{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ViewPatterns #-}
#if __GLASGOW_HASKELL__ >= 806
{-# LANGUAGE QuantifiedConstraints #-}
#endif
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE UndecidableInstances #-}
#include "inline.hs"
module Streamly.Internal.Data.Stream.StreamK.Type
(
IsStream (..)
, adapt
, Stream (..)
, mkStream
, fromStopK
, fromYieldK
, consK
, foldStream
, foldStreamShared
, foldrM
, foldrS
, foldrSM
, build
, buildS
, buildM
, buildSM
, sharedM
, augmentS
, augmentSM
, cons
, (.:)
, consMStream
, consMBy
, yieldM
, yield
, nil
, nilM
, conjoin
, serial
, map
, mapM
, mapMSerial
, unShare
, concatMapBy
, concatMap
, bindWith
, Streaming
)
where
import Control.Monad (ap, (>=>))
import Control.Monad.Trans.Class (MonadTrans(lift))
#if __GLASGOW_HASKELL__ >= 800
import Data.Kind (Type)
#endif
#if __GLASGOW_HASKELL__ < 808
import Data.Semigroup (Semigroup(..))
#endif
import Prelude hiding (map, mapM, concatMap, foldr)
import Streamly.Internal.Data.SVar
newtype Stream m a =
MkStream (forall r.
State Stream m a
-> (a -> Stream m a -> m r)
-> (a -> m r)
-> m r
-> m r
)
infixr 5 `consM`
infixr 5 |:
class
#if __GLASGOW_HASKELL__ >= 806
( forall m a. MonadAsync m => Semigroup (t m a)
, forall m a. MonadAsync m => Monoid (t m a)
, forall m. Monad m => Functor (t m)
, forall m. MonadAsync m => Applicative (t m)
) =>
#endif
IsStream t where
toStream :: t m a -> Stream m a
fromStream :: Stream m a -> t m a
consM :: MonadAsync m => m a -> t m a -> t m a
(|:) :: MonadAsync m => m a -> t m a -> t m a
{-# DEPRECATED Streaming "Please use IsStream instead." #-}
type Streaming = IsStream
adapt :: (IsStream t1, IsStream t2) => t1 m a -> t2 m a
adapt :: t1 m a -> t2 m a
adapt = Stream m a -> t2 m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
Stream m a -> t m a
fromStream (Stream m a -> t2 m a)
-> (t1 m a -> Stream m a) -> t1 m a -> t2 m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. t1 m a -> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> Stream m a
toStream
{-# INLINE_EARLY mkStream #-}
mkStream :: IsStream t
=> (forall r. State Stream m a
-> (a -> t m a -> m r)
-> (a -> m r)
-> m r
-> m r)
-> t m a
mkStream :: (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream forall r.
State Stream m a -> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r
k = Stream m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
Stream m a -> t m a
fromStream (Stream m a -> t m a) -> Stream m a -> t m a
forall a b. (a -> b) -> a -> b
$ (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall (m :: * -> *) a.
(forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
MkStream ((forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a)
-> (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
st a -> Stream m a -> m r
yld a -> m r
sng m r
stp ->
let yieldk :: a -> t m a -> m r
yieldk a
a t m a
r = a -> Stream m a -> m r
yld a
a (t m a -> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> Stream m a
toStream t m a
r)
in State Stream m a -> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r
forall r.
State Stream m a -> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r
k State Stream m a
st a -> t m a -> m r
forall (t :: (* -> *) -> * -> *). IsStream t => a -> t m a -> m r
yieldk a -> m r
sng m r
stp
{-# RULES "mkStream from stream" mkStream = mkStreamFromStream #-}
mkStreamFromStream :: IsStream t
=> (forall r. State Stream m a
-> (a -> Stream m a -> m r)
-> (a -> m r)
-> m r
-> m r)
-> t m a
mkStreamFromStream :: (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStreamFromStream forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
k = Stream m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
Stream m a -> t m a
fromStream (Stream m a -> t m a) -> Stream m a -> t m a
forall a b. (a -> b) -> a -> b
$ (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall (m :: * -> *) a.
(forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
MkStream forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
k
{-# RULES "mkStream stream" mkStream = mkStreamStream #-}
mkStreamStream
:: (forall r. State Stream m a
-> (a -> Stream m a -> m r)
-> (a -> m r)
-> m r
-> m r)
-> Stream m a
mkStreamStream :: (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
mkStreamStream = (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall (m :: * -> *) a.
(forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
MkStream
type StopK m = forall r. m r -> m r
type YieldK m a = forall r. (a -> m r) -> m r
_wrapM :: Monad m => m a -> YieldK m a
_wrapM :: m a -> YieldK m a
_wrapM m a
m = \a -> m r
k -> m a
m m a -> (a -> m r) -> m r
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> m r
k
fromStopK :: IsStream t => StopK m -> t m a
fromStopK :: StopK m -> t m a
fromStopK StopK m
k = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> t m a -> m r
_ a -> m r
_ m r
stp -> m r -> m r
StopK m
k m r
stp
fromYieldK :: IsStream t => YieldK m a -> t m a
fromYieldK :: YieldK m a -> t m a
fromYieldK YieldK m a
k = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> t m a -> m r
_ a -> m r
sng m r
_ -> (a -> m r) -> m r
YieldK m a
k a -> m r
sng
consK :: IsStream t => YieldK m a -> t m a -> t m a
consK :: YieldK m a -> t m a -> t m a
consK YieldK m a
k t m a
r = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> t m a -> m r
yld a -> m r
_ m r
_ -> (a -> m r) -> m r
YieldK m a
k (\a
x -> a -> t m a -> m r
yld a
x t m a
r)
infixr 5 `cons`
{-# INLINE_NORMAL cons #-}
cons :: IsStream t => a -> t m a -> t m a
cons :: a -> t m a -> t m a
cons a
a t m a
r = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> t m a -> m r
yld a -> m r
_ m r
_ -> a -> t m a -> m r
yld a
a t m a
r
infixr 5 .:
{-# INLINE (.:) #-}
(.:) :: IsStream t => a -> t m a -> t m a
.: :: a -> t m a -> t m a
(.:) = a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) a (m :: * -> *).
IsStream t =>
a -> t m a -> t m a
cons
{-# INLINE_NORMAL nil #-}
nil :: IsStream t => t m a
nil :: t m a
nil = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> t m a -> m r
_ a -> m r
_ m r
stp -> m r
stp
{-# INLINE_NORMAL nilM #-}
nilM :: (IsStream t, Monad m) => m b -> t m a
nilM :: m b -> t m a
nilM m b
m = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> t m a -> m r
_ a -> m r
_ m r
stp -> m b
m m b -> m r -> m r
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> m r
stp
{-# INLINE_NORMAL yield #-}
yield :: IsStream t => a -> t m a
yield :: a -> t m a
yield a
a = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> t m a -> m r
_ a -> m r
single m r
_ -> a -> m r
single a
a
{-# INLINE_NORMAL yieldM #-}
yieldM :: (Monad m, IsStream t) => m a -> t m a
yieldM :: m a -> t m a
yieldM m a
m = Stream m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
Stream m a -> t m a
fromStream (Stream m a -> t m a) -> Stream m a -> t m a
forall a b. (a -> b) -> a -> b
$ (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a)
-> (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> Stream m a -> m r
_ a -> m r
single m r
_ -> m a
m m a -> (a -> m r) -> m r
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> m r
single
{-# INLINE consMBy #-}
consMBy :: (IsStream t, MonadAsync m) => (t m a -> t m a -> t m a)
-> m a -> t m a -> t m a
consMBy :: (t m a -> t m a -> t m a) -> m a -> t m a -> t m a
consMBy t m a -> t m a -> t m a
f m a
m t m a
r = (Stream m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
Stream m a -> t m a
fromStream (Stream m a -> t m a) -> Stream m a -> t m a
forall a b. (a -> b) -> a -> b
$ m a -> Stream m a
forall (m :: * -> *) (t :: (* -> *) -> * -> *) a.
(Monad m, IsStream t) =>
m a -> t m a
yieldM m a
m) t m a -> t m a -> t m a
`f` t m a
r
{-# INLINE_EARLY foldStreamShared #-}
foldStreamShared
:: IsStream t
=> State Stream m a
-> (a -> t m a -> m r)
-> (a -> m r)
-> m r
-> t m a
-> m r
foldStreamShared :: State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStreamShared State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp t m a
m =
let yieldk :: a -> Stream m a -> m r
yieldk a
a Stream m a
x = a -> t m a -> m r
yld a
a (Stream m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
Stream m a -> t m a
fromStream Stream m a
x)
MkStream forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
k = t m a -> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> Stream m a
toStream t m a
m
in State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
k State Stream m a
st a -> Stream m a -> m r
yieldk a -> m r
sng m r
stp
{-# RULES "foldStreamShared from stream"
foldStreamShared = foldStreamSharedStream #-}
foldStreamSharedStream
:: State Stream m a
-> (a -> Stream m a -> m r)
-> (a -> m r)
-> m r
-> Stream m a
-> m r
foldStreamSharedStream :: State Stream m a
-> (a -> Stream m a -> m r)
-> (a -> m r)
-> m r
-> Stream m a
-> m r
foldStreamSharedStream State Stream m a
st a -> Stream m a -> m r
yld a -> m r
sng m r
stp Stream m a
m =
let MkStream forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
k = Stream m a -> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> Stream m a
toStream Stream m a
m
in State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
k State Stream m a
st a -> Stream m a -> m r
yld a -> m r
sng m r
stp
{-# INLINE foldStream #-}
foldStream
:: IsStream t
=> State Stream m a
-> (a -> t m a -> m r)
-> (a -> m r)
-> m r
-> t m a
-> m r
foldStream :: State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp t m a
m =
let yieldk :: a -> Stream m a -> m r
yieldk a
a Stream m a
x = a -> t m a -> m r
yld a
a (Stream m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
Stream m a -> t m a
fromStream Stream m a
x)
MkStream forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
k = t m a -> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> Stream m a
toStream t m a
m
in State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r
k (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
st) a -> Stream m a -> m r
yieldk a -> m r
sng m r
stp
{-# INLINE consMStream #-}
{-# SPECIALIZE consMStream :: IO a -> Stream IO a -> Stream IO a #-}
consMStream :: (Monad m) => m a -> Stream m a -> Stream m a
consMStream :: m a -> Stream m a -> Stream m a
consMStream m a
m Stream m a
r = (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall (m :: * -> *) a.
(forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
MkStream ((forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a)
-> (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
_ a -> Stream m a -> m r
yld a -> m r
_ m r
_ -> m a
m m a -> (a -> m r) -> m r
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \a
a -> a -> Stream m a -> m r
yld a
a Stream m a
r
instance IsStream Stream where
toStream :: Stream m a -> Stream m a
toStream = Stream m a -> Stream m a
forall a. a -> a
id
fromStream :: Stream m a -> Stream m a
fromStream = Stream m a -> Stream m a
forall a. a -> a
id
{-# INLINE consM #-}
{-# SPECIALIZE consM :: IO a -> Stream IO a -> Stream IO a #-}
consM :: Monad m => m a -> Stream m a -> Stream m a
consM :: m a -> Stream m a -> Stream m a
consM = m a -> Stream m a -> Stream m a
forall (m :: * -> *) a. Monad m => m a -> Stream m a -> Stream m a
consMStream
{-# INLINE (|:) #-}
{-# SPECIALIZE (|:) :: IO a -> Stream IO a -> Stream IO a #-}
(|:) :: Monad m => m a -> Stream m a -> Stream m a
|: :: m a -> Stream m a -> Stream m a
(|:) = m a -> Stream m a -> Stream m a
forall (m :: * -> *) a. Monad m => m a -> Stream m a -> Stream m a
consMStream
{-# INLINE foldrSWith #-}
foldrSWith :: IsStream t
=> (forall r. State Stream m b
-> (b -> t m b -> m r)
-> (b -> m r)
-> m r
-> t m b
-> m r)
-> (a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSWith :: (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSWith forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
f a -> t m b -> t m b
step t m b
final t m a
m = t m a -> t m b
forall (t :: (* -> *) -> * -> *). IsStream t => t m a -> t m b
go t m a
m
where
go :: t m a -> t m b
go t m a
m1 = (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b)
-> (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b
forall a b. (a -> b) -> a -> b
$ \State Stream m b
st b -> t m b -> m r
yld b -> m r
sng m r
stp ->
let run :: t m b -> m r
run t m b
x = State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
f State Stream m b
st b -> t m b -> m r
yld b -> m r
sng m r
stp t m b
x
stop :: m r
stop = t m b -> m r
run t m b
final
single :: a -> m r
single a
a = t m b -> m r
run (t m b -> m r) -> t m b -> m r
forall a b. (a -> b) -> a -> b
$ a -> t m b -> t m b
step a
a t m b
final
yieldk :: a -> t m a -> m r
yieldk a
a t m a
r = t m b -> m r
run (t m b -> m r) -> t m b -> m r
forall a b. (a -> b) -> a -> b
$ a -> t m b -> t m b
step a
a (t m a -> t m b
go t m a
r)
in State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream (State Stream m b -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m b
st) a -> t m a -> m r
yieldk a -> m r
single m r
stop t m a
m1
{-# INLINE_NORMAL foldrSShared #-}
foldrSShared :: IsStream t => (a -> t m b -> t m b) -> t m b -> t m a -> t m b
= (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (a -> t m b -> t m b) -> t m b -> t m a -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) b a.
IsStream t =>
(forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSWith forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStreamShared
{-# RULES "foldrSShared/nil"
forall k z. foldrSShared k z nil = z #-}
{-# RULES "foldrSShared/single"
forall k z x. foldrSShared k z (yield x) = k x z #-}
{-# INLINE_NORMAL foldrS #-}
foldrS :: IsStream t => (a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrS :: (a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrS = (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (a -> t m b -> t m b) -> t m b -> t m a -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) b a.
IsStream t =>
(forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSWith forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream
{-# RULES "foldrS/id" foldrS cons nil = \x -> x #-}
{-# RULES "foldrS/nil" forall k z. foldrS k z nil = z #-}
{-# RULES "foldrS/single" forall k z x. foldrS k z (yield x) = k x z #-}
{-# INLINE foldrSMWith #-}
foldrSMWith :: (IsStream t, Monad m)
=> (forall r. State Stream m b
-> (b -> t m b -> m r)
-> (b -> m r)
-> m r
-> t m b
-> m r)
-> (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSMWith :: (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSMWith forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
f m a -> t m b -> t m b
step t m b
final t m a
m = t m a -> t m b
forall (t :: (* -> *) -> * -> *). IsStream t => t m a -> t m b
go t m a
m
where
go :: t m a -> t m b
go t m a
m1 = (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b)
-> (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b
forall a b. (a -> b) -> a -> b
$ \State Stream m b
st b -> t m b -> m r
yld b -> m r
sng m r
stp ->
let run :: t m b -> m r
run t m b
x = State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
f State Stream m b
st b -> t m b -> m r
yld b -> m r
sng m r
stp t m b
x
stop :: m r
stop = t m b -> m r
run t m b
final
single :: a -> m r
single a
a = t m b -> m r
run (t m b -> m r) -> t m b -> m r
forall a b. (a -> b) -> a -> b
$ m a -> t m b -> t m b
step (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
a) t m b
final
yieldk :: a -> t m a -> m r
yieldk a
a t m a
r = t m b -> m r
run (t m b -> m r) -> t m b -> m r
forall a b. (a -> b) -> a -> b
$ m a -> t m b -> t m b
step (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
a) (t m a -> t m b
go t m a
r)
in State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream (State Stream m b -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m b
st) a -> t m a -> m r
yieldk a -> m r
single m r
stop t m a
m1
{-# INLINE_NORMAL foldrSM #-}
foldrSM :: (IsStream t, Monad m)
=> (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSM :: (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSM = (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) b a.
(IsStream t, Monad m) =>
(forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSMWith forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream
{-# RULES "foldrSM/nil" forall k z. foldrSM k z nil = z #-}
{-# RULES "foldrSM/single" forall k z x. foldrSM k z (yieldM x) = k x z #-}
{-# INLINE_NORMAL foldrSMShared #-}
foldrSMShared :: (IsStream t, Monad m)
=> (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSMShared :: (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSMShared = (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) b a.
(IsStream t, Monad m) =>
(forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r)
-> (m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSMWith forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStreamShared
{-# RULES "foldrSMShared/nil"
forall k z. foldrSMShared k z nil = z #-}
{-# RULES "foldrSMShared/single"
forall k z x. foldrSMShared k z (yieldM x) = k x z #-}
{-# INLINE_NORMAL build #-}
build :: IsStream t => forall a. (forall b. (a -> b -> b) -> b -> b) -> t m a
build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> t m a
build forall b. (a -> b -> b) -> b -> b
g = (a -> t m a -> t m a) -> t m a -> t m a
forall b. (a -> b -> b) -> b -> b
g a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) a (m :: * -> *).
IsStream t =>
a -> t m a -> t m a
cons t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a
nil
{-# RULES "foldrM/build"
forall k z (g :: forall b. (a -> b -> b) -> b -> b).
foldrM k z (build g) = g k z #-}
{-# RULES "foldrS/build"
forall k z (g :: forall b. (a -> b -> b) -> b -> b).
foldrS k z (build g) = g k z #-}
{-# RULES "foldrS/cons/build"
forall k z x (g :: forall b. (a -> b -> b) -> b -> b).
foldrS k z (x `cons` build g) = k x (g k z) #-}
{-# RULES "foldrSShared/build"
forall k z (g :: forall b. (a -> b -> b) -> b -> b).
foldrSShared k z (build g) = g k z #-}
{-# RULES "foldrSShared/cons/build"
forall k z x (g :: forall b. (a -> b -> b) -> b -> b).
foldrSShared k z (x `cons` build g) = k x (g k z) #-}
{-# INLINE_NORMAL buildS #-}
buildS :: IsStream t => ((a -> t m a -> t m a) -> t m a -> t m a) -> t m a
buildS :: ((a -> t m a -> t m a) -> t m a -> t m a) -> t m a
buildS (a -> t m a -> t m a) -> t m a -> t m a
g = (a -> t m a -> t m a) -> t m a -> t m a
g a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) a (m :: * -> *).
IsStream t =>
a -> t m a -> t m a
cons t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a
nil
{-# RULES "foldrS/buildS"
forall k z (g :: (a -> t m a -> t m a) -> t m a -> t m a).
foldrS k z (buildS g) = g k z #-}
{-# RULES "foldrS/cons/buildS"
forall k z x (g :: (a -> t m a -> t m a) -> t m a -> t m a).
foldrS k z (x `cons` buildS g) = k x (g k z) #-}
{-# RULES "foldrSShared/buildS"
forall k z (g :: (a -> t m a -> t m a) -> t m a -> t m a).
foldrSShared k z (buildS g) = g k z #-}
{-# RULES "foldrSShared/cons/buildS"
forall k z x (g :: (a -> t m a -> t m a) -> t m a -> t m a).
foldrSShared k z (x `cons` buildS g) = k x (g k z) #-}
{-# INLINE_NORMAL buildSM #-}
buildSM :: (IsStream t, MonadAsync m)
=> ((m a -> t m a -> t m a) -> t m a -> t m a) -> t m a
buildSM :: ((m a -> t m a -> t m a) -> t m a -> t m a) -> t m a
buildSM (m a -> t m a -> t m a) -> t m a -> t m a
g = (m a -> t m a -> t m a) -> t m a -> t m a
g m a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(IsStream t, MonadAsync m) =>
m a -> t m a -> t m a
consM t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a
nil
{-# RULES "foldrSM/buildSM"
forall k z (g :: (m a -> t m a -> t m a) -> t m a -> t m a).
foldrSM k z (buildSM g) = g k z #-}
{-# RULES "foldrSMShared/buildSM"
forall k z (g :: (m a -> t m a -> t m a) -> t m a -> t m a).
foldrSMShared k z (buildSM g) = g k z #-}
{-# INLINE_NORMAL buildM #-}
buildM :: (IsStream t, MonadAsync m)
=> (forall r. (a -> t m a -> m r)
-> (a -> m r)
-> m r
-> m r
)
-> t m a
buildM :: (forall r. (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
buildM forall r. (a -> t m a -> m r) -> (a -> m r) -> m r -> m r
g = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp ->
(a -> t m a -> m r) -> (a -> m r) -> m r -> m r
forall r. (a -> t m a -> m r) -> (a -> m r) -> m r -> m r
g (\a
a t m a
r -> State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
a m a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(IsStream t, MonadAsync m) =>
m a -> t m a -> t m a
`consM` t m a
r)) a -> m r
sng m r
stp
{-# INLINE_NORMAL sharedM #-}
sharedM :: (IsStream t, MonadAsync m)
=> (forall r. (a -> t m a -> m r)
-> (a -> m r)
-> m r
-> m r
)
-> t m a
sharedM :: (forall r. (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
sharedM forall r. (a -> t m a -> m r) -> (a -> m r) -> m r -> m r
g = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp ->
(a -> t m a -> m r) -> (a -> m r) -> m r -> m r
forall r. (a -> t m a -> m r) -> (a -> m r) -> m r -> m r
g (\a
a t m a
r -> State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStreamShared State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp (a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
a m a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(IsStream t, MonadAsync m) =>
m a -> t m a -> t m a
`consM` t m a
r)) a -> m r
sng m r
stp
{-# INLINE_NORMAL augmentS #-}
augmentS :: IsStream t
=> ((a -> t m a -> t m a) -> t m a -> t m a) -> t m a -> t m a
augmentS :: ((a -> t m a -> t m a) -> t m a -> t m a) -> t m a -> t m a
augmentS (a -> t m a -> t m a) -> t m a -> t m a
g t m a
xs = (a -> t m a -> t m a) -> t m a -> t m a
g a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) a (m :: * -> *).
IsStream t =>
a -> t m a -> t m a
cons t m a
xs
{-# RULES "augmentS/nil"
forall (g :: (a -> t m a -> t m a) -> t m a -> t m a).
augmentS g nil = buildS g
#-}
{-# RULES "foldrS/augmentS"
forall k z xs (g :: (a -> t m a -> t m a) -> t m a -> t m a).
foldrS k z (augmentS g xs) = g k (foldrS k z xs)
#-}
{-# RULES "augmentS/buildS"
forall (g :: (a -> t m a -> t m a) -> t m a -> t m a)
(h :: (a -> t m a -> t m a) -> t m a -> t m a).
augmentS g (buildS h) = buildS (\c n -> g c (h c n))
#-}
{-# INLINE_NORMAL augmentSM #-}
augmentSM :: (IsStream t, MonadAsync m)
=> ((m a -> t m a -> t m a) -> t m a -> t m a) -> t m a -> t m a
augmentSM :: ((m a -> t m a -> t m a) -> t m a -> t m a) -> t m a -> t m a
augmentSM (m a -> t m a -> t m a) -> t m a -> t m a
g t m a
xs = (m a -> t m a -> t m a) -> t m a -> t m a
g m a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(IsStream t, MonadAsync m) =>
m a -> t m a -> t m a
consM t m a
xs
{-# RULES "augmentSM/nil"
forall (g :: (m a -> t m a -> t m a) -> t m a -> t m a).
augmentSM g nil = buildSM g
#-}
{-# RULES "foldrSM/augmentSM"
forall k z xs (g :: (m a -> t m a -> t m a) -> t m a -> t m a).
foldrSM k z (augmentSM g xs) = g k (foldrSM k z xs)
#-}
{-# RULES "augmentSM/buildSM"
forall (g :: (m a -> t m a -> t m a) -> t m a -> t m a)
(h :: (m a -> t m a -> t m a) -> t m a -> t m a).
augmentSM g (buildSM h) = buildSM (\c n -> g c (h c n))
#-}
{-# INLINE_NORMAL foldrM #-}
foldrM :: IsStream t => (a -> m b -> m b) -> m b -> t m a -> m b
foldrM :: (a -> m b -> m b) -> m b -> t m a -> m b
foldrM a -> m b -> m b
step m b
acc t m a
m = t m a -> m b
forall (t :: (* -> *) -> * -> *). IsStream t => t m a -> m b
go t m a
m
where
go :: t m a -> m b
go t m a
m1 =
let stop :: m b
stop = m b
acc
single :: a -> m b
single a
a = a -> m b -> m b
step a
a m b
acc
yieldk :: a -> t m a -> m b
yieldk a
a t m a
r = a -> m b -> m b
step a
a (t m a -> m b
go t m a
r)
in State Stream m a
-> (a -> t m a -> m b) -> (a -> m b) -> m b -> t m a -> m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState a -> t m a -> m b
yieldk a -> m b
single m b
stop t m a
m1
{-# INLINE_NORMAL foldrMKWith #-}
foldrMKWith
:: (State Stream m a
-> (a -> t m a -> m b)
-> (a -> m b)
-> m b
-> t m a
-> m b)
-> (a -> m b -> m b)
-> m b
-> ((a -> t m a -> m b) -> (a -> m b) -> m b -> m b)
-> m b
foldrMKWith :: (State Stream m a
-> (a -> t m a -> m b) -> (a -> m b) -> m b -> t m a -> m b)
-> (a -> m b -> m b)
-> m b
-> ((a -> t m a -> m b) -> (a -> m b) -> m b -> m b)
-> m b
foldrMKWith State Stream m a
-> (a -> t m a -> m b) -> (a -> m b) -> m b -> t m a -> m b
f a -> m b -> m b
step m b
acc (a -> t m a -> m b) -> (a -> m b) -> m b -> m b
g = ((a -> t m a -> m b) -> (a -> m b) -> m b -> m b) -> m b
go (a -> t m a -> m b) -> (a -> m b) -> m b -> m b
g
where
go :: ((a -> t m a -> m b) -> (a -> m b) -> m b -> m b) -> m b
go (a -> t m a -> m b) -> (a -> m b) -> m b -> m b
k =
let stop :: m b
stop = m b
acc
single :: a -> m b
single a
a = a -> m b -> m b
step a
a m b
acc
yieldk :: a -> t m a -> m b
yieldk a
a t m a
r = a -> m b -> m b
step a
a (((a -> t m a -> m b) -> (a -> m b) -> m b -> m b) -> m b
go (\a -> t m a -> m b
yld a -> m b
sng m b
stp -> State Stream m a
-> (a -> t m a -> m b) -> (a -> m b) -> m b -> t m a -> m b
f State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState a -> t m a -> m b
yld a -> m b
sng m b
stp t m a
r))
in (a -> t m a -> m b) -> (a -> m b) -> m b -> m b
k a -> t m a -> m b
yieldk a -> m b
single m b
stop
{-# RULES "foldrM/buildM"
forall step acc (g :: (forall r.
(a -> t m a -> m r)
-> (a -> m r)
-> m r
-> m r
)).
foldrM step acc (buildM g) = foldrMKWith foldStream step acc g
#-}
{-# RULES "foldrM/sharedM"
forall step acc (g :: (forall r.
(a -> t m a -> m r)
-> (a -> m r)
-> m r
-> m r
)).
foldrM step acc (sharedM g) = foldrMKWith foldStreamShared step acc g
#-}
{-# INLINE serial #-}
serial :: IsStream t => t m a -> t m a -> t m a
serial :: t m a -> t m a -> t m a
serial t m a
m1 t m a
m2 = t m a -> t m a
forall (t :: (* -> *) -> * -> *). IsStream t => t m a -> t m a
go t m a
m1
where
go :: t m a -> t m a
go t m a
m = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp ->
let stop :: m r
stop = State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp t m a
m2
single :: a -> m r
single a
a = a -> t m a -> m r
yld a
a t m a
m2
yieldk :: a -> t m a -> m r
yieldk a
a t m a
r = a -> t m a -> m r
yld a
a (t m a -> t m a
go t m a
r)
in State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream State Stream m a
st a -> t m a -> m r
yieldk a -> m r
single m r
stop t m a
m
{-# INLINE conjoin #-}
conjoin :: (IsStream t, MonadAsync m) => t m a -> t m a -> t m a
conjoin :: t m a -> t m a -> t m a
conjoin t m a
xs t m a
ys = ((m a -> t m a -> t m a) -> t m a -> t m a) -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(IsStream t, MonadAsync m) =>
((m a -> t m a -> t m a) -> t m a -> t m a) -> t m a -> t m a
augmentSM (\m a -> t m a -> t m a
c t m a
n -> (m a -> t m a -> t m a) -> t m a -> t m a -> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a b.
(IsStream t, Monad m) =>
(m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSM m a -> t m a -> t m a
c t m a
n t m a
xs) t m a
ys
instance Semigroup (Stream m a) where
<> :: Stream m a -> Stream m a -> Stream m a
(<>) = Stream m a -> Stream m a -> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> t m a -> t m a
serial
instance Monoid (Stream m a) where
mempty :: Stream m a
mempty = Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a
nil
mappend :: Stream m a -> Stream m a -> Stream m a
mappend = Stream m a -> Stream m a -> Stream m a
forall a. Semigroup a => a -> a -> a
(<>)
#if __GLASGOW_HASKELL__ < 800
#define Type *
#endif
{-# INLINE_LATE mapFB #-}
mapFB :: forall (t :: (Type -> Type) -> Type -> Type) b m a.
(b -> t m b -> t m b) -> (a -> b) -> a -> t m b -> t m b
mapFB :: (b -> t m b -> t m b) -> (a -> b) -> a -> t m b -> t m b
mapFB b -> t m b -> t m b
c a -> b
f = \a
x t m b
ys -> b -> t m b -> t m b
c (a -> b
f a
x) t m b
ys
#undef Type
{-# RULES
"mapFB/mapFB" forall c f g. mapFB (mapFB c f) g = mapFB c (f . g)
"mapFB/id" forall c. mapFB c (\x -> x) = c
#-}
{-# INLINE map #-}
map :: IsStream t => (a -> b) -> t m a -> t m b
map :: (a -> b) -> t m a -> t m b
map a -> b
f t m a
xs = ((b -> t m b -> t m b) -> t m b -> t m b) -> t m b
forall (t :: (* -> *) -> * -> *) a (m :: * -> *).
IsStream t =>
((a -> t m a -> t m a) -> t m a -> t m a) -> t m a
buildS (\b -> t m b -> t m b
c t m b
n -> (a -> t m b -> t m b) -> t m b -> t m a -> t m b
forall (t :: (* -> *) -> * -> *) a (m :: * -> *) b.
IsStream t =>
(a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrS ((b -> t m b -> t m b) -> (a -> b) -> a -> t m b -> t m b
forall (t :: (* -> *) -> * -> *) b (m :: * -> *) a.
(b -> t m b -> t m b) -> (a -> b) -> a -> t m b -> t m b
mapFB b -> t m b -> t m b
c a -> b
f) t m b
n t m a
xs)
{-# INLINE_LATE mapMFB #-}
mapMFB :: Monad m => (m b -> t m b -> t m b) -> (a -> m b) -> m a -> t m b -> t m b
mapMFB :: (m b -> t m b -> t m b) -> (a -> m b) -> m a -> t m b -> t m b
mapMFB m b -> t m b -> t m b
c a -> m b
f = \m a
x t m b
ys -> m b -> t m b -> t m b
c (m a
x m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> m b
f) t m b
ys
{-# RULES
"mapMFB/mapMFB" forall c f g. mapMFB (mapMFB c f) g = mapMFB c (f >=> g)
#-}
{-# INLINE mapM #-}
mapM :: (IsStream t, MonadAsync m) => (a -> m b) -> t m a -> t m b
mapM :: (a -> m b) -> t m a -> t m b
mapM a -> m b
f = (a -> t m b -> t m b) -> t m b -> t m a -> t m b
forall (t :: (* -> *) -> * -> *) a (m :: * -> *) b.
IsStream t =>
(a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSShared (\a
x t m b
xs -> a -> m b
f a
x m b -> t m b -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(IsStream t, MonadAsync m) =>
m a -> t m a -> t m a
`consM` t m b
xs) t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a
nil
{-# INLINE mapMSerial #-}
mapMSerial :: MonadAsync m => (a -> m b) -> Stream m a -> Stream m b
mapMSerial :: (a -> m b) -> Stream m a -> Stream m b
mapMSerial a -> m b
f Stream m a
xs = ((m b -> Stream m b -> Stream m b) -> Stream m b -> Stream m b)
-> Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(IsStream t, MonadAsync m) =>
((m a -> t m a -> t m a) -> t m a -> t m a) -> t m a
buildSM (\m b -> Stream m b -> Stream m b
c Stream m b
n -> (m a -> Stream m b -> Stream m b)
-> Stream m b -> Stream m a -> Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a b.
(IsStream t, Monad m) =>
(m a -> t m b -> t m b) -> t m b -> t m a -> t m b
foldrSMShared ((m b -> Stream m b -> Stream m b)
-> (a -> m b) -> m a -> Stream m b -> Stream m b
forall (m :: * -> *) b (t :: (* -> *) -> * -> *) a.
Monad m =>
(m b -> t m b -> t m b) -> (a -> m b) -> m a -> t m b -> t m b
mapMFB m b -> Stream m b -> Stream m b
c a -> m b
f) Stream m b
n Stream m a
xs)
instance Monad m => Functor (Stream m) where
fmap :: (a -> b) -> Stream m a -> Stream m b
fmap = (a -> b) -> Stream m a -> Stream m b
forall (t :: (* -> *) -> * -> *) a b (m :: * -> *).
IsStream t =>
(a -> b) -> t m a -> t m b
map
instance MonadTrans Stream where
lift :: m a -> Stream m a
lift = m a -> Stream m a
forall (m :: * -> *) (t :: (* -> *) -> * -> *) a.
(Monad m, IsStream t) =>
m a -> t m a
yieldM
{-# INLINE unShare #-}
unShare :: IsStream t => t m a -> t m a
unShare :: t m a -> t m a
unShare t m a
x = (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a)
-> (forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp ->
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream State Stream m a
st a -> t m a -> m r
yld a -> m r
sng m r
stp t m a
x
{-# INLINE bindWith #-}
bindWith
:: IsStream t
=> (forall c. t m c -> t m c -> t m c)
-> t m a
-> (a -> t m b)
-> t m b
bindWith :: (forall c. t m c -> t m c -> t m c)
-> t m a -> (a -> t m b) -> t m b
bindWith forall c. t m c -> t m c -> t m c
par t m a
m1 a -> t m b
f = t m a -> t m b
forall (t :: (* -> *) -> * -> *). IsStream t => t m a -> t m b
go t m a
m1
where
go :: t m a -> t m b
go t m a
m =
(forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
(forall r.
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> m r)
-> t m a
mkStream ((forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b)
-> (forall r.
State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> m r)
-> t m b
forall a b. (a -> b) -> a -> b
$ \State Stream m b
st b -> t m b -> m r
yld b -> m r
sng m r
stp ->
let foldShared :: t m b -> m r
foldShared = State Stream m b
-> (b -> t m b -> m r) -> (b -> m r) -> m r -> t m b -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStreamShared State Stream m b
st b -> t m b -> m r
yld b -> m r
sng m r
stp
single :: a -> m r
single a
a = t m b -> m r
foldShared (t m b -> m r) -> t m b -> m r
forall a b. (a -> b) -> a -> b
$ t m b -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> t m a
unShare (a -> t m b
f a
a)
yieldk :: a -> t m a -> m r
yieldk a
a t m a
r = t m b -> m r
foldShared (t m b -> m r) -> t m b -> m r
forall a b. (a -> b) -> a -> b
$ t m b -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> t m a
unShare (a -> t m b
f a
a) t m b -> t m b -> t m b
forall c. t m c -> t m c -> t m c
`par` t m a -> t m b
go t m a
r
in State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a r.
IsStream t =>
State Stream m a
-> (a -> t m a -> m r) -> (a -> m r) -> m r -> t m a -> m r
foldStream (State Stream m b -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m b
st) a -> t m a -> m r
yieldk a -> m r
single m r
stp t m a
m
{-# INLINE concatMapBy #-}
concatMapBy
:: IsStream t
=> (forall c. t m c -> t m c -> t m c)
-> (a -> t m b)
-> t m a
-> t m b
concatMapBy :: (forall c. t m c -> t m c -> t m c)
-> (a -> t m b) -> t m a -> t m b
concatMapBy forall c. t m c -> t m c -> t m c
par a -> t m b
f t m a
xs = (forall c. t m c -> t m c -> t m c)
-> t m a -> (a -> t m b) -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a b.
IsStream t =>
(forall c. t m c -> t m c -> t m c)
-> t m a -> (a -> t m b) -> t m b
bindWith forall c. t m c -> t m c -> t m c
par t m a
xs a -> t m b
f
{-# INLINE concatMap #-}
concatMap :: IsStream t => (a -> t m b) -> t m a -> t m b
concatMap :: (a -> t m b) -> t m a -> t m b
concatMap a -> t m b
f t m a
m = Stream m b -> t m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
Stream m a -> t m a
fromStream (Stream m b -> t m b) -> Stream m b -> t m b
forall a b. (a -> b) -> a -> b
$
(forall c. Stream m c -> Stream m c -> Stream m c)
-> (a -> Stream m b) -> Stream m a -> Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a b.
IsStream t =>
(forall c. t m c -> t m c -> t m c)
-> (a -> t m b) -> t m a -> t m b
concatMapBy forall c. Stream m c -> Stream m c -> Stream m c
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> t m a -> t m a
serial
(\a
a -> Stream m b -> Stream m b
forall (t1 :: (* -> *) -> * -> *) (t2 :: (* -> *) -> * -> *)
(m :: * -> *) a.
(IsStream t1, IsStream t2) =>
t1 m a -> t2 m a
adapt (Stream m b -> Stream m b) -> Stream m b -> Stream m b
forall a b. (a -> b) -> a -> b
$ t m b -> Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> Stream m a
toStream (t m b -> Stream m b) -> t m b -> Stream m b
forall a b. (a -> b) -> a -> b
$ a -> t m b
f a
a)
(Stream m a -> Stream m a
forall (t1 :: (* -> *) -> * -> *) (t2 :: (* -> *) -> * -> *)
(m :: * -> *) a.
(IsStream t1, IsStream t2) =>
t1 m a -> t2 m a
adapt (Stream m a -> Stream m a) -> Stream m a -> Stream m a
forall a b. (a -> b) -> a -> b
$ t m a -> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
IsStream t =>
t m a -> Stream m a
toStream t m a
m)
instance Monad m => Applicative (Stream m) where
{-# INLINE pure #-}
pure :: a -> Stream m a
pure = a -> Stream m a
forall (t :: (* -> *) -> * -> *) a (m :: * -> *).
IsStream t =>
a -> t m a
yield
{-# INLINE (<*>) #-}
<*> :: Stream m (a -> b) -> Stream m a -> Stream m b
(<*>) = Stream m (a -> b) -> Stream m a -> Stream m b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Monad m => Monad (Stream m) where
{-# INLINE return #-}
return :: a -> Stream m a
return = a -> Stream m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
{-# INLINE (>>=) #-}
>>= :: Stream m a -> (a -> Stream m b) -> Stream m b
(>>=) = ((a -> Stream m b) -> Stream m a -> Stream m b)
-> Stream m a -> (a -> Stream m b) -> Stream m b
forall a b c. (a -> b -> c) -> b -> a -> c
flip (a -> Stream m b) -> Stream m a -> Stream m b
forall (t :: (* -> *) -> * -> *) a (m :: * -> *) b.
IsStream t =>
(a -> t m b) -> t m a -> t m b
concatMap