#include "inline.hs"
module Streamly.Internal.Data.Stream.StreamD.Type
(
Step (..)
, Stream (Stream, UnStream)
, nilM
, consM
, uncons
, unfold
, fromPure
, fromEffect
, fromList
, fromStreamK
, toStreamK
, fold
, fold_
, foldOn
, foldrT
, foldrM
, foldrMx
, foldr
, foldrS
, foldl'
, foldlM'
, foldlx'
, foldlMx'
, drain
, toList
, eqBy
, cmpBy
, map
, mapM
, take
, takeWhile
, takeWhileM
, takeEndBy
, takeEndByM
, ConcatMapUState (..)
, unfoldMany
, concatMap
, concatMapM
, FoldMany (..)
, FoldManyPost (..)
, foldMany
, foldManyPost
, refoldMany
, chunksOf
)
where
import Control.Applicative (liftA2)
import Control.Monad.Catch (MonadThrow, throwM)
import Control.Monad.Trans.Class (lift, MonadTrans)
import Data.Functor (($>))
import Data.Functor.Identity (Identity(..))
import Fusion.Plugin.Types (Fuse(..))
import GHC.Base (build)
import GHC.Types (SPEC(..))
import Prelude hiding (map, mapM, foldr, take, concatMap, takeWhile)
import Streamly.Internal.Data.Fold.Type (Fold(..))
import Streamly.Internal.Data.Refold.Type (Refold(..))
import Streamly.Internal.Data.Stream.StreamD.Step (Step (..))
import Streamly.Internal.Data.SVar.Type (State, adaptState, defState)
import Streamly.Internal.Data.Unfold.Type (Unfold(..))
import qualified Streamly.Internal.Data.Fold.Type as FL
import qualified Streamly.Internal.Data.Stream.StreamK.Type as K
data Stream m a =
forall s. UnStream (State K.Stream m a -> s -> m (Step s a)) s
unShare :: Stream m a -> Stream m a
unShare :: Stream m a -> Stream m a
unShare (UnStream State Stream m a -> s -> m (Step s a)
step s
state) = (State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
UnStream State Stream m a -> s -> m (Step s a)
forall (m :: * -> *) a. State Stream m a -> s -> m (Step s a)
step' s
state
where step' :: State Stream m a -> s -> m (Step s a)
step' State Stream m a
gst = State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst)
pattern Stream :: (State K.Stream m a -> s -> m (Step s a)) -> s -> Stream m a
pattern $bStream :: (State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
$mStream :: forall r (m :: * -> *) a.
Stream m a
-> (forall s. (State Stream m a -> s -> m (Step s a)) -> s -> r)
-> (Void# -> r)
-> r
Stream step state <- (unShare -> UnStream step state)
where Stream = (State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
UnStream
#if __GLASGOW_HASKELL__ >= 802
{-# COMPLETE Stream #-}
#endif
{-# INLINE_NORMAL nilM #-}
nilM :: Applicative m => m b -> Stream m a
nilM :: m b -> Stream m a
nilM m b
m = (State Stream m a -> () -> m (Step () a)) -> () -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream (\State Stream m a
_ ()
_ -> m b
m m b -> Step () a -> m (Step () a)
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Step () a
forall s a. Step s a
Stop) ()
{-# INLINE_NORMAL consM #-}
consM :: Applicative m => m a -> Stream m a -> Stream m a
consM :: m a -> Stream m a -> Stream m a
consM m a
m (Stream State Stream m a -> s -> m (Step s a)
step s
state) = (State Stream m a -> Maybe s -> m (Step (Maybe s) a))
-> Maybe s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> Maybe s -> m (Step (Maybe s) a)
step1 Maybe s
forall a. Maybe a
Nothing
where
{-# INLINE_LATE step1 #-}
step1 :: State Stream m a -> Maybe s -> m (Step (Maybe s) a)
step1 State Stream m a
_ Maybe s
Nothing = (a -> Maybe s -> Step (Maybe s) a
forall s a. a -> s -> Step s a
`Yield` s -> Maybe s
forall a. a -> Maybe a
Just s
state) (a -> Step (Maybe s) a) -> m a -> m (Step (Maybe s) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m a
m
step1 State Stream m a
gst (Just s
st) = do
(\case
Yield a
a s
s -> a -> Maybe s -> Step (Maybe s) a
forall s a. a -> s -> Step s a
Yield a
a (s -> Maybe s
forall a. a -> Maybe a
Just s
s)
Skip s
s -> Maybe s -> Step (Maybe s) a
forall s a. s -> Step s a
Skip (s -> Maybe s
forall a. a -> Maybe a
Just s
s)
Step s a
Stop -> Step (Maybe s) a
forall s a. Step s a
Stop) (Step s a -> Step (Maybe s) a)
-> m (Step s a) -> m (Step (Maybe s) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> State Stream m a -> s -> m (Step s a)
step State Stream m a
gst s
st
{-# INLINE_NORMAL uncons #-}
uncons :: Monad m => Stream m a -> m (Maybe (a, Stream m a))
uncons :: Stream m a -> m (Maybe (a, Stream m a))
uncons (UnStream State Stream m a -> s -> m (Step s a)
step s
state) = s -> m (Maybe (a, Stream m a))
go s
state
where
go :: s -> m (Maybe (a, Stream m a))
go s
st = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> Maybe (a, Stream m a) -> m (Maybe (a, Stream m a))
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (a, Stream m a) -> m (Maybe (a, Stream m a)))
-> Maybe (a, Stream m a) -> m (Maybe (a, Stream m a))
forall a b. (a -> b) -> a -> b
$ (a, Stream m a) -> Maybe (a, Stream m a)
forall a. a -> Maybe a
Just (a
x, (State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> s -> m (Step s a)
step s
s)
Skip s
s -> s -> m (Maybe (a, Stream m a))
go s
s
Step s a
Stop -> Maybe (a, Stream m a) -> m (Maybe (a, Stream m a))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (a, Stream m a)
forall a. Maybe a
Nothing
data UnfoldState s = UnfoldNothing | UnfoldJust s
{-# INLINE_NORMAL unfold #-}
unfold :: Applicative m => Unfold m a b -> a -> Stream m b
unfold :: Unfold m a b -> a -> Stream m b
unfold (Unfold s -> m (Step s b)
ustep a -> m s
inject) a
seed = (State Stream m b -> UnfoldState s -> m (Step (UnfoldState s) b))
-> UnfoldState s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b -> UnfoldState s -> m (Step (UnfoldState s) b)
forall p. p -> UnfoldState s -> m (Step (UnfoldState s) b)
step UnfoldState s
forall s. UnfoldState s
UnfoldNothing
where
{-# INLINE_LATE step #-}
step :: p -> UnfoldState s -> m (Step (UnfoldState s) b)
step p
_ UnfoldState s
UnfoldNothing = UnfoldState s -> Step (UnfoldState s) b
forall s a. s -> Step s a
Skip (UnfoldState s -> Step (UnfoldState s) b)
-> (s -> UnfoldState s) -> s -> Step (UnfoldState s) b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> UnfoldState s
forall s. s -> UnfoldState s
UnfoldJust (s -> Step (UnfoldState s) b) -> m s -> m (Step (UnfoldState s) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m s
inject a
seed
step p
_ (UnfoldJust s
st) = do
(\case
Yield b
x s
s -> b -> UnfoldState s -> Step (UnfoldState s) b
forall s a. a -> s -> Step s a
Yield b
x (s -> UnfoldState s
forall s. s -> UnfoldState s
UnfoldJust s
s)
Skip s
s -> UnfoldState s -> Step (UnfoldState s) b
forall s a. s -> Step s a
Skip (s -> UnfoldState s
forall s. s -> UnfoldState s
UnfoldJust s
s)
Step s b
Stop -> Step (UnfoldState s) b
forall s a. Step s a
Stop) (Step s b -> Step (UnfoldState s) b)
-> m (Step s b) -> m (Step (UnfoldState s) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m (Step s b)
ustep s
st
{-# INLINE_NORMAL fromPure #-}
fromPure :: Applicative m => a -> Stream m a
fromPure :: a -> Stream m a
fromPure a
x = (State Stream m a -> Bool -> m (Step Bool a)) -> Bool -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream (\State Stream m a
_ Bool
s -> Step Bool a -> m (Step Bool a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Step Bool a -> m (Step Bool a)) -> Step Bool a -> m (Step Bool a)
forall a b. (a -> b) -> a -> b
$ Any -> Bool -> Step Bool a
forall p. p -> Bool -> Step Bool a
step Any
forall a. HasCallStack => a
undefined Bool
s) Bool
True
where
{-# INLINE_LATE step #-}
step :: p -> Bool -> Step Bool a
step p
_ Bool
True = a -> Bool -> Step Bool a
forall s a. a -> s -> Step s a
Yield a
x Bool
False
step p
_ Bool
False = Step Bool a
forall s a. Step s a
Stop
{-# INLINE_NORMAL fromEffect #-}
fromEffect :: Applicative m => m a -> Stream m a
fromEffect :: m a -> Stream m a
fromEffect m a
m = (State Stream m a -> Bool -> m (Step Bool a)) -> Bool -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> Bool -> m (Step Bool a)
forall p. p -> Bool -> m (Step Bool a)
step Bool
True
where
{-# INLINE_LATE step #-}
step :: p -> Bool -> m (Step Bool a)
step p
_ Bool
True = (a -> Bool -> Step Bool a
forall s a. a -> s -> Step s a
`Yield` Bool
False) (a -> Step Bool a) -> m a -> m (Step Bool a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m a
m
step p
_ Bool
False = Step Bool a -> m (Step Bool a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Step Bool a
forall s a. Step s a
Stop
{-# INLINE_LATE fromList #-}
fromList :: Applicative m => [a] -> Stream m a
fromList :: [a] -> Stream m a
fromList = (State Stream m a -> [a] -> m (Step [a] a)) -> [a] -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> [a] -> m (Step [a] a)
forall (f :: * -> *) p a.
Applicative f =>
p -> [a] -> f (Step [a] a)
step
where
{-# INLINE_LATE step #-}
step :: p -> [a] -> f (Step [a] a)
step p
_ (a
x:[a]
xs) = Step [a] a -> f (Step [a] a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Step [a] a -> f (Step [a] a)) -> Step [a] a -> f (Step [a] a)
forall a b. (a -> b) -> a -> b
$ a -> [a] -> Step [a] a
forall s a. a -> s -> Step s a
Yield a
x [a]
xs
step p
_ [] = Step [a] a -> f (Step [a] a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Step [a] a
forall s a. Step s a
Stop
{-# INLINE_LATE fromStreamK #-}
fromStreamK :: Applicative m => K.Stream m a -> Stream m a
fromStreamK :: Stream m a -> Stream m a
fromStreamK = (State Stream m a -> Stream m a -> m (Step (Stream m a) a))
-> Stream m a -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> Stream m a -> m (Step (Stream m a) a)
forall (m :: * -> *) a.
Applicative m =>
State Stream m a -> Stream m a -> m (Step (Stream m a) a)
step
where
step :: State Stream m a -> Stream m a -> m (Step (Stream m a) a)
step State Stream m a
gst Stream m a
m1 =
let stop :: m (Step s a)
stop = Step s a -> m (Step s a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Step s a
forall s a. Step s a
Stop
single :: a -> f (Step (Stream m a) a)
single a
a = Step (Stream m a) a -> f (Step (Stream m a) a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Step (Stream m a) a -> f (Step (Stream m a) a))
-> Step (Stream m a) a -> f (Step (Stream m a) a)
forall a b. (a -> b) -> a -> b
$ a -> Stream m a -> Step (Stream m a) a
forall s a. a -> s -> Step s a
Yield a
a Stream m a
forall (m :: * -> *) a. Stream m a
K.nil
yieldk :: a -> s -> f (Step s a)
yieldk a
a s
r = Step s a -> f (Step s a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Step s a -> f (Step s a)) -> Step s a -> f (Step s a)
forall a b. (a -> b) -> a -> b
$ a -> s -> Step s a
forall s a. a -> s -> Step s a
Yield a
a s
r
in State Stream m a
-> (a -> Stream m a -> m (Step (Stream m a) a))
-> (a -> m (Step (Stream m a) a))
-> m (Step (Stream m a) a)
-> Stream m a
-> m (Step (Stream m a) a)
forall (m :: * -> *) a r.
State Stream m a
-> (a -> Stream m a -> m r)
-> (a -> m r)
-> m r
-> Stream m a
-> m r
K.foldStreamShared State Stream m a
gst a -> Stream m a -> m (Step (Stream m a) a)
forall (f :: * -> *) a s. Applicative f => a -> s -> f (Step s a)
yieldk a -> m (Step (Stream m a) a)
forall (f :: * -> *) a (m :: * -> *) a.
Applicative f =>
a -> f (Step (Stream m a) a)
single m (Step (Stream m a) a)
forall s a. m (Step s a)
stop Stream m a
m1
{-# INLINE_LATE toStreamK #-}
toStreamK :: Monad m => Stream m a -> K.Stream m a
toStreamK :: Stream m a -> Stream m a
toStreamK (Stream State Stream m a -> s -> m (Step s a)
step s
state) = s -> Stream m a
go s
state
where
go :: s -> Stream m a
go s
st = (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall (m :: * -> *) a.
(forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
K.MkStream ((forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a)
-> (forall r.
State Stream m a
-> (a -> Stream m a -> m r) -> (a -> m r) -> m r -> m r)
-> Stream m a
forall a b. (a -> b) -> a -> b
$ \State Stream m a
gst a -> Stream m a -> m r
yld a -> m r
_ m r
stp ->
let go' :: s -> m r
go' s
ss = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
gst s
ss
case Step s a
r of
Yield a
x s
s -> a -> Stream m a -> m r
yld a
x (s -> Stream m a
go s
s)
Skip s
s -> s -> m r
go' s
s
Step s a
Stop -> m r
stp
in s -> m r
go' s
st
#ifndef DISABLE_FUSION
{-# RULES "fromStreamK/toStreamK fusion"
forall s. toStreamK (fromStreamK s) = s #-}
{-# RULES "toStreamK/fromStreamK fusion"
forall s. fromStreamK (toStreamK s) = s #-}
#endif
{-# INLINE_NORMAL fold #-}
fold :: Monad m => Fold m a b -> Stream m a -> m b
fold :: Fold m a b -> Stream m a -> m b
fold Fold m a b
fld Stream m a
strm = do
(b
b, Stream m a
_) <- Fold m a b -> Stream m a -> m (b, Stream m a)
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Stream m a -> m (b, Stream m a)
fold_ Fold m a b
fld Stream m a
strm
b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
b
{-# INLINE_NORMAL fold_ #-}
fold_ :: Monad m => Fold m a b -> Stream m a -> m (b, Stream m a)
fold_ :: Fold m a b -> Stream m a -> m (b, Stream m a)
fold_ (Fold s -> a -> m (Step s b)
fstep m (Step s b)
begin s -> m b
done) (Stream State Stream m a -> s -> m (Step s a)
step s
state) = do
Step s b
res <- m (Step s b)
begin
case Step s b
res of
FL.Partial s
fs -> SPEC -> s -> s -> m (b, Stream m a)
go SPEC
SPEC s
fs s
state
FL.Done b
fb -> (b, Stream m a) -> m (b, Stream m a)
forall (m :: * -> *) a. Monad m => a -> m a
return ((b, Stream m a) -> m (b, Stream m a))
-> (b, Stream m a) -> m (b, Stream m a)
forall a b. (a -> b) -> a -> b
$! (b
fb, (State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> s -> m (Step s a)
step s
state)
where
{-# INLINE go #-}
go :: SPEC -> s -> s -> m (b, Stream m a)
go !SPEC
_ !s
fs s
st = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> do
Step s b
res <- s -> a -> m (Step s b)
fstep s
fs a
x
case Step s b
res of
FL.Done b
b -> (b, Stream m a) -> m (b, Stream m a)
forall (m :: * -> *) a. Monad m => a -> m a
return ((b, Stream m a) -> m (b, Stream m a))
-> (b, Stream m a) -> m (b, Stream m a)
forall a b. (a -> b) -> a -> b
$! (b
b, (State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> s -> m (Step s a)
step s
s)
FL.Partial s
fs1 -> SPEC -> s -> s -> m (b, Stream m a)
go SPEC
SPEC s
fs1 s
s
Skip s
s -> SPEC -> s -> s -> m (b, Stream m a)
go SPEC
SPEC s
fs s
s
Step s a
Stop -> do
b
b <- s -> m b
done s
fs
(b, Stream m a) -> m (b, Stream m a)
forall (m :: * -> *) a. Monad m => a -> m a
return ((b, Stream m a) -> m (b, Stream m a))
-> (b, Stream m a) -> m (b, Stream m a)
forall a b. (a -> b) -> a -> b
$! (b
b, (State Stream m a -> () -> m (Step () a)) -> () -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream (\ State Stream m a
_ ()
_ -> Step () a -> m (Step () a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step () a
forall s a. Step s a
Stop) ())
{-# INLINE_NORMAL foldOn #-}
foldOn :: Monad m => Fold m a b -> Stream m a -> Fold m a b
foldOn :: Fold m a b -> Stream m a -> Fold m a b
foldOn (Fold s -> a -> m (Step s b)
fstep m (Step s b)
finitial s -> m b
fextract) (Stream State Stream m a -> s -> m (Step s a)
sstep s
state) =
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> Fold m a b
Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
fextract
where
initial :: m (Step s b)
initial = do
Step s b
res <- m (Step s b)
finitial
case Step s b
res of
FL.Partial s
fs -> SPEC -> s -> s -> m (Step s b)
go SPEC
SPEC s
fs s
state
FL.Done b
fb -> Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ b -> Step s b
forall s b. b -> Step s b
FL.Done b
fb
{-# INLINE go #-}
go :: SPEC -> s -> s -> m (Step s b)
go !SPEC
_ !s
fs s
st = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
sstep State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> do
Step s b
res <- s -> a -> m (Step s b)
fstep s
fs a
x
case Step s b
res of
FL.Done b
b -> Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ b -> Step s b
forall s b. b -> Step s b
FL.Done b
b
FL.Partial s
fs1 -> SPEC -> s -> s -> m (Step s b)
go SPEC
SPEC s
fs1 s
s
Skip s
s -> SPEC -> s -> s -> m (Step s b)
go SPEC
SPEC s
fs s
s
Step s a
Stop -> Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
FL.Partial s
fs
{-# INLINE_NORMAL foldrM #-}
foldrM :: Monad m => (a -> m b -> m b) -> m b -> Stream m a -> m b
foldrM :: (a -> m b -> m b) -> m b -> Stream m a -> m b
foldrM a -> m b -> m b
f m b
z (Stream State Stream m a -> s -> m (Step s a)
step s
state) = SPEC -> s -> m b
go SPEC
SPEC s
state
where
{-# INLINE_LATE go #-}
go :: SPEC -> s -> m b
go !SPEC
_ s
st = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> a -> m b -> m b
f a
x (SPEC -> s -> m b
go SPEC
SPEC s
s)
Skip s
s -> SPEC -> s -> m b
go SPEC
SPEC s
s
Step s a
Stop -> m b
z
{-# INLINE_NORMAL foldrMx #-}
foldrMx :: Monad m
=> (a -> m x -> m x) -> m x -> (m x -> m b) -> Stream m a -> m b
foldrMx :: (a -> m x -> m x) -> m x -> (m x -> m b) -> Stream m a -> m b
foldrMx a -> m x -> m x
fstep m x
final m x -> m b
convert (Stream State Stream m a -> s -> m (Step s a)
step s
state) = m x -> m b
convert (m x -> m b) -> m x -> m b
forall a b. (a -> b) -> a -> b
$ SPEC -> s -> m x
go SPEC
SPEC s
state
where
{-# INLINE_LATE go #-}
go :: SPEC -> s -> m x
go !SPEC
_ s
st = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> a -> m x -> m x
fstep a
x (SPEC -> s -> m x
go SPEC
SPEC s
s)
Skip s
s -> SPEC -> s -> m x
go SPEC
SPEC s
s
Step s a
Stop -> m x
final
{-# INLINE_NORMAL foldr #-}
foldr :: Monad m => (a -> b -> b) -> b -> Stream m a -> m b
foldr :: (a -> b -> b) -> b -> Stream m a -> m b
foldr a -> b -> b
f b
z = (a -> m b -> m b) -> m b -> Stream m a -> m b
forall (m :: * -> *) a b.
Monad m =>
(a -> m b -> m b) -> m b -> Stream m a -> m b
foldrM ((a -> b -> b) -> m a -> m b -> m b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> b
f (m a -> m b -> m b) -> (a -> m a) -> a -> m b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return) (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
z)
{-# INLINE_NORMAL foldrS #-}
foldrS
:: Monad m
=> (a -> Stream m b -> Stream m b)
-> Stream m b
-> Stream m a
-> Stream m b
foldrS :: (a -> Stream m b -> Stream m b)
-> Stream m b -> Stream m a -> Stream m b
foldrS a -> Stream m b -> Stream m b
f Stream m b
final (Stream State Stream m a -> s -> m (Step s a)
step s
state) = SPEC -> s -> Stream m b
go SPEC
SPEC s
state
where
{-# INLINE_LATE go #-}
go :: SPEC -> s -> Stream m b
go !SPEC
_ s
st = do
Step s a
r <- m (Step s a) -> Stream m (Step s a)
forall (m :: * -> *) a. Applicative m => m a -> Stream m a
fromEffect (m (Step s a) -> Stream m (Step s a))
-> m (Step s a) -> Stream m (Step s a)
forall a b. (a -> b) -> a -> b
$ State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> a -> Stream m b -> Stream m b
f a
x (SPEC -> s -> Stream m b
go SPEC
SPEC s
s)
Skip s
s -> SPEC -> s -> Stream m b
go SPEC
SPEC s
s
Step s a
Stop -> Stream m b
final
{-# INLINE_NORMAL foldrT #-}
foldrT :: (Monad m, Monad (t m), MonadTrans t)
=> (a -> t m b -> t m b) -> t m b -> Stream m a -> t m b
foldrT :: (a -> t m b -> t m b) -> t m b -> Stream m a -> t m b
foldrT a -> t m b -> t m b
f t m b
final (Stream State Stream m a -> s -> m (Step s a)
step s
state) = SPEC -> s -> t m b
go SPEC
SPEC s
state
where
{-# INLINE_LATE go #-}
go :: SPEC -> s -> t m b
go !SPEC
_ s
st = do
Step s a
r <- m (Step s a) -> t m (Step s a)
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m (Step s a) -> t m (Step s a)) -> m (Step s a) -> t m (Step s a)
forall a b. (a -> b) -> a -> b
$ State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> a -> t m b -> t m b
f a
x (SPEC -> s -> t m b
go SPEC
SPEC s
s)
Skip s
s -> SPEC -> s -> t m b
go SPEC
SPEC s
s
Step s a
Stop -> t m b
final
{-# INLINE_NORMAL foldlMx' #-}
foldlMx' :: Monad m => (x -> a -> m x) -> m x -> (x -> m b) -> Stream m a -> m b
foldlMx' :: (x -> a -> m x) -> m x -> (x -> m b) -> Stream m a -> m b
foldlMx' x -> a -> m x
fstep m x
begin x -> m b
done (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
m x
begin m x -> (x -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \x
x -> SPEC -> x -> s -> m b
go SPEC
SPEC x
x s
state
where
{-# INLINE_LATE go #-}
go :: SPEC -> x -> s -> m b
go !SPEC
_ x
acc s
st = x
acc x -> m b -> m b
`seq` do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> do
x
acc' <- x -> a -> m x
fstep x
acc a
x
SPEC -> x -> s -> m b
go SPEC
SPEC x
acc' s
s
Skip s
s -> SPEC -> x -> s -> m b
go SPEC
SPEC x
acc s
s
Step s a
Stop -> x -> m b
done x
acc
{-# INLINE foldlx' #-}
foldlx' :: Monad m => (x -> a -> x) -> x -> (x -> b) -> Stream m a -> m b
foldlx' :: (x -> a -> x) -> x -> (x -> b) -> Stream m a -> m b
foldlx' x -> a -> x
fstep x
begin x -> b
done =
(x -> a -> m x) -> m x -> (x -> m b) -> Stream m a -> m b
forall (m :: * -> *) x a b.
Monad m =>
(x -> a -> m x) -> m x -> (x -> m b) -> Stream m a -> m b
foldlMx' (\x
b a
a -> x -> m x
forall (m :: * -> *) a. Monad m => a -> m a
return (x -> a -> x
fstep x
b a
a)) (x -> m x
forall (m :: * -> *) a. Monad m => a -> m a
return x
begin) (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> (x -> b) -> x -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. x -> b
done)
{-# INLINE_NORMAL foldlM' #-}
foldlM' :: Monad m => (b -> a -> m b) -> m b -> Stream m a -> m b
foldlM' :: (b -> a -> m b) -> m b -> Stream m a -> m b
foldlM' b -> a -> m b
fstep m b
mbegin (Stream State Stream m a -> s -> m (Step s a)
step s
state) = do
b
begin <- m b
mbegin
SPEC -> b -> s -> m b
go SPEC
SPEC b
begin s
state
where
{-# INLINE_LATE go #-}
go :: SPEC -> b -> s -> m b
go !SPEC
_ b
acc s
st = b
acc b -> m b -> m b
`seq` do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
x s
s -> do
b
acc' <- b -> a -> m b
fstep b
acc a
x
SPEC -> b -> s -> m b
go SPEC
SPEC b
acc' s
s
Skip s
s -> SPEC -> b -> s -> m b
go SPEC
SPEC b
acc s
s
Step s a
Stop -> b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
acc
{-# INLINE foldl' #-}
foldl' :: Monad m => (b -> a -> b) -> b -> Stream m a -> m b
foldl' :: (b -> a -> b) -> b -> Stream m a -> m b
foldl' b -> a -> b
fstep b
begin = (b -> a -> m b) -> m b -> Stream m a -> m b
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> m b) -> m b -> Stream m a -> m b
foldlM' (\b
b a
a -> b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> a -> b
fstep b
b a
a)) (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
begin)
{-# INLINE_LATE drain #-}
drain :: Monad m => Stream m a -> m ()
drain :: Stream m a -> m ()
drain (Stream State Stream m a -> s -> m (Step s a)
step s
state) = SPEC -> s -> m ()
go SPEC
SPEC s
state
where
go :: SPEC -> s -> m ()
go !SPEC
_ s
st = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st
case Step s a
r of
Yield a
_ s
s -> SPEC -> s -> m ()
go SPEC
SPEC s
s
Skip s
s -> SPEC -> s -> m ()
go SPEC
SPEC s
s
Step s a
Stop -> () -> m ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
{-# INLINE_NORMAL toList #-}
toList :: Monad m => Stream m a -> m [a]
toList :: Stream m a -> m [a]
toList = (a -> [a] -> [a]) -> [a] -> Stream m a -> m [a]
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> b) -> b -> Stream m a -> m b
foldr (:) []
{-# INLINE_LATE toListFB #-}
toListFB :: (a -> b -> b) -> b -> Stream Identity a -> b
toListFB :: (a -> b -> b) -> b -> Stream Identity a -> b
toListFB a -> b -> b
c b
n (Stream State Stream Identity a -> s -> Identity (Step s a)
step s
state) = s -> b
go s
state
where
go :: s -> b
go s
st = case Identity (Step s a) -> Step s a
forall a. Identity a -> a
runIdentity (State Stream Identity a -> s -> Identity (Step s a)
step State Stream Identity a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
st) of
Yield a
x s
s -> a
x a -> b -> b
`c` s -> b
go s
s
Skip s
s -> s -> b
go s
s
Step s a
Stop -> b
n
{-# RULES "toList Identity" toList = toListId #-}
{-# INLINE_EARLY toListId #-}
toListId :: Stream Identity a -> Identity [a]
toListId :: Stream Identity a -> Identity [a]
toListId Stream Identity a
s = [a] -> Identity [a]
forall a. a -> Identity a
Identity ([a] -> Identity [a]) -> [a] -> Identity [a]
forall a b. (a -> b) -> a -> b
$ (forall b. (a -> b -> b) -> b -> b) -> [a]
forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
build (\a -> b -> b
c b
n -> (a -> b -> b) -> b -> Stream Identity a -> b
forall a b. (a -> b -> b) -> b -> Stream Identity a -> b
toListFB a -> b -> b
c b
n Stream Identity a
s)
{-# INLINE_NORMAL eqBy #-}
eqBy :: Monad m => (a -> b -> Bool) -> Stream m a -> Stream m b -> m Bool
eqBy :: (a -> b -> Bool) -> Stream m a -> Stream m b -> m Bool
eqBy a -> b -> Bool
eq (Stream State Stream m a -> s -> m (Step s a)
step1 s
t1) (Stream State Stream m b -> s -> m (Step s b)
step2 s
t2) = SPEC -> s -> s -> m Bool
eq_loop0 SPEC
SPEC s
t1 s
t2
where
eq_loop0 :: SPEC -> s -> s -> m Bool
eq_loop0 !SPEC
_ s
s1 s
s2 = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
s1
case Step s a
r of
Yield a
x s
s1' -> SPEC -> a -> s -> s -> m Bool
eq_loop1 SPEC
SPEC a
x s
s1' s
s2
Skip s
s1' -> SPEC -> s -> s -> m Bool
eq_loop0 SPEC
SPEC s
s1' s
s2
Step s a
Stop -> s -> m Bool
eq_null s
s2
eq_loop1 :: SPEC -> a -> s -> s -> m Bool
eq_loop1 !SPEC
_ a
x s
s1 s
s2 = do
Step s b
r <- State Stream m b -> s -> m (Step s b)
step2 State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
s2
case Step s b
r of
Yield b
y s
s2'
| a -> b -> Bool
eq a
x b
y -> SPEC -> s -> s -> m Bool
eq_loop0 SPEC
SPEC s
s1 s
s2'
| Bool
otherwise -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Skip s
s2' -> SPEC -> a -> s -> s -> m Bool
eq_loop1 SPEC
SPEC a
x s
s1 s
s2'
Step s b
Stop -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
eq_null :: s -> m Bool
eq_null s
s2 = do
Step s b
r <- State Stream m b -> s -> m (Step s b)
step2 State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
s2
case Step s b
r of
Yield b
_ s
_ -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Skip s
s2' -> s -> m Bool
eq_null s
s2'
Step s b
Stop -> Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
{-# INLINE_NORMAL cmpBy #-}
cmpBy
:: Monad m
=> (a -> b -> Ordering) -> Stream m a -> Stream m b -> m Ordering
cmpBy :: (a -> b -> Ordering) -> Stream m a -> Stream m b -> m Ordering
cmpBy a -> b -> Ordering
cmp (Stream State Stream m a -> s -> m (Step s a)
step1 s
t1) (Stream State Stream m b -> s -> m (Step s b)
step2 s
t2) = SPEC -> s -> s -> m Ordering
cmp_loop0 SPEC
SPEC s
t1 s
t2
where
cmp_loop0 :: SPEC -> s -> s -> m Ordering
cmp_loop0 !SPEC
_ s
s1 s
s2 = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step1 State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
s1
case Step s a
r of
Yield a
x s
s1' -> SPEC -> a -> s -> s -> m Ordering
cmp_loop1 SPEC
SPEC a
x s
s1' s
s2
Skip s
s1' -> SPEC -> s -> s -> m Ordering
cmp_loop0 SPEC
SPEC s
s1' s
s2
Step s a
Stop -> s -> m Ordering
cmp_null s
s2
cmp_loop1 :: SPEC -> a -> s -> s -> m Ordering
cmp_loop1 !SPEC
_ a
x s
s1 s
s2 = do
Step s b
r <- State Stream m b -> s -> m (Step s b)
step2 State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
s2
case Step s b
r of
Yield b
y s
s2' -> case a
x a -> b -> Ordering
`cmp` b
y of
Ordering
EQ -> SPEC -> s -> s -> m Ordering
cmp_loop0 SPEC
SPEC s
s1 s
s2'
Ordering
c -> Ordering -> m Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
c
Skip s
s2' -> SPEC -> a -> s -> s -> m Ordering
cmp_loop1 SPEC
SPEC a
x s
s1 s
s2'
Step s b
Stop -> Ordering -> m Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
GT
cmp_null :: s -> m Ordering
cmp_null s
s2 = do
Step s b
r <- State Stream m b -> s -> m (Step s b)
step2 State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a. State t m a
defState s
s2
case Step s b
r of
Yield b
_ s
_ -> Ordering -> m Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
LT
Skip s
s2' -> s -> m Ordering
cmp_null s
s2'
Step s b
Stop -> Ordering -> m Ordering
forall (m :: * -> *) a. Monad m => a -> m a
return Ordering
EQ
{-# INLINE_NORMAL mapM #-}
mapM :: Monad m => (a -> m b) -> Stream m a -> Stream m b
mapM :: (a -> m b) -> Stream m a -> Stream m b
mapM a -> m b
f (Stream State Stream m a -> s -> m (Step s a)
step s
state) = (State Stream m b -> s -> m (Step s b)) -> s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b -> s -> m (Step s b)
forall (m :: * -> *) a. State Stream m a -> s -> m (Step s b)
step' s
state
where
{-# INLINE_LATE step' #-}
step' :: State Stream m a -> s -> m (Step s b)
step' State Stream m a
gst s
st = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
case Step s a
r of
Yield a
x s
s -> a -> m b
f a
x m b -> (b -> m (Step s b)) -> m (Step s b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \b
a -> Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ b -> s -> Step s b
forall s a. a -> s -> Step s a
Yield b
a s
s
Skip s
s -> Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s a. s -> Step s a
Skip s
s
Step s a
Stop -> Step s b -> m (Step s b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step s b
forall s a. Step s a
Stop
{-# INLINE map #-}
map :: Monad m => (a -> b) -> Stream m a -> Stream m b
map :: (a -> b) -> Stream m a -> Stream m b
map a -> b
f = (a -> m b) -> Stream m a -> Stream m b
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Stream m a -> Stream m b
mapM (b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> (a -> b) -> a -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f)
instance Functor m => Functor (Stream m) where
{-# INLINE fmap #-}
fmap :: (a -> b) -> Stream m a -> Stream m b
fmap a -> b
f (Stream State Stream m a -> s -> m (Step s a)
step s
state) = (State Stream m b -> s -> m (Step s b)) -> s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b -> s -> m (Step s b)
forall (m :: * -> *) a. State Stream m a -> s -> m (Step s b)
step' s
state
where
{-# INLINE_LATE step' #-}
step' :: State Stream m a -> s -> m (Step s b)
step' State Stream m a
gst s
st = (Step s a -> Step s b) -> m (Step s a) -> m (Step s b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> Step s a -> Step s b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st)
{-# INLINE (<$) #-}
<$ :: a -> Stream m b -> Stream m a
(<$) = (b -> a) -> Stream m b -> Stream m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((b -> a) -> Stream m b -> Stream m a)
-> (a -> b -> a) -> a -> Stream m b -> Stream m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b -> a
forall a b. a -> b -> a
const
{-# INLINE_NORMAL take #-}
take :: Applicative m => Int -> Stream m a -> Stream m a
take :: Int -> Stream m a -> Stream m a
take Int
n (Stream State Stream m a -> s -> m (Step s a)
step s
state) = Int
n Int -> Stream m a -> Stream m a
`seq` (State Stream m a -> (s, Int) -> m (Step (s, Int) a))
-> (s, Int) -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> (s, Int) -> m (Step (s, Int) a)
step' (s
state, Int
0)
where
{-# INLINE_LATE step' #-}
step' :: State Stream m a -> (s, Int) -> m (Step (s, Int) a)
step' State Stream m a
gst (s
st, Int
i) | Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n = do
(\case
Yield a
x s
s -> a -> (s, Int) -> Step (s, Int) a
forall s a. a -> s -> Step s a
Yield a
x (s
s, Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
Skip s
s -> (s, Int) -> Step (s, Int) a
forall s a. s -> Step s a
Skip (s
s, Int
i)
Step s a
Stop -> Step (s, Int) a
forall s a. Step s a
Stop) (Step s a -> Step (s, Int) a)
-> m (Step s a) -> m (Step (s, Int) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> State Stream m a -> s -> m (Step s a)
step State Stream m a
gst s
st
step' State Stream m a
_ (s
_, Int
_) = Step (s, Int) a -> m (Step (s, Int) a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Step (s, Int) a
forall s a. Step s a
Stop
{-# INLINE_NORMAL takeWhileM #-}
takeWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
takeWhileM :: (a -> m Bool) -> Stream m a -> Stream m a
takeWhileM a -> m Bool
f (Stream State Stream m a -> s -> m (Step s a)
step s
state) = (State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> s -> m (Step s a)
step' s
state
where
{-# INLINE_LATE step' #-}
step' :: State Stream m a -> s -> m (Step s a)
step' State Stream m a
gst s
st = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
gst s
st
case Step s a
r of
Yield a
x s
s -> do
Bool
b <- a -> m Bool
f a
x
Step s a -> m (Step s a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s a -> m (Step s a)) -> Step s a -> m (Step s a)
forall a b. (a -> b) -> a -> b
$ if Bool
b then a -> s -> Step s a
forall s a. a -> s -> Step s a
Yield a
x s
s else Step s a
forall s a. Step s a
Stop
Skip s
s -> Step s a -> m (Step s a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s a -> m (Step s a)) -> Step s a -> m (Step s a)
forall a b. (a -> b) -> a -> b
$ s -> Step s a
forall s a. s -> Step s a
Skip s
s
Step s a
Stop -> Step s a -> m (Step s a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step s a
forall s a. Step s a
Stop
{-# INLINE takeWhile #-}
takeWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
takeWhile :: (a -> Bool) -> Stream m a -> Stream m a
takeWhile a -> Bool
f = (a -> m Bool) -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Stream m a -> Stream m a
takeWhileM (Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> (a -> Bool) -> a -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Bool
f)
{-# INLINE_NORMAL takeEndByM #-}
takeEndByM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
takeEndByM :: (a -> m Bool) -> Stream m a -> Stream m a
takeEndByM a -> m Bool
f (Stream State Stream m a -> s -> m (Step s a)
step s
state) = (State Stream m a -> Maybe s -> m (Step (Maybe s) a))
-> Maybe s -> Stream m a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m a -> Maybe s -> m (Step (Maybe s) a)
step' (s -> Maybe s
forall a. a -> Maybe a
Just s
state)
where
{-# INLINE_LATE step' #-}
step' :: State Stream m a -> Maybe s -> m (Step (Maybe s) a)
step' State Stream m a
gst (Just s
st) = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step State Stream m a
gst s
st
case Step s a
r of
Yield a
x s
s -> do
Bool
b <- a -> m Bool
f a
x
Step (Maybe s) a -> m (Step (Maybe s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe s) a -> m (Step (Maybe s) a))
-> Step (Maybe s) a -> m (Step (Maybe s) a)
forall a b. (a -> b) -> a -> b
$
if Bool -> Bool
not Bool
b
then a -> Maybe s -> Step (Maybe s) a
forall s a. a -> s -> Step s a
Yield a
x (s -> Maybe s
forall a. a -> Maybe a
Just s
s)
else a -> Maybe s -> Step (Maybe s) a
forall s a. a -> s -> Step s a
Yield a
x Maybe s
forall a. Maybe a
Nothing
Skip s
s -> Step (Maybe s) a -> m (Step (Maybe s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe s) a -> m (Step (Maybe s) a))
-> Step (Maybe s) a -> m (Step (Maybe s) a)
forall a b. (a -> b) -> a -> b
$ Maybe s -> Step (Maybe s) a
forall s a. s -> Step s a
Skip (s -> Maybe s
forall a. a -> Maybe a
Just s
s)
Step s a
Stop -> Step (Maybe s) a -> m (Step (Maybe s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (Maybe s) a
forall s a. Step s a
Stop
step' State Stream m a
_ Maybe s
Nothing = Step (Maybe s) a -> m (Step (Maybe s) a)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (Maybe s) a
forall s a. Step s a
Stop
{-# INLINE takeEndBy #-}
takeEndBy :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
takeEndBy :: (a -> Bool) -> Stream m a -> Stream m a
takeEndBy a -> Bool
f = (a -> m Bool) -> Stream m a -> Stream m a
forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Stream m a -> Stream m a
takeEndByM (Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> (a -> Bool) -> a -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Bool
f)
{-# INLINE_NORMAL concatAp #-}
concatAp :: Functor f => Stream f (a -> b) -> Stream f a -> Stream f b
concatAp :: Stream f (a -> b) -> Stream f a -> Stream f b
concatAp (Stream State Stream f (a -> b) -> s -> f (Step s (a -> b))
stepa s
statea) (Stream State Stream f a -> s -> f (Step s a)
stepb s
stateb) =
(State Stream f b
-> Either s (a -> b, s, s) -> f (Step (Either s (a -> b, s, s)) b))
-> Either s (a -> b, s, s) -> Stream f b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream f b
-> Either s (a -> b, s, s) -> f (Step (Either s (a -> b, s, s)) b)
forall (m :: * -> *) a.
State Stream m a
-> Either s (a -> b, s, s) -> f (Step (Either s (a -> b, s, s)) b)
step' (s -> Either s (a -> b, s, s)
forall a b. a -> Either a b
Left s
statea)
where
{-# INLINE_LATE step' #-}
step' :: State Stream m a
-> Either s (a -> b, s, s) -> f (Step (Either s (a -> b, s, s)) b)
step' State Stream m a
gst (Left s
st) = (Step s (a -> b) -> Step (Either s (a -> b, s, s)) b)
-> f (Step s (a -> b)) -> f (Step (Either s (a -> b, s, s)) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
(\case
Yield a -> b
f s
s -> Either s (a -> b, s, s) -> Step (Either s (a -> b, s, s)) b
forall s a. s -> Step s a
Skip ((a -> b, s, s) -> Either s (a -> b, s, s)
forall a b. b -> Either a b
Right (a -> b
f, s
s, s
stateb))
Skip s
s -> Either s (a -> b, s, s) -> Step (Either s (a -> b, s, s)) b
forall s a. s -> Step s a
Skip (s -> Either s (a -> b, s, s)
forall a b. a -> Either a b
Left s
s)
Step s (a -> b)
Stop -> Step (Either s (a -> b, s, s)) b
forall s a. Step s a
Stop)
(State Stream f (a -> b) -> s -> f (Step s (a -> b))
stepa (State Stream m a -> State Stream f (a -> b)
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st)
step' State Stream m a
gst (Right (a -> b
f, s
os, s
st)) = (Step s a -> Step (Either s (a -> b, s, s)) b)
-> f (Step s a) -> f (Step (Either s (a -> b, s, s)) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
(\case
Yield a
a s
s -> b -> Either s (a -> b, s, s) -> Step (Either s (a -> b, s, s)) b
forall s a. a -> s -> Step s a
Yield (a -> b
f a
a) ((a -> b, s, s) -> Either s (a -> b, s, s)
forall a b. b -> Either a b
Right (a -> b
f, s
os, s
s))
Skip s
s -> Either s (a -> b, s, s) -> Step (Either s (a -> b, s, s)) b
forall s a. s -> Step s a
Skip ((a -> b, s, s) -> Either s (a -> b, s, s)
forall a b. b -> Either a b
Right (a -> b
f,s
os, s
s))
Step s a
Stop -> Either s (a -> b, s, s) -> Step (Either s (a -> b, s, s)) b
forall s a. s -> Step s a
Skip (s -> Either s (a -> b, s, s)
forall a b. a -> Either a b
Left s
os))
(State Stream f a -> s -> f (Step s a)
stepb (State Stream m a -> State Stream f a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st)
{-# INLINE_NORMAL apSequence #-}
apSequence :: Functor f => Stream f a -> Stream f b -> Stream f b
apSequence :: Stream f a -> Stream f b -> Stream f b
apSequence (Stream State Stream f a -> s -> f (Step s a)
stepa s
statea) (Stream State Stream f b -> s -> f (Step s b)
stepb s
stateb) =
(State Stream f b
-> Either s (s, s) -> f (Step (Either s (s, s)) b))
-> Either s (s, s) -> Stream f b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream f b -> Either s (s, s) -> f (Step (Either s (s, s)) b)
step (s -> Either s (s, s)
forall a b. a -> Either a b
Left s
statea)
where
{-# INLINE_LATE step #-}
step :: State Stream f b -> Either s (s, s) -> f (Step (Either s (s, s)) b)
step State Stream f b
gst (Left s
st) =
(Step s a -> Step (Either s (s, s)) b)
-> f (Step s a) -> f (Step (Either s (s, s)) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
(\case
Yield a
_ s
s -> Either s (s, s) -> Step (Either s (s, s)) b
forall s a. s -> Step s a
Skip ((s, s) -> Either s (s, s)
forall a b. b -> Either a b
Right (s
s, s
stateb))
Skip s
s -> Either s (s, s) -> Step (Either s (s, s)) b
forall s a. s -> Step s a
Skip (s -> Either s (s, s)
forall a b. a -> Either a b
Left s
s)
Step s a
Stop -> Step (Either s (s, s)) b
forall s a. Step s a
Stop)
(State Stream f a -> s -> f (Step s a)
stepa (State Stream f b -> State Stream f a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream f b
gst) s
st)
step State Stream f b
gst (Right (s
ostate, s
st)) =
(Step s b -> Step (Either s (s, s)) b)
-> f (Step s b) -> f (Step (Either s (s, s)) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
(\case
Yield b
b s
s -> b -> Either s (s, s) -> Step (Either s (s, s)) b
forall s a. a -> s -> Step s a
Yield b
b ((s, s) -> Either s (s, s)
forall a b. b -> Either a b
Right (s
ostate, s
s))
Skip s
s -> Either s (s, s) -> Step (Either s (s, s)) b
forall s a. s -> Step s a
Skip ((s, s) -> Either s (s, s)
forall a b. b -> Either a b
Right (s
ostate, s
s))
Step s b
Stop -> Either s (s, s) -> Step (Either s (s, s)) b
forall s a. s -> Step s a
Skip (s -> Either s (s, s)
forall a b. a -> Either a b
Left s
ostate))
(State Stream f b -> s -> f (Step s b)
stepb State Stream f b
gst s
st)
{-# INLINE_NORMAL apDiscardSnd #-}
apDiscardSnd :: Functor f => Stream f a -> Stream f b -> Stream f a
apDiscardSnd :: Stream f a -> Stream f b -> Stream f a
apDiscardSnd (Stream State Stream f a -> s -> f (Step s a)
stepa s
statea) (Stream State Stream f b -> s -> f (Step s b)
stepb s
stateb) =
(State Stream f a
-> Either s (s, s, a) -> f (Step (Either s (s, s, a)) a))
-> Either s (s, s, a) -> Stream f a
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream f a
-> Either s (s, s, a) -> f (Step (Either s (s, s, a)) a)
step (s -> Either s (s, s, a)
forall a b. a -> Either a b
Left s
statea)
where
{-# INLINE_LATE step #-}
step :: State Stream f a
-> Either s (s, s, a) -> f (Step (Either s (s, s, a)) a)
step State Stream f a
gst (Left s
st) =
(Step s a -> Step (Either s (s, s, a)) a)
-> f (Step s a) -> f (Step (Either s (s, s, a)) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
(\case
Yield a
b s
s -> Either s (s, s, a) -> Step (Either s (s, s, a)) a
forall s a. s -> Step s a
Skip ((s, s, a) -> Either s (s, s, a)
forall a b. b -> Either a b
Right (s
s, s
stateb, a
b))
Skip s
s -> Either s (s, s, a) -> Step (Either s (s, s, a)) a
forall s a. s -> Step s a
Skip (s -> Either s (s, s, a)
forall a b. a -> Either a b
Left s
s)
Step s a
Stop -> Step (Either s (s, s, a)) a
forall s a. Step s a
Stop)
(State Stream f a -> s -> f (Step s a)
stepa State Stream f a
gst s
st)
step State Stream f a
gst (Right (s
ostate, s
st, a
b)) =
(Step s b -> Step (Either s (s, s, a)) a)
-> f (Step s b) -> f (Step (Either s (s, s, a)) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
(\case
Yield b
_ s
s -> a -> Either s (s, s, a) -> Step (Either s (s, s, a)) a
forall s a. a -> s -> Step s a
Yield a
b ((s, s, a) -> Either s (s, s, a)
forall a b. b -> Either a b
Right (s
ostate, s
s, a
b))
Skip s
s -> Either s (s, s, a) -> Step (Either s (s, s, a)) a
forall s a. s -> Step s a
Skip ((s, s, a) -> Either s (s, s, a)
forall a b. b -> Either a b
Right (s
ostate, s
s, a
b))
Step s b
Stop -> Either s (s, s, a) -> Step (Either s (s, s, a)) a
forall s a. s -> Step s a
Skip (s -> Either s (s, s, a)
forall a b. a -> Either a b
Left s
ostate))
(State Stream f b -> s -> f (Step s b)
stepb (State Stream f a -> State Stream f b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream f a
gst) s
st)
instance Applicative f => Applicative (Stream f) where
{-# INLINE pure #-}
pure :: a -> Stream f a
pure = a -> Stream f a
forall (m :: * -> *) a. Applicative m => a -> Stream m a
fromPure
{-# INLINE (<*>) #-}
<*> :: Stream f (a -> b) -> Stream f a -> Stream f b
(<*>) = Stream f (a -> b) -> Stream f a -> Stream f b
forall (f :: * -> *) a b.
Functor f =>
Stream f (a -> b) -> Stream f a -> Stream f b
concatAp
#if MIN_VERSION_base(4,10,0)
{-# INLINE liftA2 #-}
liftA2 :: (a -> b -> c) -> Stream f a -> Stream f b -> Stream f c
liftA2 a -> b -> c
f Stream f a
x = Stream f (b -> c) -> Stream f b -> Stream f c
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>) ((a -> b -> c) -> Stream f a -> Stream f (b -> c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b -> c
f Stream f a
x)
#endif
{-# INLINE (*>) #-}
*> :: Stream f a -> Stream f b -> Stream f b
(*>) = Stream f a -> Stream f b -> Stream f b
forall (f :: * -> *) a b.
Functor f =>
Stream f a -> Stream f b -> Stream f b
apSequence
{-# INLINE (<*) #-}
<* :: Stream f a -> Stream f b -> Stream f a
(<*) = Stream f a -> Stream f b -> Stream f a
forall (f :: * -> *) a b.
Functor f =>
Stream f a -> Stream f b -> Stream f a
apDiscardSnd
data ConcatMapUState o i =
ConcatMapUOuter o
| ConcatMapUInner o i
{-# INLINE_NORMAL unfoldMany #-}
unfoldMany :: Monad m => Unfold m a b -> Stream m a -> Stream m b
unfoldMany :: Unfold m a b -> Stream m a -> Stream m b
unfoldMany (Unfold s -> m (Step s b)
istep a -> m s
inject) (Stream State Stream m a -> s -> m (Step s a)
ostep s
ost) =
(State Stream m b
-> ConcatMapUState s s -> m (Step (ConcatMapUState s s) b))
-> ConcatMapUState s s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> ConcatMapUState s s -> m (Step (ConcatMapUState s s) b)
forall (m :: * -> *) a.
State Stream m a
-> ConcatMapUState s s -> m (Step (ConcatMapUState s s) b)
step (s -> ConcatMapUState s s
forall o i. o -> ConcatMapUState o i
ConcatMapUOuter s
ost)
where
{-# INLINE_LATE step #-}
step :: State Stream m a
-> ConcatMapUState s s -> m (Step (ConcatMapUState s s) b)
step State Stream m a
gst (ConcatMapUOuter s
o) = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
ostep (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
o
case Step s a
r of
Yield a
a s
o' -> do
s
i <- a -> m s
inject a
a
s
i s
-> m (Step (ConcatMapUState s s) b)
-> m (Step (ConcatMapUState s s) b)
`seq` Step (ConcatMapUState s s) b -> m (Step (ConcatMapUState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (ConcatMapUState s s -> Step (ConcatMapUState s s) b
forall s a. s -> Step s a
Skip (s -> s -> ConcatMapUState s s
forall o i. o -> i -> ConcatMapUState o i
ConcatMapUInner s
o' s
i))
Skip s
o' -> Step (ConcatMapUState s s) b -> m (Step (ConcatMapUState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatMapUState s s) b -> m (Step (ConcatMapUState s s) b))
-> Step (ConcatMapUState s s) b -> m (Step (ConcatMapUState s s) b)
forall a b. (a -> b) -> a -> b
$ ConcatMapUState s s -> Step (ConcatMapUState s s) b
forall s a. s -> Step s a
Skip (s -> ConcatMapUState s s
forall o i. o -> ConcatMapUState o i
ConcatMapUOuter s
o')
Step s a
Stop -> Step (ConcatMapUState s s) b -> m (Step (ConcatMapUState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (ConcatMapUState s s) b
forall s a. Step s a
Stop
step State Stream m a
_ (ConcatMapUInner s
o s
i) = do
Step s b
r <- s -> m (Step s b)
istep s
i
Step (ConcatMapUState s s) b -> m (Step (ConcatMapUState s s) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (ConcatMapUState s s) b -> m (Step (ConcatMapUState s s) b))
-> Step (ConcatMapUState s s) b -> m (Step (ConcatMapUState s s) b)
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
Yield b
x s
i' -> b -> ConcatMapUState s s -> Step (ConcatMapUState s s) b
forall s a. a -> s -> Step s a
Yield b
x (s -> s -> ConcatMapUState s s
forall o i. o -> i -> ConcatMapUState o i
ConcatMapUInner s
o s
i')
Skip s
i' -> ConcatMapUState s s -> Step (ConcatMapUState s s) b
forall s a. s -> Step s a
Skip (s -> s -> ConcatMapUState s s
forall o i. o -> i -> ConcatMapUState o i
ConcatMapUInner s
o s
i')
Step s b
Stop -> ConcatMapUState s s -> Step (ConcatMapUState s s) b
forall s a. s -> Step s a
Skip (s -> ConcatMapUState s s
forall o i. o -> ConcatMapUState o i
ConcatMapUOuter s
o)
{-# INLINE_NORMAL concatMapM #-}
concatMapM :: Monad m => (a -> m (Stream m b)) -> Stream m a -> Stream m b
concatMapM :: (a -> m (Stream m b)) -> Stream m a -> Stream m b
concatMapM a -> m (Stream m b)
f (Stream State Stream m a -> s -> m (Step s a)
step s
state) = (State Stream m b
-> Either s (Stream m b, s)
-> m (Step (Either s (Stream m b, s)) b))
-> Either s (Stream m b, s) -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> Either s (Stream m b, s)
-> m (Step (Either s (Stream m b, s)) b)
forall (m :: * -> *) a.
State Stream m a
-> Either s (Stream m b, s)
-> m (Step (Either s (Stream m b, s)) b)
step' (s -> Either s (Stream m b, s)
forall a b. a -> Either a b
Left s
state)
where
{-# INLINE_LATE step' #-}
step' :: State Stream m a
-> Either s (Stream m b, s)
-> m (Step (Either s (Stream m b, s)) b)
step' State Stream m a
gst (Left s
st) = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
case Step s a
r of
Yield a
a s
s -> do
Stream m b
b_stream <- a -> m (Stream m b)
f a
a
Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b))
-> Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall a b. (a -> b) -> a -> b
$ Either s (Stream m b, s) -> Step (Either s (Stream m b, s)) b
forall s a. s -> Step s a
Skip ((Stream m b, s) -> Either s (Stream m b, s)
forall a b. b -> Either a b
Right (Stream m b
b_stream, s
s))
Skip s
s -> Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b))
-> Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall a b. (a -> b) -> a -> b
$ Either s (Stream m b, s) -> Step (Either s (Stream m b, s)) b
forall s a. s -> Step s a
Skip (s -> Either s (Stream m b, s)
forall a b. a -> Either a b
Left s
s)
Step s a
Stop -> Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (Either s (Stream m b, s)) b
forall s a. Step s a
Stop
step' State Stream m a
gst (Right (UnStream State Stream m b -> s -> m (Step s b)
inner_step s
inner_st, s
st)) = do
Step s b
r <- State Stream m b -> s -> m (Step s b)
inner_step (State Stream m a -> State Stream m b
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
inner_st
case Step s b
r of
Yield b
b s
inner_s ->
Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b))
-> Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall a b. (a -> b) -> a -> b
$ b -> Either s (Stream m b, s) -> Step (Either s (Stream m b, s)) b
forall s a. a -> s -> Step s a
Yield b
b ((Stream m b, s) -> Either s (Stream m b, s)
forall a b. b -> Either a b
Right ((State Stream m b -> s -> m (Step s b)) -> s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b -> s -> m (Step s b)
inner_step s
inner_s, s
st))
Skip s
inner_s ->
Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b))
-> Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall a b. (a -> b) -> a -> b
$ Either s (Stream m b, s) -> Step (Either s (Stream m b, s)) b
forall s a. s -> Step s a
Skip ((Stream m b, s) -> Either s (Stream m b, s)
forall a b. b -> Either a b
Right ((State Stream m b -> s -> m (Step s b)) -> s -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b -> s -> m (Step s b)
inner_step s
inner_s, s
st))
Step s b
Stop -> Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b))
-> Step (Either s (Stream m b, s)) b
-> m (Step (Either s (Stream m b, s)) b)
forall a b. (a -> b) -> a -> b
$ Either s (Stream m b, s) -> Step (Either s (Stream m b, s)) b
forall s a. s -> Step s a
Skip (s -> Either s (Stream m b, s)
forall a b. a -> Either a b
Left s
st)
{-# INLINE concatMap #-}
concatMap :: Monad m => (a -> Stream m b) -> Stream m a -> Stream m b
concatMap :: (a -> Stream m b) -> Stream m a -> Stream m b
concatMap a -> Stream m b
f = (a -> m (Stream m b)) -> Stream m a -> Stream m b
forall (m :: * -> *) a b.
Monad m =>
(a -> m (Stream m b)) -> Stream m a -> Stream m b
concatMapM (Stream m b -> m (Stream m b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Stream m b -> m (Stream m b))
-> (a -> Stream m b) -> a -> m (Stream m b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Stream m b
f)
instance Monad m => Monad (Stream m) where
{-# INLINE return #-}
return :: a -> Stream m a
return = a -> Stream m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
{-# INLINE (>>=) #-}
>>= :: Stream m a -> (a -> Stream m b) -> Stream m b
(>>=) = ((a -> Stream m b) -> Stream m a -> Stream m b)
-> Stream m a -> (a -> Stream m b) -> Stream m b
forall a b c. (a -> b -> c) -> b -> a -> c
flip (a -> Stream m b) -> Stream m a -> Stream m b
forall (m :: * -> *) a b.
Monad m =>
(a -> Stream m b) -> Stream m a -> Stream m b
concatMap
{-# INLINE (>>) #-}
>> :: Stream m a -> Stream m b -> Stream m b
(>>) = Stream m a -> Stream m b -> Stream m b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
{-# ANN type FoldManyPost Fuse #-}
data FoldManyPost s fs b a
= FoldManyPostStart s
| FoldManyPostLoop s fs
| FoldManyPostYield b (FoldManyPost s fs b a)
| FoldManyPostDone
{-# INLINE_NORMAL foldManyPost #-}
foldManyPost :: Monad m => Fold m a b -> Stream m a -> Stream m b
foldManyPost :: Fold m a b -> Stream m a -> Stream m b
foldManyPost (Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
extract) (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
(State Stream m b
-> FoldManyPost s s b Any -> m (Step (FoldManyPost s s b Any) b))
-> FoldManyPost s s b Any -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> FoldManyPost s s b Any -> m (Step (FoldManyPost s s b Any) b)
forall (m :: * -> *) a a.
State Stream m a
-> FoldManyPost s s b a -> m (Step (FoldManyPost s s b a) b)
step' (s -> FoldManyPost s s b Any
forall s fs b a. s -> FoldManyPost s fs b a
FoldManyPostStart s
state)
where
{-# INLINE consume #-}
consume :: a -> s -> s -> m (Step (FoldManyPost s s b a) a)
consume a
x s
s s
fs = do
Step s b
res <- s -> a -> m (Step s b)
fstep s
fs a
x
Step (FoldManyPost s s b a) a -> m (Step (FoldManyPost s s b a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (FoldManyPost s s b a) a
-> m (Step (FoldManyPost s s b a) a))
-> Step (FoldManyPost s s b a) a
-> m (Step (FoldManyPost s s b a) a)
forall a b. (a -> b) -> a -> b
$ FoldManyPost s s b a -> Step (FoldManyPost s s b a) a
forall s a. s -> Step s a
Skip
(FoldManyPost s s b a -> Step (FoldManyPost s s b a) a)
-> FoldManyPost s s b a -> Step (FoldManyPost s s b a) a
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
FL.Done b
b -> b -> FoldManyPost s s b a -> FoldManyPost s s b a
forall s fs b a.
b -> FoldManyPost s fs b a -> FoldManyPost s fs b a
FoldManyPostYield b
b (s -> FoldManyPost s s b a
forall s fs b a. s -> FoldManyPost s fs b a
FoldManyPostStart s
s)
FL.Partial s
ps -> s -> s -> FoldManyPost s s b a
forall s fs b a. s -> fs -> FoldManyPost s fs b a
FoldManyPostLoop s
s s
ps
{-# INLINE_LATE step' #-}
step' :: State Stream m a
-> FoldManyPost s s b a -> m (Step (FoldManyPost s s b a) b)
step' State Stream m a
_ (FoldManyPostStart s
st) = do
Step s b
r <- m (Step s b)
initial
Step (FoldManyPost s s b a) b -> m (Step (FoldManyPost s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (FoldManyPost s s b a) b
-> m (Step (FoldManyPost s s b a) b))
-> Step (FoldManyPost s s b a) b
-> m (Step (FoldManyPost s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldManyPost s s b a -> Step (FoldManyPost s s b a) b
forall s a. s -> Step s a
Skip
(FoldManyPost s s b a -> Step (FoldManyPost s s b a) b)
-> FoldManyPost s s b a -> Step (FoldManyPost s s b a) b
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
FL.Done b
b -> b -> FoldManyPost s s b a -> FoldManyPost s s b a
forall s fs b a.
b -> FoldManyPost s fs b a -> FoldManyPost s fs b a
FoldManyPostYield b
b (s -> FoldManyPost s s b a
forall s fs b a. s -> FoldManyPost s fs b a
FoldManyPostStart s
st)
FL.Partial s
fs -> s -> s -> FoldManyPost s s b a
forall s fs b a. s -> fs -> FoldManyPost s fs b a
FoldManyPostLoop s
st s
fs
step' State Stream m a
gst (FoldManyPostLoop s
st s
fs) = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
case Step s a
r of
Yield a
x s
s -> a -> s -> s -> m (Step (FoldManyPost s s b a) b)
forall s a a. a -> s -> s -> m (Step (FoldManyPost s s b a) a)
consume a
x s
s s
fs
Skip s
s -> Step (FoldManyPost s s b a) b -> m (Step (FoldManyPost s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldManyPost s s b a) b
-> m (Step (FoldManyPost s s b a) b))
-> Step (FoldManyPost s s b a) b
-> m (Step (FoldManyPost s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldManyPost s s b a -> Step (FoldManyPost s s b a) b
forall s a. s -> Step s a
Skip (s -> s -> FoldManyPost s s b a
forall s fs b a. s -> fs -> FoldManyPost s fs b a
FoldManyPostLoop s
s s
fs)
Step s a
Stop -> do
b
b <- s -> m b
extract s
fs
Step (FoldManyPost s s b a) b -> m (Step (FoldManyPost s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldManyPost s s b a) b
-> m (Step (FoldManyPost s s b a) b))
-> Step (FoldManyPost s s b a) b
-> m (Step (FoldManyPost s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldManyPost s s b a -> Step (FoldManyPost s s b a) b
forall s a. s -> Step s a
Skip (b -> FoldManyPost s s b a -> FoldManyPost s s b a
forall s fs b a.
b -> FoldManyPost s fs b a -> FoldManyPost s fs b a
FoldManyPostYield b
b FoldManyPost s s b a
forall s fs b a. FoldManyPost s fs b a
FoldManyPostDone)
step' State Stream m a
_ (FoldManyPostYield b
b FoldManyPost s s b a
next) = Step (FoldManyPost s s b a) b -> m (Step (FoldManyPost s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldManyPost s s b a) b
-> m (Step (FoldManyPost s s b a) b))
-> Step (FoldManyPost s s b a) b
-> m (Step (FoldManyPost s s b a) b)
forall a b. (a -> b) -> a -> b
$ b -> FoldManyPost s s b a -> Step (FoldManyPost s s b a) b
forall s a. a -> s -> Step s a
Yield b
b FoldManyPost s s b a
next
step' State Stream m a
_ FoldManyPost s s b a
FoldManyPostDone = Step (FoldManyPost s s b a) b -> m (Step (FoldManyPost s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (FoldManyPost s s b a) b
forall s a. Step s a
Stop
{-# ANN type FoldMany Fuse #-}
data FoldMany s fs b a
= FoldManyStart s
| FoldManyFirst fs s
| FoldManyLoop s fs
| FoldManyYield b (FoldMany s fs b a)
| FoldManyDone
{-# INLINE_NORMAL foldMany #-}
foldMany :: Monad m => Fold m a b -> Stream m a -> Stream m b
foldMany :: Fold m a b -> Stream m a -> Stream m b
foldMany (Fold s -> a -> m (Step s b)
fstep m (Step s b)
initial s -> m b
extract) (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
(State Stream m b
-> FoldMany s s b Any -> m (Step (FoldMany s s b Any) b))
-> FoldMany s s b Any -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> FoldMany s s b Any -> m (Step (FoldMany s s b Any) b)
forall (m :: * -> *) a a.
State Stream m a
-> FoldMany s s b a -> m (Step (FoldMany s s b a) b)
step' (s -> FoldMany s s b Any
forall s fs b a. s -> FoldMany s fs b a
FoldManyStart s
state)
where
{-# INLINE consume #-}
consume :: a -> s -> s -> m (Step (FoldMany s s b a) a)
consume a
x s
s s
fs = do
Step s b
res <- s -> a -> m (Step s b)
fstep s
fs a
x
Step (FoldMany s s b a) a -> m (Step (FoldMany s s b a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (FoldMany s s b a) a -> m (Step (FoldMany s s b a) a))
-> Step (FoldMany s s b a) a -> m (Step (FoldMany s s b a) a)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) a
forall s a. s -> Step s a
Skip
(FoldMany s s b a -> Step (FoldMany s s b a) a)
-> FoldMany s s b a -> Step (FoldMany s s b a) a
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
FL.Done b
b -> b -> FoldMany s s b a -> FoldMany s s b a
forall s fs b a. b -> FoldMany s fs b a -> FoldMany s fs b a
FoldManyYield b
b (s -> FoldMany s s b a
forall s fs b a. s -> FoldMany s fs b a
FoldManyStart s
s)
FL.Partial s
ps -> s -> s -> FoldMany s s b a
forall s fs b a. s -> fs -> FoldMany s fs b a
FoldManyLoop s
s s
ps
{-# INLINE_LATE step' #-}
step' :: State Stream m a
-> FoldMany s s b a -> m (Step (FoldMany s s b a) b)
step' State Stream m a
_ (FoldManyStart s
st) = do
Step s b
r <- m (Step s b)
initial
Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. s -> Step s a
Skip
(FoldMany s s b a -> Step (FoldMany s s b a) b)
-> FoldMany s s b a -> Step (FoldMany s s b a) b
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
FL.Done b
b -> b -> FoldMany s s b a -> FoldMany s s b a
forall s fs b a. b -> FoldMany s fs b a -> FoldMany s fs b a
FoldManyYield b
b (s -> FoldMany s s b a
forall s fs b a. s -> FoldMany s fs b a
FoldManyStart s
st)
FL.Partial s
fs -> s -> s -> FoldMany s s b a
forall s fs b a. fs -> s -> FoldMany s fs b a
FoldManyFirst s
fs s
st
step' State Stream m a
gst (FoldManyFirst s
fs s
st) = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
case Step s a
r of
Yield a
x s
s -> a -> s -> s -> m (Step (FoldMany s s b a) b)
forall s a a. a -> s -> s -> m (Step (FoldMany s s b a) a)
consume a
x s
s s
fs
Skip s
s -> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. s -> Step s a
Skip (s -> s -> FoldMany s s b a
forall s fs b a. fs -> s -> FoldMany s fs b a
FoldManyFirst s
fs s
s)
Step s a
Stop -> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (FoldMany s s b a) b
forall s a. Step s a
Stop
step' State Stream m a
gst (FoldManyLoop s
st s
fs) = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
case Step s a
r of
Yield a
x s
s -> a -> s -> s -> m (Step (FoldMany s s b a) b)
forall s a a. a -> s -> s -> m (Step (FoldMany s s b a) a)
consume a
x s
s s
fs
Skip s
s -> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. s -> Step s a
Skip (s -> s -> FoldMany s s b a
forall s fs b a. s -> fs -> FoldMany s fs b a
FoldManyLoop s
s s
fs)
Step s a
Stop -> do
b
b <- s -> m b
extract s
fs
Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. s -> Step s a
Skip (b -> FoldMany s s b a -> FoldMany s s b a
forall s fs b a. b -> FoldMany s fs b a -> FoldMany s fs b a
FoldManyYield b
b FoldMany s s b a
forall s fs b a. FoldMany s fs b a
FoldManyDone)
step' State Stream m a
_ (FoldManyYield b
b FoldMany s s b a
next) = Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ b -> FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. a -> s -> Step s a
Yield b
b FoldMany s s b a
next
step' State Stream m a
_ FoldMany s s b a
FoldManyDone = Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (FoldMany s s b a) b
forall s a. Step s a
Stop
{-# INLINE chunksOf #-}
chunksOf :: Monad m => Int -> Fold m a b -> Stream m a -> Stream m b
chunksOf :: Int -> Fold m a b -> Stream m a -> Stream m b
chunksOf Int
n Fold m a b
f = Fold m a b -> Stream m a -> Stream m b
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Stream m a -> Stream m b
foldMany (Int -> Fold m a b -> Fold m a b
forall (m :: * -> *) a b.
Monad m =>
Int -> Fold m a b -> Fold m a b
FL.take Int
n Fold m a b
f)
{-# INLINE_NORMAL refoldMany #-}
refoldMany :: Monad m => Refold m x a b -> m x -> Stream m a -> Stream m b
refoldMany :: Refold m x a b -> m x -> Stream m a -> Stream m b
refoldMany (Refold s -> a -> m (Step s b)
fstep x -> m (Step s b)
inject s -> m b
extract) m x
action (Stream State Stream m a -> s -> m (Step s a)
step s
state) =
(State Stream m b
-> FoldMany s s b Any -> m (Step (FoldMany s s b Any) b))
-> FoldMany s s b Any -> Stream m b
forall (m :: * -> *) a s.
(State Stream m a -> s -> m (Step s a)) -> s -> Stream m a
Stream State Stream m b
-> FoldMany s s b Any -> m (Step (FoldMany s s b Any) b)
forall (m :: * -> *) a a.
State Stream m a
-> FoldMany s s b a -> m (Step (FoldMany s s b a) b)
step' (s -> FoldMany s s b Any
forall s fs b a. s -> FoldMany s fs b a
FoldManyStart s
state)
where
{-# INLINE consume #-}
consume :: a -> s -> s -> m (Step (FoldMany s s b a) a)
consume a
x s
s s
fs = do
Step s b
res <- s -> a -> m (Step s b)
fstep s
fs a
x
Step (FoldMany s s b a) a -> m (Step (FoldMany s s b a) a)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (FoldMany s s b a) a -> m (Step (FoldMany s s b a) a))
-> Step (FoldMany s s b a) a -> m (Step (FoldMany s s b a) a)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) a
forall s a. s -> Step s a
Skip
(FoldMany s s b a -> Step (FoldMany s s b a) a)
-> FoldMany s s b a -> Step (FoldMany s s b a) a
forall a b. (a -> b) -> a -> b
$ case Step s b
res of
FL.Done b
b -> b -> FoldMany s s b a -> FoldMany s s b a
forall s fs b a. b -> FoldMany s fs b a -> FoldMany s fs b a
FoldManyYield b
b (s -> FoldMany s s b a
forall s fs b a. s -> FoldMany s fs b a
FoldManyStart s
s)
FL.Partial s
ps -> s -> s -> FoldMany s s b a
forall s fs b a. s -> fs -> FoldMany s fs b a
FoldManyLoop s
s s
ps
{-# INLINE_LATE step' #-}
step' :: State Stream m a
-> FoldMany s s b a -> m (Step (FoldMany s s b a) b)
step' State Stream m a
_ (FoldManyStart s
st) = do
Step s b
r <- m x
action m x -> (x -> m (Step s b)) -> m (Step s b)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= x -> m (Step s b)
inject
Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. s -> Step s a
Skip
(FoldMany s s b a -> Step (FoldMany s s b a) b)
-> FoldMany s s b a -> Step (FoldMany s s b a) b
forall a b. (a -> b) -> a -> b
$ case Step s b
r of
FL.Done b
b -> b -> FoldMany s s b a -> FoldMany s s b a
forall s fs b a. b -> FoldMany s fs b a -> FoldMany s fs b a
FoldManyYield b
b (s -> FoldMany s s b a
forall s fs b a. s -> FoldMany s fs b a
FoldManyStart s
st)
FL.Partial s
fs -> s -> s -> FoldMany s s b a
forall s fs b a. fs -> s -> FoldMany s fs b a
FoldManyFirst s
fs s
st
step' State Stream m a
gst (FoldManyFirst s
fs s
st) = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
case Step s a
r of
Yield a
x s
s -> a -> s -> s -> m (Step (FoldMany s s b a) b)
forall s a a. a -> s -> s -> m (Step (FoldMany s s b a) a)
consume a
x s
s s
fs
Skip s
s -> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. s -> Step s a
Skip (s -> s -> FoldMany s s b a
forall s fs b a. fs -> s -> FoldMany s fs b a
FoldManyFirst s
fs s
s)
Step s a
Stop -> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (FoldMany s s b a) b
forall s a. Step s a
Stop
step' State Stream m a
gst (FoldManyLoop s
st s
fs) = do
Step s a
r <- State Stream m a -> s -> m (Step s a)
step (State Stream m a -> State Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a (n :: * -> *) b.
State t m a -> State t n b
adaptState State Stream m a
gst) s
st
case Step s a
r of
Yield a
x s
s -> a -> s -> s -> m (Step (FoldMany s s b a) b)
forall s a a. a -> s -> s -> m (Step (FoldMany s s b a) a)
consume a
x s
s s
fs
Skip s
s -> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. s -> Step s a
Skip (s -> s -> FoldMany s s b a
forall s fs b a. s -> fs -> FoldMany s fs b a
FoldManyLoop s
s s
fs)
Step s a
Stop -> do
b
b <- s -> m b
extract s
fs
Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. s -> Step s a
Skip (b -> FoldMany s s b a -> FoldMany s s b a
forall s fs b a. b -> FoldMany s fs b a -> FoldMany s fs b a
FoldManyYield b
b FoldMany s s b a
forall s fs b a. FoldMany s fs b a
FoldManyDone)
step' State Stream m a
_ (FoldManyYield b
b FoldMany s s b a
next) = Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b))
-> Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall a b. (a -> b) -> a -> b
$ b -> FoldMany s s b a -> Step (FoldMany s s b a) b
forall s a. a -> s -> Step s a
Yield b
b FoldMany s s b a
next
step' State Stream m a
_ FoldMany s s b a
FoldManyDone = Step (FoldMany s s b a) b -> m (Step (FoldMany s s b a) b)
forall (m :: * -> *) a. Monad m => a -> m a
return Step (FoldMany s s b a) b
forall s a. Step s a
Stop
instance MonadTrans Stream where
{-# INLINE lift #-}
lift :: m a -> Stream m a
lift = m a -> Stream m a
forall (m :: * -> *) a. Applicative m => m a -> Stream m a
fromEffect
instance (MonadThrow m) => MonadThrow (Stream m) where
throwM :: e -> Stream m a
throwM = m a -> Stream m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m a -> Stream m a) -> (e -> m a) -> e -> Stream m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> m a
forall (m :: * -> *) e a. (MonadThrow m, Exception e) => e -> m a
throwM