{-# LANGUAGE CPP #-}
module Streamly.Internal.Data.Fold.Tee
( Tee(..)
, toFold
)
where
import Control.Applicative (liftA2)
import Streamly.Internal.Data.Fold.Type (Fold)
import qualified Streamly.Internal.Data.Fold.Type as Fold
#include "DocTestDataFold.hs"
newtype Tee m a b =
Tee { forall (m :: * -> *) a b. Tee m a b -> Fold m a b
unTee :: Fold m a b }
deriving (forall a b. a -> Tee m a b -> Tee m a a
forall a b. (a -> b) -> Tee m a a -> Tee m a b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
forall (m :: * -> *) a a b.
Functor m =>
a -> Tee m a b -> Tee m a a
forall (m :: * -> *) a a b.
Functor m =>
(a -> b) -> Tee m a a -> Tee m a b
<$ :: forall a b. a -> Tee m a b -> Tee m a a
$c<$ :: forall (m :: * -> *) a a b.
Functor m =>
a -> Tee m a b -> Tee m a a
fmap :: forall a b. (a -> b) -> Tee m a a -> Tee m a b
$cfmap :: forall (m :: * -> *) a a b.
Functor m =>
(a -> b) -> Tee m a a -> Tee m a b
Functor)
{-# DEPRECATED toFold "Please use 'unTee' instead." #-}
toFold :: Tee m a b -> Fold m a b
toFold :: forall (m :: * -> *) a b. Tee m a b -> Fold m a b
toFold = forall (m :: * -> *) a b. Tee m a b -> Fold m a b
unTee
instance Monad m => Applicative (Tee m a) where
{-# INLINE pure #-}
pure :: forall a. a -> Tee m a a
pure a
a = forall (m :: * -> *) a b. Fold m a b -> Tee m a b
Tee (forall (m :: * -> *) b a. Applicative m => b -> Fold m a b
Fold.fromPure a
a)
{-# INLINE (<*>) #-}
<*> :: forall a b. Tee m a (a -> b) -> Tee m a a -> Tee m a b
(<*>) Tee m a (a -> b)
a Tee m a a
b = forall (m :: * -> *) a b. Fold m a b -> Tee m a b
Tee (forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
Fold.teeWith forall a b. (a -> b) -> a -> b
($) (forall (m :: * -> *) a b. Tee m a b -> Fold m a b
unTee Tee m a (a -> b)
a) (forall (m :: * -> *) a b. Tee m a b -> Fold m a b
unTee Tee m a a
b))
instance (Semigroup b, Monad m) => Semigroup (Tee m a b) where
{-# INLINE (<>) #-}
<> :: Tee m a b -> Tee m a b -> Tee m a b
(<>) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Semigroup a => a -> a -> a
(<>)
instance (Semigroup b, Monoid b, Monad m) => Monoid (Tee m a b) where
{-# INLINE mempty #-}
mempty :: Tee m a b
mempty = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Monoid a => a
mempty
{-# INLINE mappend #-}
mappend :: Tee m a b -> Tee m a b -> Tee m a b
mappend = forall a. Semigroup a => a -> a -> a
(<>)
instance (Monad m, Num b) => Num (Tee m a b) where
{-# INLINE fromInteger #-}
fromInteger :: Integer -> Tee m a b
fromInteger = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Num a => Integer -> a
fromInteger
{-# INLINE negate #-}
negate :: Tee m a b -> Tee m a b
negate = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
negate
{-# INLINE abs #-}
abs :: Tee m a b -> Tee m a b
abs = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
abs
{-# INLINE signum #-}
signum :: Tee m a b -> Tee m a b
signum = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
signum
{-# INLINE (+) #-}
+ :: Tee m a b -> Tee m a b -> Tee m a b
(+) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Num a => a -> a -> a
(+)
{-# INLINE (*) #-}
* :: Tee m a b -> Tee m a b -> Tee m a b
(*) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Num a => a -> a -> a
(*)
{-# INLINE (-) #-}
(-) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (-)
instance (Monad m, Fractional b) => Fractional (Tee m a b) where
{-# INLINE fromRational #-}
fromRational :: Rational -> Tee m a b
fromRational = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Fractional a => Rational -> a
fromRational
{-# INLINE recip #-}
recip :: Tee m a b -> Tee m a b
recip = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Fractional a => a -> a
recip
{-# INLINE (/) #-}
/ :: Tee m a b -> Tee m a b -> Tee m a b
(/) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Fractional a => a -> a -> a
(/)
instance (Monad m, Floating b) => Floating (Tee m a b) where
{-# INLINE pi #-}
pi :: Tee m a b
pi = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Floating a => a
pi
{-# INLINE exp #-}
exp :: Tee m a b -> Tee m a b
exp = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
exp
{-# INLINE sqrt #-}
sqrt :: Tee m a b -> Tee m a b
sqrt = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
sqrt
{-# INLINE log #-}
log :: Tee m a b -> Tee m a b
log = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
log
{-# INLINE sin #-}
sin :: Tee m a b -> Tee m a b
sin = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
sin
{-# INLINE tan #-}
tan :: Tee m a b -> Tee m a b
tan = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
tan
{-# INLINE cos #-}
cos :: Tee m a b -> Tee m a b
cos = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
cos
{-# INLINE asin #-}
asin :: Tee m a b -> Tee m a b
asin = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
asin
{-# INLINE atan #-}
atan :: Tee m a b -> Tee m a b
atan = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
atan
{-# INLINE acos #-}
acos :: Tee m a b -> Tee m a b
acos = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
acos
{-# INLINE sinh #-}
sinh :: Tee m a b -> Tee m a b
sinh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
sinh
{-# INLINE tanh #-}
tanh :: Tee m a b -> Tee m a b
tanh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
tanh
{-# INLINE cosh #-}
cosh :: Tee m a b -> Tee m a b
cosh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
cosh
{-# INLINE asinh #-}
asinh :: Tee m a b -> Tee m a b
asinh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
asinh
{-# INLINE atanh #-}
atanh :: Tee m a b -> Tee m a b
atanh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
atanh
{-# INLINE acosh #-}
acosh :: Tee m a b -> Tee m a b
acosh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
acosh
{-# INLINE (**) #-}
** :: Tee m a b -> Tee m a b -> Tee m a b
(**) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Floating a => a -> a -> a
(**)
{-# INLINE logBase #-}
logBase :: Tee m a b -> Tee m a b -> Tee m a b
logBase = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Floating a => a -> a -> a
logBase