash a b -> Smash a b -> Bool
$c> :: forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Bool
<= :: Smash a b -> Smash a b -> Bool
$c<= :: forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Bool
< :: Smash a b -> Smash a b -> Bool
$c< :: forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Bool
compare :: Smash a b -> Smash a b -> Ordering
$ccompare :: forall a b. (Ord a, Ord b) => Smash a b -> Smash a b -> Ordering
$cp1Ord :: forall a b. (Ord a, Ord b) => Eq (Smash a b)
Ord, ReadPrec [Smash a b]
ReadPrec (Smash a b)
Int -> ReadS (Smash a b)
ReadS [Smash a b]
(Int -> ReadS (Smash a b))
-> ReadS [Smash a b]
-> ReadPrec (Smash a b)
-> ReadPrec [Smash a b]
-> Read (Smash a b)
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
forall a b. (Read a, Read b) => ReadPrec [Smash a b]
forall a b. (Read a, Read b) => ReadPrec (Smash a b)
forall a b. (Read a, Read b) => Int -> ReadS (Smash a b)
forall a b. (Read a, Read b) => ReadS [Smash a b]
readListPrec :: ReadPrec [Smash a b]
$creadListPrec :: forall a b. (Read a, Read b) => ReadPrec [Smash a b]
readPrec :: ReadPrec (Smash a b)
$creadPrec :: forall a b. (Read a, Read b) => ReadPrec (Smash a b)
readList :: ReadS [Smash a b]
$creadList :: forall a b. (Read a, Read b) => ReadS [Smash a b]
readsPrec :: Int -> ReadS (Smash a b)
$creadsPrec :: forall a b. (Read a, Read b) => Int -> ReadS (Smash a b)
Read, Int -> Smash a b -> ShowS
[Smash a b] -> ShowS
Smash a b -> String
(Int -> Smash a b -> ShowS)
-> (Smash a b -> String)
-> ([Smash a b] -> ShowS)
-> Show (Smash a b)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall a b. (Show a, Show b) => Int -> Smash a b -> ShowS
forall a b. (Show a, Show b) => [Smash a b] -> ShowS
forall a b. (Show a, Show b) => Smash a b -> String
showList :: [Smash a b] -> ShowS
$cshowList :: forall a b. (Show a, Show b) => [Smash a b] -> ShowS
show :: Smash a b -> String
$cshow :: forall a b. (Show a, Show b) => Smash a b -> String
showsPrec :: Int -> Smash a b -> ShowS
$cshowsPrec :: forall a b. (Show a, Show b) => Int -> Smash a b -> ShowS
Show
, (forall x. Smash a b -> Rep (Smash a b) x)
-> (forall x. Rep (Smash a b) x -> Smash a b)
-> Generic (Smash a b)
forall x. Rep (Smash a b) x -> Smash a b
forall x. Smash a b -> Rep (Smash a b) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a b x. Rep (Smash a b) x -> Smash a b
forall a b x. Smash a b -> Rep (Smash a b) x
$cto :: forall a b x. Rep (Smash a b) x -> Smash a b
$cfrom :: forall a b x. Smash a b -> Rep (Smash a b) x
Generic, (forall a. Smash a a -> Rep1 (Smash a) a)
-> (forall a. Rep1 (Smash a) a -> Smash a a) -> Generic1 (Smash a)
forall a. Rep1 (Smash a) a -> Smash a a
forall a. Smash a a -> Rep1 (Smash a) a
forall a a. Rep1 (Smash a) a -> Smash a a
forall a a. Smash a a -> Rep1 (Smash a) a
forall k (f :: k -> *).
(forall (a :: k). f a -> Rep1 f a)
-> (forall (a :: k). Rep1 f a -> f a) -> Generic1 f
$cto1 :: forall a a. Rep1 (Smash a) a -> Smash a a
$cfrom1 :: forall a a. Smash a a -> Rep1 (Smash a) a
Generic1
, Typeable, Typeable (Smash a b)
DataType
Constr
Typeable (Smash a b) =>
(forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Smash a b -> c (Smash a b))
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Smash a b))
-> (Smash a b -> Constr)
-> (Smash a b -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Smash a b)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Smash a b)))
-> ((forall b. Data b => b -> b) -> Smash a b -> Smash a b)
-> (forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r)
-> (forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r)
-> (forall u. (forall d. Data d => d -> u) -> Smash a b -> [u])
-> (forall u.
Int -> (forall d. Data d => d -> u) -> Smash a b -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b))
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b))
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b))
-> Data (Smash a b)
Smash a b -> DataType
Smash a b -> Constr
(forall b. Data b => b -> b) -> Smash a b -> Smash a b
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Smash a b -> c (Smash a b)
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Smash a b)
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Smash a b))
forall a.
Typeable a =>
(forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Smash a b -> u
forall u. (forall d. Data d => d -> u) -> Smash a b -> [u]
forall a b. (Data a, Data b) => Typeable (Smash a b)
forall a b. (Data a, Data b) => Smash a b -> DataType
forall a b. (Data a, Data b) => Smash a b -> Constr
forall a b.
(Data a, Data b) =>
(forall b. Data b => b -> b) -> Smash a b -> Smash a b
forall a b u.
(Data a, Data b) =>
Int -> (forall d. Data d => d -> u) -> Smash a b -> u
forall a b u.
(Data a, Data b) =>
(forall d. Data d => d -> u) -> Smash a b -> [u]
forall a b r r'.
(Data a, Data b) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r
forall a b r r'.
(Data a, Data b) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r
forall a b (m :: * -> *).
(Data a, Data b, Monad m) =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
forall a b (m :: * -> *).
(Data a, Data b, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
forall a b (c :: * -> *).
(Data a, Data b) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Smash a b)
forall a b (c :: * -> *).
(Data a, Data b) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Smash a b -> c (Smash a b)
forall a b (t :: * -> *) (c :: * -> *).
(Data a, Data b, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Smash a b))
forall a b (t :: * -> * -> *) (c :: * -> *).
(Data a, Data b, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Smash a b))
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Smash a b)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Smash a b -> c (Smash a b)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Smash a b))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Smash a b))
$cSmash :: Constr
$cNada :: Constr
$tSmash :: DataType
gmapMo :: (forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
$cgmapMo :: forall a b (m :: * -> *).
(Data a, Data b, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
gmapMp :: (forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
$cgmapMp :: forall a b (m :: * -> *).
(Data a, Data b, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
gmapM :: (forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
$cgmapM :: forall a b (m :: * -> *).
(Data a, Data b, Monad m) =>
(forall d. Data d => d -> m d) -> Smash a b -> m (Smash a b)
gmapQi :: Int -> (forall d. Data d => d -> u) -> Smash a b -> u
$cgmapQi :: forall a b u.
(Data a, Data b) =>
Int -> (forall d. Data d => d -> u) -> Smash a b -> u
gmapQ :: (forall d. Data d => d -> u) -> Smash a b -> [u]
$cgmapQ :: forall a b u.
(Data a, Data b) =>
(forall d. Data d => d -> u) -> Smash a b -> [u]
gmapQr :: (r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r
$cgmapQr :: forall a b r r'.
(Data a, Data b) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r
gmapQl :: (r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r
$cgmapQl :: forall a b r r'.
(Data a, Data b) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Smash a b -> r
gmapT :: (forall b. Data b => b -> b) -> Smash a b -> Smash a b
$cgmapT :: forall a b.
(Data a, Data b) =>
(forall b. Data b => b -> b) -> Smash a b -> Smash a b
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Smash a b))
$cdataCast2 :: forall a b (t :: * -> * -> *) (c :: * -> *).
(Data a, Data b, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Smash a b))
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (Smash a b))
$cdataCast1 :: forall a b (t :: * -> *) (c :: * -> *).
(Data a, Data b, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Smash a b))
dataTypeOf :: Smash a b -> DataType
$cdataTypeOf :: forall a b. (Data a, Data b) => Smash a b -> DataType
toConstr :: Smash a b -> Constr
$ctoConstr :: forall a b. (Data a, Data b) => Smash a b -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Smash a b)
$cgunfold :: forall a b (c :: * -> *).
(Data a, Data b) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Smash a b)
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Smash a b -> c (Smash a b)
$cgfoldl :: forall a b (c :: * -> *).
(Data a, Data b) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Smash a b -> c (Smash a b)
$cp1Data :: forall a b. (Data a, Data b) => Typeable (Smash a b)
Data
, Smash a b -> Q Exp
(Smash a b -> Q Exp) -> Lift (Smash a b)
forall t. (t -> Q Exp) -> Lift t
forall a b. (Lift a, Lift b) => Smash a b -> Q Exp
lift :: Smash a b -> Q Exp
$clift :: forall a b. (Lift a, Lift b) => Smash a b -> Q Exp
TH.Lift
)
type a ⨳ b = Smash a b
toSmash :: Maybe (a,b) -> Smash a b
toSmash :: Maybe (a, b) -> Smash a b
toSmash = Smash a b -> ((a, b) -> Smash a b) -> Maybe (a, b) -> Smash a b
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Smash a b
forall a b. Smash a b
Nada ((a -> b -> Smash a b) -> (a, b) -> Smash a b
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash)
fromSmash :: Smash a b -> Maybe (a,b)
fromSmash :: Smash a b -> Maybe (a, b)
fromSmash = Maybe (a, b)
-> (a -> b -> Maybe (a, b)) -> Smash a b -> Maybe (a, b)
forall c a b. c -> (a -> b -> c) -> Smash a b -> c
smash Maybe (a, b)
forall a. Maybe a
Nothing (((a, b) -> Maybe (a, b)) -> a -> b -> Maybe (a, b)
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (a, b) -> Maybe (a, b)
forall a. a -> Maybe a
Just)
quotSmash :: Can a b -> Smash a b
quotSmash :: Can a b -> Smash a b
quotSmash = Smash a b
-> (a -> Smash a b)
-> (b -> Smash a b)
-> (a -> b -> Smash a b)
-> Can a b
-> Smash a b
forall c a b.
c -> (a -> c) -> (b -> c) -> (a -> b -> c) -> Can a b -> c
can Smash a b
forall a b. Smash a b
Nada (Smash a b -> a -> Smash a b
forall a b. a -> b -> a
const Smash a b
forall a b. Smash a b
Nada) (Smash a b -> b -> Smash a b
forall a b. a -> b -> a
const Smash a b
forall a b. Smash a b
Nada) a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash
hulkSmash :: a -> b -> Wedge a b -> Smash a b
hulkSmash :: a -> b -> Wedge a b -> Smash a b
hulkSmash a :: a
a b :: b
b = \case
Nowhere -> Smash a b
forall a b. Smash a b
Nada
Here c :: a
c -> a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash a
c b
b
There d :: b
d -> a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash a
a b
d
smashFst :: Smash a b -> Maybe a
smashFst :: Smash a b -> Maybe a
smashFst Nada = Maybe a
forall a. Maybe a
Nothing
smashFst (Smash a :: a
a _) = a -> Maybe a
forall a. a -> Maybe a
Just a
a
smashSnd :: Smash a b -> Maybe b
smashSnd :: Smash a b -> Maybe b
smashSnd Nada = Maybe b
forall a. Maybe a
Nothing
smashSnd (Smash _ b :: b
b) = b -> Maybe b
forall a. a -> Maybe a
Just b
b
isNada :: Smash a b -> Bool
isNada :: Smash a b -> Bool
isNada Nada = Bool
True
isNada _ = Bool
False
isSmash :: Smash a b -> Bool
isSmash :: Smash a b -> Bool
isSmash = Bool -> Bool
not (Bool -> Bool) -> (Smash a b -> Bool) -> Smash a b -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Smash a b -> Bool
forall a b. Smash a b -> Bool
isNada
smashDiag :: Maybe a -> Smash a a
smashDiag :: Maybe a -> Smash a a
smashDiag Nothing = Smash a a
forall a b. Smash a b
Nada
smashDiag (Just a :: a
a) = a -> a -> Smash a a
forall a b. a -> b -> Smash a b
Smash a
a a
a
smashDiag' :: a -> Smash a a
smashDiag' :: a -> Smash a a
smashDiag' a :: a
a = a -> a -> Smash a a
forall a b. a -> b -> Smash a b
Smash a
a a
a
smash :: c -> (a -> b -> c) -> Smash a b -> c
smash :: c -> (a -> b -> c) -> Smash a b -> c
smash c :: c
c _ Nada = c
c
smash _ f :: a -> b -> c
f (Smash a :: a
a b :: b
b) = a -> b -> c
f a
a b
b
smashes :: Foldable f => f (Smash a b) -> [(a,b)]
smashes :: f (Smash a b) -> [(a, b)]
smashes = (Smash a b -> [(a, b)] -> [(a, b)])
-> [(a, b)] -> f (Smash a b) -> [(a, b)]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Smash a b -> [(a, b)] -> [(a, b)]
forall a b. Smash a b -> [(a, b)] -> [(a, b)]
go []
where
go :: Smash a b -> [(a, b)] -> [(a, b)]
go (Smash a :: a
a b :: b
b) acc :: [(a, b)]
acc = (a
a,b
b) (a, b) -> [(a, b)] -> [(a, b)]
forall a. a -> [a] -> [a]
: [(a, b)]
acc
go _ acc :: [(a, b)]
acc = [(a, b)]
acc
filterNadas :: Foldable f => f (Smash a b) -> [Smash a b]
filterNadas :: f (Smash a b) -> [Smash a b]
filterNadas = (Smash a b -> [Smash a b] -> [Smash a b])
-> [Smash a b] -> f (Smash a b) -> [Smash a b]
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Smash a b -> [Smash a b] -> [Smash a b]
forall a b. Smash a b -> [Smash a b] -> [Smash a b]
go []
where
go :: Smash a b -> [Smash a b] -> [Smash a b]
go Nada acc :: [Smash a b]
acc = [Smash a b]
acc
go a :: Smash a b
a acc :: [Smash a b]
acc = Smash a b
aSmash a b -> [Smash a b] -> [Smash a b]
forall a. a -> [a] -> [a]
:[Smash a b]
acc
foldSmashes
:: Foldable f
=> (a -> b -> m -> m)
-> m
-> f (Smash a b)
-> m
foldSmashes :: (a -> b -> m -> m) -> m -> f (Smash a b) -> m
foldSmashes f :: a -> b -> m -> m
f = (Smash a b -> m -> m) -> m -> f (Smash a b) -> m
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Smash a b -> m -> m
go
where
go :: Smash a b -> m -> m
go (Smash a :: a
a b :: b
b) acc :: m
acc = a -> b -> m -> m
f a
a b
b m
acc
go _ acc :: m
acc = m
acc
gatherSmashes :: Smash [a] [b] -> [Smash a b]
gatherSmashes :: Smash [a] [b] -> [Smash a b]
gatherSmashes (Smash as :: [a]
as bs :: [b]
bs) = (a -> b -> Smash a b) -> [a] -> [b] -> [Smash a b]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash [a]
as [b]
bs
gatherSmashes _ = []
unfoldr :: Alternative f => (b -> Smash a b) -> b -> f a
unfoldr :: (b -> Smash a b) -> b -> f a
unfoldr f :: b -> Smash a b
f = Identity (f a) -> f a
forall a. Identity a -> a
runIdentity (Identity (f a) -> f a) -> (b -> Identity (f a)) -> b -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> Identity (Smash a b)) -> b -> Identity (f a)
forall (m :: * -> *) (f :: * -> *) b a.
(Monad m, Alternative f) =>
(b -> m (Smash a b)) -> b -> m (f a)
unfoldrM (Smash a b -> Identity (Smash a b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Smash a b -> Identity (Smash a b))
-> (b -> Smash a b) -> b -> Identity (Smash a b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Smash a b
f)
unfoldrM :: (Monad m, Alternative f) => (b -> m (Smash a b)) -> b -> m (f a)
unfoldrM :: (b -> m (Smash a b)) -> b -> m (f a)
unfoldrM f :: b -> m (Smash a b)
f b :: b
b = b -> m (Smash a b)
f b
b m (Smash a b) -> (Smash a b -> m (f a)) -> m (f a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Nada -> f a -> m (f a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure f a
forall (f :: * -> *) a. Alternative f => f a
empty
Smash a :: a
a b' :: b
b' -> (a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a f a -> f a -> f a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>) (f a -> f a) -> m (f a) -> m (f a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (b -> m (Smash a b)) -> b -> m (f a)
forall (m :: * -> *) (f :: * -> *) b a.
(Monad m, Alternative f) =>
(b -> m (Smash a b)) -> b -> m (f a)
unfoldrM b -> m (Smash a b)
f b
b'
iterateUntil :: Alternative f => (b -> Smash a b) -> b -> f a
iterateUntil :: (b -> Smash a b) -> b -> f a
iterateUntil f :: b -> Smash a b
f = Identity (f a) -> f a
forall a. Identity a -> a
runIdentity (Identity (f a) -> f a) -> (b -> Identity (f a)) -> b -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> Identity (Smash a b)) -> b -> Identity (f a)
forall (m :: * -> *) (f :: * -> *) b a.
(Monad m, Alternative f) =>
(b -> m (Smash a b)) -> b -> m (f a)
iterateUntilM (Smash a b -> Identity (Smash a b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Smash a b -> Identity (Smash a b))
-> (b -> Smash a b) -> b -> Identity (Smash a b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Smash a b
f)
iterateUntilM
:: Monad m
=> Alternative f
=> (b -> m (Smash a b))
-> b
-> m (f a)
iterateUntilM :: (b -> m (Smash a b)) -> b -> m (f a)
iterateUntilM f :: b -> m (Smash a b)
f b :: b
b = b -> m (Smash a b)
f b
b m (Smash a b) -> (Smash a b -> m (f a)) -> m (f a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Nada -> f a -> m (f a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure f a
forall (f :: * -> *) a. Alternative f => f a
empty
Smash a :: a
a _ -> f a -> m (f a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a)
accumUntil
:: Alternative f
=> Monoid b
=> (b -> Smash a b)
-> f a
accumUntil :: (b -> Smash a b) -> f a
accumUntil f :: b -> Smash a b
f = Identity (f a) -> f a
forall a. Identity a -> a
runIdentity ((b -> Identity (Smash a b)) -> Identity (f a)
forall (m :: * -> *) (f :: * -> *) b a.
(Monad m, Alternative f, Monoid b) =>
(b -> m (Smash a b)) -> m (f a)
accumUntilM (Smash a b -> Identity (Smash a b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Smash a b -> Identity (Smash a b))
-> (b -> Smash a b) -> b -> Identity (Smash a b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Smash a b
f))
accumUntilM
:: Monad m
=> Alternative f
=> Monoid b
=> (b -> m (Smash a b))
-> m (f a)
accumUntilM :: (b -> m (Smash a b)) -> m (f a)
accumUntilM f :: b -> m (Smash a b)
f = b -> m (f a)
forall (f :: * -> *). Alternative f => b -> m (f a)
go b
forall a. Monoid a => a
mempty
where
go :: b -> m (f a)
go b :: b
b = b -> m (Smash a b)
f b
b m (Smash a b) -> (Smash a b -> m (f a)) -> m (f a)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Nada -> f a -> m (f a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure f a
forall (f :: * -> *) a. Alternative f => f a
empty
Smash a :: a
a b' :: b
b' -> (a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a f a -> f a -> f a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>) (f a -> f a) -> m (f a) -> m (f a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> b -> m (f a)
go (b
b' b -> b -> b
forall a. Monoid a => a -> a -> a
`mappend` b
b)
partitionSmashes
:: Foldable t
=> Alternative f
=> t (Smash a b) -> (f a, f b)
partitionSmashes :: t (Smash a b) -> (f a, f b)
partitionSmashes = (Smash a b -> (f a, f b) -> (f a, f b))
-> (f a, f b) -> t (Smash a b) -> (f a, f b)
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Smash a b -> (f a, f b) -> (f a, f b)
forall (f :: * -> *) (f :: * -> *) a a.
(Alternative f, Alternative f) =>
Smash a a -> (f a, f a) -> (f a, f a)
go (f a
forall (f :: * -> *) a. Alternative f => f a
empty, f b
forall (f :: * -> *) a. Alternative f => f a
empty)
where
go :: Smash a a -> (f a, f a) -> (f a, f a)
go Nada acc :: (f a, f a)
acc = (f a, f a)
acc
go (Smash a :: a
a b :: a
b) (as :: f a
as, bs :: f a
bs) = (a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a f a -> f a -> f a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> f a
as, a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
b f a -> f a -> f a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> f a
bs)
mapSmashes
:: Alternative f
=> Traversable t
=> (a -> Smash b c)
-> t a
-> (f b, f c)
mapSmashes :: (a -> Smash b c) -> t a -> (f b, f c)
mapSmashes f :: a -> Smash b c
f = t (Smash b c) -> (f b, f c)
forall (t :: * -> *) (f :: * -> *) a b.
(Foldable t, Alternative f) =>
t (Smash a b) -> (f a, f b)
partitionSmashes (t (Smash b c) -> (f b, f c))
-> (t a -> t (Smash b c)) -> t a -> (f b, f c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Smash b c) -> t a -> t (Smash b c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Smash b c
f
smashCurry :: (Smash a b -> Maybe c) -> Maybe a -> Maybe b -> Maybe c
smashCurry :: (Smash a b -> Maybe c) -> Maybe a -> Maybe b -> Maybe c
smashCurry f :: Smash a b -> Maybe c
f (Just a :: a
a) (Just b :: b
b) = Smash a b -> Maybe c
f (a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash a
a b
b)
smashCurry _ _ _ = Maybe c
forall a. Maybe a
Nothing
smashUncurry :: (Maybe a -> Maybe b -> Maybe c) -> Smash a b -> Maybe c
smashUncurry :: (Maybe a -> Maybe b -> Maybe c) -> Smash a b -> Maybe c
smashUncurry _ Nada = Maybe c
forall a. Maybe a
Nothing
smashUncurry f :: Maybe a -> Maybe b -> Maybe c
f (Smash a :: a
a b :: b
b) = Maybe a -> Maybe b -> Maybe c
f (a -> Maybe a
forall a. a -> Maybe a
Just a
a) (b -> Maybe b
forall a. a -> Maybe a
Just b
b)
distributeSmash :: Smash (Wedge a b) c -> Wedge (Smash a c) (Smash b c)
distributeSmash :: Smash (Wedge a b) c -> Wedge (Smash a c) (Smash b c)
distributeSmash (Smash (Here a :: a
a) c :: c
c) = Smash a c -> Wedge (Smash a c) (Smash b c)
forall a b. a -> Wedge a b
Here (a -> c -> Smash a c
forall a b. a -> b -> Smash a b
Smash a
a c
c)
distributeSmash (Smash (There b :: b
b) c :: c
c) = Smash b c -> Wedge (Smash a c) (Smash b c)
forall a b. b -> Wedge a b
There (b -> c -> Smash b c
forall a b. a -> b -> Smash a b
Smash b
b c
c)
distributeSmash _ = Wedge (Smash a c) (Smash b c)
forall a b. Wedge a b
Nowhere
undistributeSmash :: Wedge (Smash a c) (Smash b c) -> Smash (Wedge a b) c
undistributeSmash :: Wedge (Smash a c) (Smash b c) -> Smash (Wedge a b) c
undistributeSmash (Here (Smash a :: a
a c :: c
c)) = Wedge a b -> c -> Smash (Wedge a b) c
forall a b. a -> b -> Smash a b
Smash (a -> Wedge a b
forall a b. a -> Wedge a b
Here a
a) c
c
undistributeSmash (There (Smash b :: b
b c :: c
c)) = Wedge a b -> c -> Smash (Wedge a b) c
forall a b. a -> b -> Smash a b
Smash (b -> Wedge a b
forall a b. b -> Wedge a b
There b
b) c
c
undistributeSmash _ = Smash (Wedge a b) c
forall a b. Smash a b
Nada
pairSmash :: Smash (a,b) c -> (Smash a c, Smash b c)
pairSmash :: Smash (a, b) c -> (Smash a c, Smash b c)
pairSmash = Smash (a, b) c -> (Smash a c, Smash b c)
forall (f :: * -> * -> *) a b c.
Bifunctor f =>
f (a, b) c -> (f a c, f b c)
unzipFirst
unpairSmash :: (Smash a c, Smash b c) -> Smash (a,b) c
unpairSmash :: (Smash a c, Smash b c) -> Smash (a, b) c
unpairSmash (Smash a :: a
a c :: c
c, Smash b :: b
b _) = (a, b) -> c -> Smash (a, b) c
forall a b. a -> b -> Smash a b
Smash (a
a,b
b) c
c
unpairSmash _ = Smash (a, b) c
forall a b. Smash a b
Nada
pairSmashCan :: Smash (Can a b) c -> Can (Smash a c) (Smash b c)
pairSmashCan :: Smash (Can a b) c -> Can (Smash a c) (Smash b c)
pairSmashCan Nada = Can (Smash a c) (Smash b c)
forall a b. Can a b
Non
pairSmashCan (Smash cc :: Can a b
cc c :: c
c) = case Can a b
cc of
Non -> Can (Smash a c) (Smash b c)
forall a b. Can a b
Non
One a :: a
a -> Smash a c -> Can (Smash a c) (Smash b c)
forall a b. a -> Can a b
One (a -> c -> Smash a c
forall a b. a -> b -> Smash a b
Smash a
a c
c)
Eno b :: b
b -> Smash b c -> Can (Smash a c) (Smash b c)
forall a b. b -> Can a b
Eno (b -> c -> Smash b c
forall a b. a -> b -> Smash a b
Smash b
b c
c)
Two a :: a
a b :: b
b -> Smash a c -> Smash b c -> Can (Smash a c) (Smash b c)
forall a b. a -> b -> Can a b
Two (a -> c -> Smash a c
forall a b. a -> b -> Smash a b
Smash a
a c
c) (b -> c -> Smash b c
forall a b. a -> b -> Smash a b
Smash b
b c
c)
unpairSmashCan :: Can (Smash a c) (Smash b c) -> Smash (Can a b) c
unpairSmashCan :: Can (Smash a c) (Smash b c) -> Smash (Can a b) c
unpairSmashCan cc :: Can (Smash a c) (Smash b c)
cc = case Can (Smash a c) (Smash b c)
cc of
One (Smash a :: a
a c :: c
c) -> Can a b -> c -> Smash (Can a b) c
forall a b. a -> b -> Smash a b
Smash (a -> Can a b
forall a b. a -> Can a b
One a
a) c
c
Eno (Smash b :: b
b c :: c
c) -> Can a b -> c -> Smash (Can a b) c
forall a b. a -> b -> Smash a b
Smash (b -> Can a b
forall a b. b -> Can a b
Eno b
b) c
c
Two (Smash a :: a
a c :: c
c) (Smash b :: b
b _) -> Can a b -> c -> Smash (Can a b) c
forall a b. a -> b -> Smash a b
Smash (a -> b -> Can a b
forall a b. a -> b -> Can a b
Two a
a b
b) c
c
_ -> Smash (Can a b) c
forall a b. Smash a b
Nada
reassocLR :: Smash (Smash a b) c -> Smash a (Smash b c)
reassocLR :: Smash (Smash a b) c -> Smash a (Smash b c)
reassocLR (Smash (Smash a :: a
a b :: b
b) c :: c
c) = a -> Smash b c -> Smash a (Smash b c)
forall a b. a -> b -> Smash a b
Smash a
a (b -> c -> Smash b c
forall a b. a -> b -> Smash a b
Smash b
b c
c)
reassocLR _ = Smash a (Smash b c)
forall a b. Smash a b
Nada
reassocRL :: Smash a (Smash b c) -> Smash (Smash a b) c
reassocRL :: Smash a (Smash b c) -> Smash (Smash a b) c
reassocRL (Smash a :: a
a (Smash b :: b
b c :: c
c)) = Smash a b -> c -> Smash (Smash a b) c
forall a b. a -> b -> Smash a b
Smash (a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash a
a b
b) c
c
reassocRL _ = Smash (Smash a b) c
forall a b. Smash a b
Nada
swapSmash :: Smash a b -> Smash b a
swapSmash :: Smash a b -> Smash b a
swapSmash = Smash b a -> (a -> b -> Smash b a) -> Smash a b -> Smash b a
forall c a b. c -> (a -> b -> c) -> Smash a b -> c
smash Smash b a
forall a b. Smash a b
Nada ((b -> a -> Smash b a) -> a -> b -> Smash b a
forall a b c. (a -> b -> c) -> b -> a -> c
flip b -> a -> Smash b a
forall a b. a -> b -> Smash a b
Smash)
instance Eq a => Eq1 (Smash a) where
liftEq :: (a -> b -> Bool) -> Smash a a -> Smash a b -> Bool
liftEq = (a -> a -> Bool)
-> (a -> b -> Bool) -> Smash a a -> Smash a b -> Bool
forall (f :: * -> * -> *) a b c d.
Eq2 f =>
(a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool
liftEq2 a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==)
instance Eq2 Smash where
liftEq2 :: (a -> b -> Bool)
-> (c -> d -> Bool) -> Smash a c -> Smash b d -> Bool
liftEq2 _ _ Nada Nada = Bool
True
liftEq2 _ _ Nada _ = Bool
False
liftEq2 _ _ _ Nada = Bool
False
liftEq2 f :: a -> b -> Bool
f g :: c -> d -> Bool
g (Smash a :: a
a b :: c
b) (Smash c :: b
c d :: d
d) = a -> b -> Bool
f a
a b
c Bool -> Bool -> Bool
&& c -> d -> Bool
g c
b d
d
instance Ord a => Ord1 (Smash a) where
liftCompare :: (a -> b -> Ordering) -> Smash a a -> Smash a b -> Ordering
liftCompare = (a -> a -> Ordering)
-> (a -> b -> Ordering) -> Smash a a -> Smash a b -> Ordering
forall (f :: * -> * -> *) a b c d.
Ord2 f =>
(a -> b -> Ordering)
-> (c -> d -> Ordering) -> f a c -> f b d -> Ordering
liftCompare2 a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare
instance Ord2 Smash where
liftCompare2 :: (a -> b -> Ordering)
-> (c -> d -> Ordering) -> Smash a c -> Smash b d -> Ordering
liftCompare2 _ _ Nada Nada = Ordering
EQ
liftCompare2 _ _ Nada _ = Ordering
LT
liftCompare2 _ _ _ Nada = Ordering
GT
liftCompare2 f :: a -> b -> Ordering
f g :: c -> d -> Ordering
g (Smash a :: a
a b :: c
b) (Smash c :: b
c d :: d
d) = a -> b -> Ordering
f a
a b
c Ordering -> Ordering -> Ordering
forall a. Semigroup a => a -> a -> a
<> c -> d -> Ordering
g c
b d
d
instance Show a => Show1 (Smash a) where
liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Smash a a -> ShowS
liftShowsPrec = (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> Int
-> Smash a a
-> ShowS
forall (f :: * -> * -> *) a b.
Show2 f =>
(Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> f a b
-> ShowS
liftShowsPrec2 Int -> a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec [a] -> ShowS
forall a. Show a => [a] -> ShowS
showList
instance Show2 Smash where
liftShowsPrec2 :: (Int -> a -> ShowS)
-> ([a] -> ShowS)
-> (Int -> b -> ShowS)
-> ([b] -> ShowS)
-> Int
-> Smash a b
-> ShowS
liftShowsPrec2 _ _ _ _ _ Nada = String -> ShowS
showString "Nada"
liftShowsPrec2 f :: Int -> a -> ShowS
f _ g :: Int -> b -> ShowS
g _ d :: Int
d (Smash a :: a
a b :: b
b) = (Int -> a -> ShowS)
-> (Int -> b -> ShowS) -> String -> Int -> a -> b -> ShowS
forall a b.
(Int -> a -> ShowS)
-> (Int -> b -> ShowS) -> String -> Int -> a -> b -> ShowS
showsBinaryWith Int -> a -> ShowS
f Int -> b -> ShowS
g "Smash" Int
d a
a b
b
instance Read a => Read1 (Smash a) where
liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Smash a a)
liftReadsPrec = (Int -> ReadS a)
-> ReadS [a]
-> (Int -> ReadS a)
-> ReadS [a]
-> Int
-> ReadS (Smash a a)
forall (f :: * -> * -> *) a b.
Read2 f =>
(Int -> ReadS a)
-> ReadS [a]
-> (Int -> ReadS b)
-> ReadS [b]
-> Int
-> ReadS (f a b)
liftReadsPrec2 Int -> ReadS a
forall a. Read a => Int -> ReadS a
readsPrec ReadS [a]
forall a. Read a => ReadS [a]
readList
instance Read2 Smash where
liftReadPrec2 :: ReadPrec a
-> ReadPrec [a]
-> ReadPrec b
-> ReadPrec [b]
-> ReadPrec (Smash a b)
liftReadPrec2 rpa :: ReadPrec a
rpa _ rpb :: ReadPrec b
rpb _ = ReadPrec (Smash a b)
forall a b. ReadPrec (Smash a b)
nadaP ReadPrec (Smash a b)
-> ReadPrec (Smash a b) -> ReadPrec (Smash a b)
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> ReadPrec (Smash a b)
smashP
where
nadaP :: ReadPrec (Smash a b)
nadaP = Smash a b
forall a b. Smash a b
Nada Smash a b -> ReadPrec () -> ReadPrec (Smash a b)
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Lexeme -> ReadPrec ()
expectP (String -> Lexeme
Ident "Nada")
smashP :: ReadPrec (Smash a b)
smashP = ReadPrec (Smash a b) -> ReadPrec (Smash a b)
forall a. ReadPrec a -> ReadPrec a
readData (ReadPrec (Smash a b) -> ReadPrec (Smash a b))
-> ReadPrec (Smash a b) -> ReadPrec (Smash a b)
forall a b. (a -> b) -> a -> b
$ ReadPrec a
-> ReadPrec b
-> String
-> (a -> b -> Smash a b)
-> ReadPrec (Smash a b)
forall a b t.
ReadPrec a -> ReadPrec b -> String -> (a -> b -> t) -> ReadPrec t
readBinaryWith ReadPrec a
rpa ReadPrec b
rpb "Smash" a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash
instance NFData a => NFData1 (Smash a) where
liftRnf :: (a -> ()) -> Smash a a -> ()
liftRnf = (a -> ()) -> (a -> ()) -> Smash a a -> ()
forall (p :: * -> * -> *) a b.
NFData2 p =>
(a -> ()) -> (b -> ()) -> p a b -> ()
liftRnf2 a -> ()
forall a. NFData a => a -> ()
rnf
instance NFData2 Smash where
liftRnf2 :: (a -> ()) -> (b -> ()) -> Smash a b -> ()
liftRnf2 f :: a -> ()
f g :: b -> ()
g = \case
Nada -> ()
Smash a :: a
a b :: b
b -> a -> ()
f a
a () -> () -> ()
forall a b. a -> b -> b
`seq` b -> ()
g b
b
instance Hashable a => Hashable1 (Smash a) where
liftHashWithSalt :: (Int -> a -> Int) -> Int -> Smash a a -> Int
liftHashWithSalt = (Int -> a -> Int) -> (Int -> a -> Int) -> Int -> Smash a a -> Int
forall (t :: * -> * -> *) a b.
Hashable2 t =>
(Int -> a -> Int) -> (Int -> b -> Int) -> Int -> t a b -> Int
liftHashWithSalt2 Int -> a -> Int
forall a. Hashable a => Int -> a -> Int
hashWithSalt
instance Hashable2 Smash where
liftHashWithSalt2 :: (Int -> a -> Int) -> (Int -> b -> Int) -> Int -> Smash a b -> Int
liftHashWithSalt2 f :: Int -> a -> Int
f g :: Int -> b -> Int
g salt :: Int
salt = \case
Nada -> Int
salt Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` (0 :: Int) Int -> () -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` ()
Smash a :: a
a b :: b
b -> (Int
salt Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` (1 :: Int) Int -> a -> Int
`f` a
a) Int -> b -> Int
`g` b
b
instance (Hashable a, Hashable b) => Hashable (Smash a b)
instance Functor (Smash a) where
fmap :: (a -> b) -> Smash a a -> Smash a b
fmap _ Nada = Smash a b
forall a b. Smash a b
Nada
fmap f :: a -> b
f (Smash a :: a
a b :: a
b) = a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash a
a (a -> b
f a
b)
instance Monoid a => Applicative (Smash a) where
pure :: a -> Smash a a
pure = a -> a -> Smash a a
forall a b. a -> b -> Smash a b
Smash a
forall a. Monoid a => a
mempty
Nada <*> :: Smash a (a -> b) -> Smash a a -> Smash a b
<*> _ = Smash a b
forall a b. Smash a b
Nada
_ <*> Nada = Smash a b
forall a b. Smash a b
Nada
Smash a :: a
a f :: a -> b
f <*> Smash c :: a
c d :: a
d = a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash (a
a a -> a -> a
forall a. Semigroup a => a -> a -> a
<> a
c) (a -> b
f a
d)
instance Monoid a => Monad (Smash a) where
return :: a -> Smash a a
return = a -> Smash a a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
>> :: Smash a a -> Smash a b -> Smash a b
(>>) = Smash a a -> Smash a b -> Smash a b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
Nada >>= :: Smash a a -> (a -> Smash a b) -> Smash a b
>>= _ = Smash a b
forall a b. Smash a b
Nada
Smash a :: a
a b :: a
b >>= k :: a -> Smash a b
k = case a -> Smash a b
k a
b of
Nada -> Smash a b
forall a b. Smash a b
Nada
Smash c :: a
c d :: b
d -> a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash (a
a a -> a -> a
forall a. Semigroup a => a -> a -> a
<> a
c) b
d
instance Monoid a => MonadZip (Smash a) where
mzipWith :: (a -> b -> c) -> Smash a a -> Smash a b -> Smash a c
mzipWith f :: a -> b -> c
f a :: Smash a a
a b :: Smash a b
b = a -> b -> c
f (a -> b -> c) -> Smash a a -> Smash a (b -> c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Smash a a
a Smash a (b -> c) -> Smash a b -> Smash a c
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Smash a b
b
instance (Semigroup a, Semigroup b) => Semigroup (Smash a b) where
Nada <> :: Smash a b -> Smash a b -> Smash a b
<> b :: Smash a b
b = Smash a b
b
a :: Smash a b
a <> Nada = Smash a b
a
Smash a :: a
a b :: b
b <> Smash c :: a
c d :: b
d = a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash (a
a a -> a -> a
forall a. Semigroup a => a -> a -> a
<> a
c) (b
b b -> b -> b
forall a. Semigroup a => a -> a -> a
<> b
d)
instance (Semigroup a, Semigroup b) => Monoid (Smash a b) where
mempty :: Smash a b
mempty = Smash a b
forall a b. Smash a b
Nada
mappend :: Smash a b -> Smash a b -> Smash a b
mappend = Smash a b -> Smash a b -> Smash a b
forall a. Semigroup a => a -> a -> a
(<>)
instance (NFData a, NFData b) => NFData (Smash a b) where
rnf :: Smash a b -> ()
rnf Nada = ()
rnf (Smash a :: a
a b :: b
b) = a -> ()
forall a. NFData a => a -> ()
rnf a
a () -> () -> ()
forall a b. a -> b -> b
`seq` b -> ()
forall a. NFData a => a -> ()
rnf b
b
instance (Binary a, Binary b) => Binary (Smash a b) where
put :: Smash a b -> Put
put Nada = Int -> Put
forall t. Binary t => t -> Put
put @Int 0
put (Smash a :: a
a b :: b
b) = Int -> Put
forall t. Binary t => t -> Put
put @Int 1 Put -> Put -> Put
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> a -> Put
forall t. Binary t => t -> Put
put a
a Put -> Put -> Put
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> b -> Put
forall t. Binary t => t -> Put
put b
b
get :: Get (Smash a b)
get = Binary Int => Get Int
forall t. Binary t => Get t
get @Int Get Int -> (Int -> Get (Smash a b)) -> Get (Smash a b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
0 -> Smash a b -> Get (Smash a b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Smash a b
forall a b. Smash a b
Nada
1 -> a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash (a -> b -> Smash a b) -> Get a -> Get (b -> Smash a b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Get a
forall t. Binary t => Get t
get Get (b -> Smash a b) -> Get b -> Get (Smash a b)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Get b
forall t. Binary t => Get t
get
_ -> String -> Get (Smash a b)
forall (m :: * -> *) a. MonadFail m => String -> m a
fail "Invalid Smash index"
instance Monoid a => Alternative (Smash a) where
empty :: Smash a a
empty = Smash a a
forall a b. Smash a b
Nada
Nada <|> :: Smash a a -> Smash a a -> Smash a a
<|> c :: Smash a a
c = Smash a a
c
c :: Smash a a
c <|> Nada = Smash a a
c
Smash a :: a
a _ <|> Smash c :: a
c d :: a
d = a -> a -> Smash a a
forall a b. a -> b -> Smash a b
Smash (a
a a -> a -> a
forall a. Semigroup a => a -> a -> a
<> a
c) a
d
instance Monoid a => MonadPlus (Smash a)
instance Bifunctor Smash where
bimap :: (a -> b) -> (c -> d) -> Smash a c -> Smash b d
bimap f :: a -> b
f g :: c -> d
g = \case
Nada -> Smash b d
forall a b. Smash a b
Nada
Smash a :: a
a b :: c
b -> b -> d -> Smash b d
forall a b. a -> b -> Smash a b
Smash (a -> b
f a
a) (c -> d
g c
b)
instance Biapplicative Smash where
bipure :: a -> b -> Smash a b
bipure = a -> b -> Smash a b
forall a b. a -> b -> Smash a b
Smash
Smash f :: a -> b
f g :: c -> d
g <<*>> :: Smash (a -> b) (c -> d) -> Smash a c -> Smash b d
<<*>> Smash a :: a
a b :: c
b = b -> d -> Smash b d
forall a b. a -> b -> Smash a b
Smash (a -> b
f a
a) (c -> d
g c
b)
_ <<*>> _ = Smash b d
forall a b. Smash a b
Nada
instance Bifoldable Smash where
bifoldMap :: (a -> m) -> (b -> m) -> Smash a b -> m
bifoldMap f :: a -> m
f g :: b -> m
g = \case
Nada -> m
forall a. Monoid a => a
mempty
Smash a :: a
a b :: b
b -> a -> m
f a
a m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` b -> m
g b
b
instance Bitraversable Smash where
bitraverse :: (a -> f c) -> (b -> f d) -> Smash a b -> f (Smash c d)
bitraverse f :: a -> f c
f g :: b -> f d
g = \case
Nada -> Smash c d -> f (Smash c d)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Smash c d
forall a b. Smash a b
Nada
Smash a :: a
a b :: b
b -> c -> d -> Smash c d
forall a b. a -> b -> Smash a b
Smash (c -> d -> Smash c d) -> f c -> f (d -> Smash c d)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f c
f a
a f (d -> Smash c d) -> f d -> f (Smash c d)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> b -> f d
g b
b