streaming-0.1.4.1: an elementary streaming prelude and general stream type.

Safe HaskellNone
LanguageHaskell2010

Streaming.Internal

Contents

Synopsis

The free monad transformer

The Stream data type is equivalent to FreeT and can represent any effectful succession of steps, where the form of the steps or commands is specified by the first (functor) parameter.

data Stream f m r = Step !(f (Stream f m r)) | Effect (m (Stream f m r)) | Return r

The producer concept uses the simple functor (a,_) - or the stricter Of a _ . Then the news at each step or layer is just: an individual item of type a. Since Stream (Of a) m r is equivalent to Pipe.Producer a m r, much of the pipes Prelude can easily be mirrored in a streaming Prelude. Similarly, a simple Consumer a m r or Parser a m r concept arises when the base functor is (a -> _) . Stream ((->) input) m result consumes input until it returns a result.

To avoid breaking reasoning principles, the constructors should not be used directly. A pattern-match should go by way of inspect - or, in the producer case, next

The constructors are exported by the Internal module.

data Stream f m r Source

Constructors

Step !(f (Stream f m r)) 
Effect (m (Stream f m r)) 
Return r 

Instances

(MonadBase b m, Functor f) => MonadBase b (Stream f m) Source 
(Functor f, MonadError e m) => MonadError e (Stream f m) Source 
(Functor f, MonadReader r m) => MonadReader r (Stream f m) Source 
(Functor f, MonadState s m) => MonadState s (Stream f m) Source 
Functor f => MFunctor (Stream f) Source 
Functor f => MMonad (Stream f) Source 
Functor f => MonadTrans (Stream f) Source 
(Functor f, Monad m) => Monad (Stream f m) Source 
(Functor f, Monad m) => Functor (Stream f m) Source 
(Functor f, Monad m) => Applicative (Stream f m) Source 
(Applicative f, Monad m) => Alternative (Stream f m) Source

The Alternative instance glues streams together stepwise.

empty = never
(<|>) = zipsWith (liftA2 (,))

See also never, untilJust and delays

(Applicative f, Monad m) => MonadPlus (Stream f m) Source 
(MonadThrow m, Functor f) => MonadThrow (Stream f m) Source 
(MonadCatch m, Functor f) => MonadCatch (Stream f m) Source 
(MonadIO m, Functor f) => MonadIO (Stream f m) Source 
(MonadResource m, Functor f) => MonadResource (Stream f m) Source 
(Eq r, Eq (m (Stream f m r)), Eq (f (Stream f m r))) => Eq (Stream f m r) Source 
(Typeable (* -> *) f, Typeable (* -> *) m, Data r, Data (m (Stream f m r)), Data (f (Stream f m r))) => Data (Stream f m r) Source 
(Show r, Show (m (Stream f m r)), Show (f (Stream f m r))) => Show (Stream f m r) Source 

Introducing a stream

unfold :: (Monad m, Functor f) => (s -> m (Either r (f s))) -> s -> Stream f m r Source

Build a Stream by unfolding steps starting from a seed. See also the specialized unfoldr in the prelude.

unfold inspect = id -- modulo the quotient we work with
unfold Pipes.next :: Monad m => Producer a m r -> Stream ((,) a) m r
unfold (curry (:>) . Pipes.next) :: Monad m => Producer a m r -> Stream (Of a) m r

replicates :: (Monad m, Functor f) => Int -> f () -> Stream f m () Source

Repeat a functorial layer, command or instruction a fixed number of times.

replicates n = takes n . repeats 

repeats :: (Monad m, Functor f) => f () -> Stream f m r Source

Repeat a functorial layer (a "command" or "instruction") forever.

repeatsM :: (Monad m, Functor f) => m (f ()) -> Stream f m r Source

Repeat an effect containing a functorial layer, command or instruction forever.

effect :: (Monad m, Functor f) => m (Stream f m r) -> Stream f m r Source

Wrap an effect that returns a stream

effect = join . lift 

wrap :: (Monad m, Functor f) => f (Stream f m r) -> Stream f m r Source

yields :: (Monad m, Functor f) => f r -> Stream f m r Source

yields is like lift for items in the streamed functor. It makes a singleton or one-layer succession.

lift :: (Monad m, Functor f)    => m r -> Stream f m r
yields ::  (Monad m, Functor f) => f r -> Stream f m r

Viewed in another light, it is like a functor-general version of yield:

S.yield a = yields (a :> ())

streamBuild :: (forall b. (r -> b) -> (m b -> b) -> (f b -> b) -> b) -> Stream f m r Source

Reflect a church-encoded stream; cp. GHC.Exts.build

streamFold return_ effect_ step_ (streamBuild psi)  = psi return_ effect_ step_

cycles :: (Monad m, Functor f) => Stream f m () -> Stream f m r Source

Construct an infinite stream by cycling a finite one

cycles = forever
>>> 

never :: (Monad m, Applicative f) => Stream f m r Source

never interleaves the pure applicative action with the return of the monad forever. It is the empty of the Alternative instance, thus

never <|> a = a
a <|> never = a

and so on. If w is a monoid then never :: Stream (Of w) m r is the infinite sequence of mempty, and str1 <|> str2 appends the elements monoidally until one of streams ends. Thus we have, e.g.

>>> S.stdoutLn $ S.take 2 $ S.stdinLn <|> S.repeat " " <|> S.stdinLn  <|> S.repeat " " <|> S.stdinLn
1<Enter>  
2<Enter>
3<Enter>
1 2 3
4<Enter>
5<Enter>
6<Enter>
4 5 6

This is equivalent to

>>> S.stdoutLn $ S.take 2 $ foldr (<|>) never [S.stdinLn, S.repeat " ", S.stdinLn, S.repeat " ", S.stdinLn ]

Where f is a monad, (<|>) sequences the conjoined streams stepwise. See the definition of paste here, where the separate steps are bytestreams corresponding to the lines of a file.

Given, say,

data Branch r = Branch r r deriving Functor  -- add obvious applicative instance

then never :: Stream Branch Identity r is the pure infinite binary tree with (inaccessible) rs in its leaves. Given two binary trees, tree1 <|> tree2 intersects them, preserving the leaves that came first, so tree1 <|> never = tree1

Stream Identity m r is an action in m that is indefinitely delayed. Such an action can be constructed with e.g. untilJust.

untilJust :: (Monad m, Applicative f) => m (Maybe r) -> Stream f m r

Given two such items, <|> instance races them. It is thus the iterative monad transformer specially defined in Control.Monad.Trans.Iter

So, for example, we might write

>>> let justFour str = if length str == 4 then Just str else Nothing
>>> let four = untilJust (liftM justFour getLine)
>>> run four
one<Enter>
two<Enter>
three<Enter>
four<Enter>
"four"

The Alternative instance in Control.Monad.Trans.Free is avowedly wrong, though no explanation is given for this.

untilJust :: (Monad m, Applicative f) => m (Maybe r) -> Stream f m r Source

Repeat a

Eliminating a stream

intercalates :: (Monad m, Monad (t m), MonadTrans t) => t m x -> Stream (t m) m r -> t m r Source

Interpolate a layer at each segment. This specializes to e.g.

intercalates :: (Monad m, Functor f) => Stream f m () -> Stream (Stream f m) m r -> Stream f m r

concats :: (Monad m, Functor f) => Stream (Stream f m) m r -> Stream f m r Source

Dissolves the segmentation into layers of Stream f m layers.

iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> Stream f m a -> m a Source

Specialized fold following the usage of Control.Monad.Trans.Free

iterT alg = streamFold return join alg 

iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> Stream f m a -> t m a Source

Specialized fold following the usage of Control.Monad.Trans.Free

iterTM alg = streamFold return (join . lift)

destroy :: (Functor f, Monad m) => Stream f m r -> (f b -> b) -> (m b -> b) -> (r -> b) -> b Source

Map a stream directly to its church encoding; compare Data.List.foldr

streamFold :: (Functor f, Monad m) => (r -> b) -> (m b -> b) -> (f b -> b) -> Stream f m r -> b Source

streamFold reorders the arguments of destroy to be more akin to foldr It is more convenient to query in ghci to figure out what kind of 'algebra' you need to write.

>>> :t streamFold return join
(Monad m, Functor f) => 
     (f (m a) -> m a) -> Stream f m a -> m a        -- iterT
>>> :t streamFold return (join . lift)
(Monad m, Monad (t m), Functor f, MonadTrans t) =>
     (f (t m a) -> t m a) -> Stream f m a -> t m a  -- iterTM
>>> :t streamFold return effect
(Monad m, Functor f, Functor g) =>
     (f (Stream g m r) -> Stream g m r) -> Stream f m r -> Stream g m r
>>> :t \f -> streamFold return effect (wrap . f)
(Monad m, Functor f, Functor g) =>
     (f (Stream g m a) -> g (Stream g m a))
     -> Stream f m a -> Stream g m a                 -- maps
>>> :t \f -> streamFold return effect (effect . liftM wrap . f)
(Monad m, Functor f, Functor g) =>
     (f (Stream g m a) -> m (g (Stream g m a)))
     -> Stream f m a -> Stream g m a                 -- mapped

Inspecting a stream wrap by wrap

inspect :: (Functor f, Monad m) => Stream f m r -> m (Either r (f (Stream f m r))) Source

Inspect the first stage of a freely layered sequence. Compare Pipes.next and the replica Streaming.Prelude.next. This is the uncons for the general unfold.

unfold inspect = id
Streaming.Prelude.unfoldr StreamingPrelude.next = id

Transforming streams

maps :: (Monad m, Functor f) => (forall x. f x -> g x) -> Stream f m r -> Stream g m r Source

Map layers of one functor to another with a transformation. Compare hoist, which has a similar effect on the monadic parameter.

maps id = id
maps f . maps g = maps (f . g)

mapsM :: (Monad m, Functor f) => (forall x. f x -> m (g x)) -> Stream f m r -> Stream g m r Source

Map layers of one functor to another with a transformation involving the base monad maps is more fundamental than mapsM, which is best understood as a convenience for effecting this frequent composition:

mapsM phi = decompose . maps (Compose . phi)

The streaming prelude exports the same function under the better name mapped, which overlaps with the lens libraries.

decompose :: (Monad m, Functor f) => Stream (Compose m f) m r -> Stream f m r Source

Rearrange a succession of layers of the form Compose m (f x).

we could as well define decompose by mapsM:

decompose = mapped getCompose

but mapped is best understood as:

mapped phi = decompose . maps (Compose . phi)

since maps and hoist are the really fundamental operations that preserve the shape of the stream:

maps  :: (Monad m, Functor f) => (forall x. f x -> g x) -> Stream f m r -> Stream g m r
hoist :: (Monad m, Functor f) => (forall a. m a -> n a) -> Stream f m r -> Stream f n r

mapsM_ :: (Functor f, Monad m) => (forall x. f x -> m x) -> Stream f m r -> m r Source

Map each layer to an effect, and run them all.

run :: Monad m => Stream m m r -> m r Source

Run the effects in a stream that merely layers effects.

distribute :: (Monad m, Functor f, MonadTrans t, MFunctor t, Monad (t (Stream f m))) => Stream f (t m) r -> t (Stream f m) r Source

Make it possible to 'run' the underlying transformed monad.

groups :: (Monad m, Functor f, Functor g) => Stream (Sum f g) m r -> Stream (Sum (Stream f m) (Stream g m)) m r Source

Group layers in an alternating stream into adjoining sub-streams of one type or another.

Splitting streams

chunksOf :: (Monad m, Functor f) => Int -> Stream f m r -> Stream (Stream f m) m r Source

Break a stream into substreams each with n functorial layers.

>>> S.print $ mapped S.sum $ chunksOf 2 $ each [1,1,1,1,1]
2
2
1

splitsAt :: (Monad m, Functor f) => Int -> Stream f m r -> Stream f m (Stream f m r) Source

Split a succession of layers after some number, returning a streaming or effectful pair.

>>> rest <- S.print $ S.splitAt 1 $ each [1..3]
1
>>> S.print rest
2
3
splitAt 0 = return
splitAt n >=> splitAt m = splitAt (m+n)

Thus, e.g.

>>> rest <- S.print $ splitsAt 2 >=> splitsAt 2 $ each [1..5]
1
2
3
4
>>> S.print rest
5

takes :: (Monad m, Functor f) => Int -> Stream f m r -> Stream f m () Source

cutoff :: (Monad m, Functor f) => Int -> Stream f m r -> Stream f m (Maybe r) Source

Zipping and unzipping streams

zipsWith :: (Monad m, Functor h) => (forall x y. f x -> g y -> h (x, y)) -> Stream f m r -> Stream g m r -> Stream h m r Source

zips :: (Monad m, Functor f, Functor g) => Stream f m r -> Stream g m r -> Stream (Compose f g) m r Source

unzips :: (Monad m, Functor f, Functor g) => Stream (Compose f g) m r -> Stream f (Stream g m) r Source

interleaves :: (Monad m, Applicative h) => Stream h m r -> Stream h m r -> Stream h m r Source

Interleave functor layers, with the effects of the first preceding the effects of the second.

interleaves = zipsWith (liftA2 (,))
>>> let paste = \a b -> interleaves (Q.lines a) (maps (Q.cons' '\t') (Q.lines b))
>>> Q.stdout $ Q.unlines $ paste "hello\nworld\n" "goodbye\nworld\n"
hello	goodbye
world	world

separate :: (Monad m, Functor f, Functor g) => Stream (Sum f g) m r -> Stream f (Stream g m) r Source

Given a stream on a sum of functors, make it a stream on the left functor, with the streaming on the other functor as the governing monad. This is useful for acting on one or the other functor with a fold. It generalizes partitionEithers massively, but actually streams properly.

>>> let odd_even = S.maps (S.distinguish even) $ S.each [1..10::Int]
>>> :t separate odd_even
separate odd_even
  :: Monad m => Stream (Of Int) (Stream (Of Int) m) ()

Now, for example, it is convenient to fold on the left and right values separately:

>>> S.toList $ S.toList $ separate odd_even
[2,4,6,8,10] :> ([1,3,5,7,9] :> ())

Or we can write them to separate files or whatever:

>>> runResourceT $ S.writeFile "even.txt" . S.show $ S.writeFile "odd.txt" . S.show $ S.separate odd_even
>>> :! cat even.txt
2
4
6
8
10
>>> :! cat odd.txt
1
3
5
7
9

Of course, in the special case of Stream (Of a) m r, we can achieve the above effects more simply by using copy

>>> S.toList . S.filter even $ S.toList . S.filter odd $ S.copy $ each [1..10::Int]
[2,4,6,8,10] :> ([1,3,5,7,9] :> ())

But separate and unseparate are functor-general.

unseparate :: (Monad m, Functor f, Functor g) => Stream f (Stream g m) r -> Stream (Sum f g) m r Source

Assorted Data.Functor.x help

switch :: Sum f g r -> Sum g f r Source

Swap the order of functors in a sum of functors.

>>> S.toListM' $ S.print $ separate $ maps S.switch $ maps (S.distinguish (=='a')) $ S.each "banana"
'a'
'a'
'a'
"bnn" :> ()
>>> S.toListM' $ S.print $ separate $ maps (S.distinguish (=='a')) $ S.each "banana"
'b'
'n'
'n'
"aaa" :> ()

ResourceT help

bracketStream :: (Functor f, MonadResource m) => IO a -> (a -> IO ()) -> (a -> Stream f m b) -> Stream f m b Source

For use in implementation

unexposed :: (Functor f, Monad m) => Stream f m r -> Stream f m r Source

This is akin to the observe of Pipes.Internal . It reeffects the layering in instances of Stream f m r so that it replicates that of FreeT.

hoistExposed :: (Monad m1, Functor f) => (m1 (Stream f m r) -> m (Stream f m r)) -> Stream f m1 r -> Stream f m r Source

mapsExposed :: (Monad m, Functor f) => (forall x. f x -> g x) -> Stream f m r -> Stream g m r Source

mapsMExposed :: (Monad m, Functor f1) => (f1 (Stream f m r) -> m (f (Stream f m r))) -> Stream f1 m r -> Stream f m r Source

destroyExposed :: (Monad m, Functor f) => Stream f m t -> (f b -> b) -> (m b -> b) -> (t -> b) -> b Source