statistics-0.16.2.1: A library of statistical types, data, and functions
Copyright(c) 2009 Bryan O'Sullivan
LicenseBSD3
Maintainerbos@serpentine.com
Stabilityexperimental
Portabilityportable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Statistics.Distribution.Hypergeometric

Description

The Hypergeometric distribution. This is the discrete probability distribution that measures the probability of k successes in l trials, without replacement, from a finite population.

The parameters of the distribution describe k elements chosen from a population of l, with m elements of one type, and l-m of the other (all are positive integers).

Synopsis

Documentation

data HypergeometricDistribution Source #

Instances

Instances details
FromJSON HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

ToJSON HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Data HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HypergeometricDistribution -> c HypergeometricDistribution #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c HypergeometricDistribution #

toConstr :: HypergeometricDistribution -> Constr #

dataTypeOf :: HypergeometricDistribution -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c HypergeometricDistribution) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HypergeometricDistribution) #

gmapT :: (forall b. Data b => b -> b) -> HypergeometricDistribution -> HypergeometricDistribution #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HypergeometricDistribution -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HypergeometricDistribution -> r #

gmapQ :: (forall d. Data d => d -> u) -> HypergeometricDistribution -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> HypergeometricDistribution -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> HypergeometricDistribution -> m HypergeometricDistribution #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HypergeometricDistribution -> m HypergeometricDistribution #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HypergeometricDistribution -> m HypergeometricDistribution #

Generic HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Associated Types

type Rep HypergeometricDistribution :: Type -> Type #

Read HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Show HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Binary HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Eq HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

DiscreteDistr HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Distribution HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Entropy HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

MaybeEntropy HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

MaybeMean HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

MaybeVariance HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Mean HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

Variance HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

type Rep HypergeometricDistribution Source # 
Instance details

Defined in Statistics.Distribution.Hypergeometric

type Rep HypergeometricDistribution = D1 ('MetaData "HypergeometricDistribution" "Statistics.Distribution.Hypergeometric" "statistics-0.16.2.1-34qObKIlIVGJpKYv9daW0Y" 'False) (C1 ('MetaCons "HD" 'PrefixI 'True) (S1 ('MetaSel ('Just "hdM") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Int) :*: (S1 ('MetaSel ('Just "hdL") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Int) :*: S1 ('MetaSel ('Just "hdK") 'SourceUnpack 'SourceStrict 'DecidedStrict) (Rec0 Int))))

Constructors

Accessors