statistics-0.16.2.1: A library of statistical types, data, and functions
Copyright(c) 2020 Ximin Luo
LicenseBSD3
Maintainerinfinity0@pwned.gg
Stabilityexperimental
Portabilityportable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Statistics.Distribution.Lognormal

Contents

Description

The log normal distribution. This is a continuous probability distribution that describes data whose log is clustered around a mean. For example, the multiplicative product of many independent positive random variables.

Synopsis

Documentation

data LognormalDistribution Source #

The lognormal distribution.

Instances

Instances details
FromJSON LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

ToJSON LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Data LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LognormalDistribution -> c LognormalDistribution #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LognormalDistribution #

toConstr :: LognormalDistribution -> Constr #

dataTypeOf :: LognormalDistribution -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LognormalDistribution) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LognormalDistribution) #

gmapT :: (forall b. Data b => b -> b) -> LognormalDistribution -> LognormalDistribution #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LognormalDistribution -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LognormalDistribution -> r #

gmapQ :: (forall d. Data d => d -> u) -> LognormalDistribution -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LognormalDistribution -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LognormalDistribution -> m LognormalDistribution #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LognormalDistribution -> m LognormalDistribution #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LognormalDistribution -> m LognormalDistribution #

Generic LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Associated Types

type Rep LognormalDistribution :: Type -> Type #

Read LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Show LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Binary LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Eq LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

ContDistr LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

ContGen LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Distribution LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Entropy LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

MaybeEntropy LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

MaybeMean LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

MaybeVariance LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Mean LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

Variance LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

FromSample LognormalDistribution Double Source #

Variance is estimated using maximum likelihood method (biased estimation) over the log of the data.

Returns Nothing if sample contains less than one element or variance is zero (all elements are equal)

Instance details

Defined in Statistics.Distribution.Lognormal

type Rep LognormalDistribution Source # 
Instance details

Defined in Statistics.Distribution.Lognormal

type Rep LognormalDistribution = D1 ('MetaData "LognormalDistribution" "Statistics.Distribution.Lognormal" "statistics-0.16.2.1-34qObKIlIVGJpKYv9daW0Y" 'True) (C1 ('MetaCons "LND" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 NormalDistribution)))

Constructors

lognormalDistr Source #

Arguments

:: Double

Mu

-> Double

Sigma

-> LognormalDistribution 

Create log normal distribution from parameters.

lognormalDistrErr Source #

Create log normal distribution from parameters.

lognormalDistrMeanStddevErr Source #

Create log normal distribution from mean and standard deviation.

lognormalStandard :: LognormalDistribution Source #

Standard log normal distribution with mu 0 and sigma 1.

Mean is sqrt e and variance is (e - 1) * e.