Copyright | (c) Amy de Buitléir 2012-2018 |
---|---|
License | BSD-style |
Maintainer | amy@nualeargais.ie |
Stability | experimental |
Portability | portable |
Safe Haskell | Safe |
Language | Haskell2010 |
A module containing private SOM
internals. Most developers should
use SOM
instead. This module is subject to change without notice.
Synopsis
- decayingGaussian :: Floating x => x -> x -> x -> x -> x -> x -> x -> x
- stepFunction :: (Num d, Fractional x, Eq d) => x -> t -> d -> x
- constantFunction :: x -> t -> d -> x
- data SOM t d gm x k p = SOM {
- gridMap :: gm p
- learningRate :: t -> d -> x
- difference :: p -> p -> x
- makeSimilar :: p -> x -> p -> p
- counter :: t
- withGridMap :: (gm p -> gm p) -> SOM t d gm x k p -> SOM t d gm x k p
- currentLearningFunction :: Num t => SOM t d gm x k p -> d -> x
- toGridMap :: GridMap gm p => SOM t d gm x k p -> gm p
- adjustNode :: (Grid g, k ~ Index g, Num t) => g -> (t -> x) -> (p -> x -> p -> p) -> p -> k -> k -> p -> p
- trainNeighbourhood :: (Grid (gm p), GridMap gm p, Index (BaseGrid gm p) ~ Index (gm p), Num t, Num x, Num d) => SOM t d gm x k p -> Index (gm p) -> p -> SOM t d gm x k p
- incrementCounter :: Num t => SOM t d gm x k p -> SOM t d gm x k p
- justTrain :: (Ord x, Grid (gm p), GridMap gm x, GridMap gm p, Index (BaseGrid gm x) ~ Index (gm p), Index (BaseGrid gm p) ~ Index (gm p), Num t, Num x, Num d) => SOM t d gm x k p -> p -> SOM t d gm x k p
Documentation
decayingGaussian :: Floating x => x -> x -> x -> x -> x -> x -> x -> x Source #
A typical learning function for classifiers.
returns a bell curve-shaped
function. At time zero, the maximum learning rate (applied to the
BMU) is decayingGaussian
r0 rf w0 wf tfr0
, and the neighbourhood width is w0
. Over time the
bell curve shrinks and the learning rate tapers off, until at time
tf
, the maximum learning rate (applied to the BMU) is rf
,
and the neighbourhood width is wf
. Normally the parameters
should be chosen such that:
- 0 < rf << r0 < 1
- 0 < wf << w0
- 0 < tf
where << means "is much smaller than" (not the Haskell <<
operator!)
stepFunction :: (Num d, Fractional x, Eq d) => x -> t -> d -> x Source #
A learning function that only updates the BMU and has a constant learning rate.
constantFunction :: x -> t -> d -> x Source #
A learning function that updates all nodes with the same, constant learning rate. This can be useful for testing.
data SOM t d gm x k p Source #
A Self-Organising Map (SOM).
Although SOM
implements GridMap
, most users will only need the
interface provided by Data.Datamining.Clustering.Classifier
. If
you chose to use the GridMap
functions, please note:
- The functions
adjust
, andadjustWithKey
do not increment the counter. You can do so manually withincrementCounter
. - The functions
map
andmapWithKey
are not implemented (they just return anerror
). It would be problematic to implement them because the input SOM and the output SOM would have to have the sameMetric
type.
SOM | |
|
Instances
(GridMap gm p, k ~ Index (BaseGrid gm p), Grid (gm p), GridMap gm x, k ~ Index (gm p), k ~ Index (BaseGrid gm x), Num t, Ord x, Num x, Num d) => Classifier (SOM t d gm) x k p Source # | |
Defined in Data.Datamining.Clustering.SOMInternal toList :: SOM t d gm x k p -> [(k, p)] Source # numModels :: SOM t d gm x k p -> Int Source # models :: SOM t d gm x k p -> [p] Source # differences :: SOM t d gm x k p -> p -> [(k, x)] Source # classify :: SOM t d gm x k p -> p -> k Source # train :: SOM t d gm x k p -> p -> SOM t d gm x k p Source # trainBatch :: SOM t d gm x k p -> [p] -> SOM t d gm x k p Source # classifyAndTrain :: SOM t d gm x k p -> p -> (k, SOM t d gm x k p) Source # diffAndTrain :: SOM t d gm x k p -> p -> ([(k, x)], SOM t d gm x k p) Source # reportAndTrain :: SOM t d gm x k p -> p -> (k, [(k, x)], SOM t d gm x k p) Source # | |
Foldable gm => Foldable (SOM t d gm x k) Source # | |
Defined in Data.Datamining.Clustering.SOMInternal fold :: Monoid m => SOM t d gm x k m -> m # foldMap :: Monoid m => (a -> m) -> SOM t d gm x k a -> m # foldr :: (a -> b -> b) -> b -> SOM t d gm x k a -> b # foldr' :: (a -> b -> b) -> b -> SOM t d gm x k a -> b # foldl :: (b -> a -> b) -> b -> SOM t d gm x k a -> b # foldl' :: (b -> a -> b) -> b -> SOM t d gm x k a -> b # foldr1 :: (a -> a -> a) -> SOM t d gm x k a -> a # foldl1 :: (a -> a -> a) -> SOM t d gm x k a -> a # toList :: SOM t d gm x k a -> [a] # null :: SOM t d gm x k a -> Bool # length :: SOM t d gm x k a -> Int # elem :: Eq a => a -> SOM t d gm x k a -> Bool # maximum :: Ord a => SOM t d gm x k a -> a # minimum :: Ord a => SOM t d gm x k a -> a # | |
(Foldable gm, GridMap gm p, Grid (BaseGrid gm p)) => GridMap (SOM t d gm x k) p Source # | |
Defined in Data.Datamining.Clustering.SOMInternal (!) :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => SOM t d gm x k p -> k0 -> p # toMap :: k0 ~ Index (BaseGrid (SOM t d gm x k) p) => SOM t d gm x k p -> Map k0 p # toGrid :: SOM t d gm x k p -> BaseGrid (SOM t d gm x k) p # toList :: k0 ~ Index (BaseGrid (SOM t d gm x k) p) => SOM t d gm x k p -> [(k0, p)] # lookup :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => k0 -> SOM t d gm x k p -> Maybe p # insert :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => k0 -> p -> SOM t d gm x k p -> SOM t d gm x k p # insertWith :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => (p -> p -> p) -> k0 -> p -> SOM t d gm x k p -> SOM t d gm x k p # insertWithKey :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => (k0 -> p -> p -> p) -> k0 -> p -> SOM t d gm x k p -> SOM t d gm x k p # insertLookupWithKey :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => (k0 -> p -> p -> p) -> k0 -> p -> SOM t d gm x k p -> (Maybe p, SOM t d gm x k p) # delete :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => k0 -> SOM t d gm x k p -> SOM t d gm x k p # adjust :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => (p -> p) -> k0 -> SOM t d gm x k p -> SOM t d gm x k p # adjustWithKey :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => (k0 -> p -> p) -> k0 -> SOM t d gm x k p -> SOM t d gm x k p # alter :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => (Maybe p -> Maybe p) -> k0 -> SOM t d gm x k p -> SOM t d gm x k p # findWithDefault :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => p -> k0 -> SOM t d gm x k p -> p # keys :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), Ord k0) => SOM t d gm x k p -> [k0] # elems :: SOM t d gm x k p -> [p] # map :: (GridMap (SOM t d gm x k) v2, Index (BaseGrid (SOM t d gm x k) p) ~ Index (BaseGrid (SOM t d gm x k) v2)) => (p -> v2) -> SOM t d gm x k p -> SOM t d gm x k v2 # mapWithKey :: (k0 ~ Index (BaseGrid (SOM t d gm x k) p), k0 ~ Index (BaseGrid (SOM t d gm x k) v2), GridMap (SOM t d gm x k) v2) => (k0 -> p -> v2) -> SOM t d gm x k p -> SOM t d gm x k v2 # filter :: (p -> Bool) -> SOM t d gm x k p -> SOM t d gm x k p # filterWithKey :: k0 ~ Index (BaseGrid (SOM t d gm x k) p) => (k0 -> p -> Bool) -> SOM t d gm x k p -> SOM t d gm x k p # | |
Generic (SOM t d gm x k p) Source # | |
(NFData t, NFData (gm p)) => NFData (SOM t d gm x k p) Source # | |
Defined in Data.Datamining.Clustering.SOMInternal | |
Grid (gm p) => Grid (SOM t d gm x k p) Source # | |
Defined in Data.Datamining.Clustering.SOMInternal indices :: SOM t d gm x k p -> [Index (SOM t d gm x k p)] # distance :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Index (SOM t d gm x k p) -> Int # minDistance :: SOM t d gm x k p -> [Index (SOM t d gm x k p)] -> Index (SOM t d gm x k p) -> Int # neighbours :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> [Index (SOM t d gm x k p)] # neighboursOfSet :: SOM t d gm x k p -> [Index (SOM t d gm x k p)] -> [Index (SOM t d gm x k p)] # neighbour :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Direction (SOM t d gm x k p) -> Maybe (Index (SOM t d gm x k p)) # numNeighbours :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Int # contains :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Bool # tileCount :: SOM t d gm x k p -> Int # null :: SOM t d gm x k p -> Bool # nonNull :: SOM t d gm x k p -> Bool # edges :: SOM t d gm x k p -> [(Index (SOM t d gm x k p), Index (SOM t d gm x k p))] # viewpoint :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> [(Index (SOM t d gm x k p), Int)] # isAdjacent :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Index (SOM t d gm x k p) -> Bool # adjacentTilesToward :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Index (SOM t d gm x k p) -> [Index (SOM t d gm x k p)] # minimalPaths :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Index (SOM t d gm x k p) -> [[Index (SOM t d gm x k p)]] # directionTo :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Index (SOM t d gm x k p) -> [Direction (SOM t d gm x k p)] # defaultMinDistance :: SOM t d gm x k p -> [Index (SOM t d gm x k p)] -> Index (SOM t d gm x k p) -> Int # defaultNeighbours :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> [Index (SOM t d gm x k p)] # defaultNeighboursOfSet :: SOM t d gm x k p -> [Index (SOM t d gm x k p)] -> [Index (SOM t d gm x k p)] # defaultNeighbour :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Direction (SOM t d gm x k p) -> Maybe (Index (SOM t d gm x k p)) # defaultTileCount :: SOM t d gm x k p -> Int # defaultEdges :: SOM t d gm x k p -> [(Index (SOM t d gm x k p), Index (SOM t d gm x k p))] # defaultIsAdjacent :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Index (SOM t d gm x k p) -> Bool # defaultAdjacentTilesToward :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Index (SOM t d gm x k p) -> [Index (SOM t d gm x k p)] # defaultMinimalPaths :: SOM t d gm x k p -> Index (SOM t d gm x k p) -> Index (SOM t d gm x k p) -> [[Index (SOM t d gm x k p)]] # | |
type BaseGrid (SOM t d gm x k) p Source # | |
Defined in Data.Datamining.Clustering.SOMInternal | |
type Rep (SOM t d gm x k p) Source # | |
Defined in Data.Datamining.Clustering.SOMInternal type Rep (SOM t d gm x k p) = D1 (MetaData "SOM" "Data.Datamining.Clustering.SOMInternal" "som-10.1.8-4U7idyllz4eEJA79g8KqEw" False) (C1 (MetaCons "SOM" PrefixI True) ((S1 (MetaSel (Just "gridMap") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (gm p)) :*: S1 (MetaSel (Just "learningRate") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (t -> d -> x))) :*: (S1 (MetaSel (Just "difference") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (p -> p -> x)) :*: (S1 (MetaSel (Just "makeSimilar") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (p -> x -> p -> p)) :*: S1 (MetaSel (Just "counter") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 t))))) | |
type Direction (SOM t d gm x k p) Source # | |
Defined in Data.Datamining.Clustering.SOMInternal | |
type Index (SOM t d gm x k p) Source # | |
Defined in Data.Datamining.Clustering.SOMInternal |
withGridMap :: (gm p -> gm p) -> SOM t d gm x k p -> SOM t d gm x k p Source #
Internal method.
currentLearningFunction :: Num t => SOM t d gm x k p -> d -> x Source #
Returns the learning function currently being used by the SOM.
toGridMap :: GridMap gm p => SOM t d gm x k p -> gm p Source #
Extracts the grid and current models from the SOM.
A synonym for
.gridMap
adjustNode :: (Grid g, k ~ Index g, Num t) => g -> (t -> x) -> (p -> x -> p -> p) -> p -> k -> k -> p -> p Source #
Internal method.
trainNeighbourhood :: (Grid (gm p), GridMap gm p, Index (BaseGrid gm p) ~ Index (gm p), Num t, Num x, Num d) => SOM t d gm x k p -> Index (gm p) -> p -> SOM t d gm x k p Source #
Trains the specified node and the neighbourood around it to better
match a target.
Most users should use
, which automatically determines
the BMU and trains it and its neighbourhood.train