{-# LANGUAGE CPP #-}
-- |
-- Module      : Streamly.Internal.Data.Fold.Combinators
-- Copyright   : (c) 2019 Composewell Technologies
--               (c) 2013 Gabriel Gonzalez
-- License     : BSD3
-- Maintainer  : streamly@composewell.com
-- Stability   : experimental
-- Portability : GHC
--
-- See "Streamly.Data.Fold" for an overview and
-- "Streamly.Internal.Data.Fold.Type" for design notes.

module Streamly.Internal.Data.Fold.Combinators
    (
    -- * Mappers
    -- | Monadic functions useful with mapM/lmapM on folds or streams.
      tracing
    , trace

    -- * Folds

    -- ** Accumulators
    -- *** Semigroups and Monoids
    , sconcat
    , mconcat
    , foldMap
    , foldMapM

    -- *** Reducers
    , drainMapM
    , the
    , mean
    , rollingHash
    , defaultSalt
    , rollingHashWithSalt
    , rollingHashFirstN
    -- , rollingHashLastN

    -- *** Saturating Reducers
    -- | 'product' terminates if it becomes 0. Other folds can theoretically
    -- saturate on bounded types, and therefore terminate, however, they will
    -- run forever on unbounded types like Integer/Double.
    , sum
    , product
    , maximumBy
    , maximum
    , minimumBy
    , minimum

    -- *** Collectors
    -- | Avoid using these folds in scalable or performance critical
    -- applications, they buffer all the input in GC memory which can be
    -- detrimental to performance if the input is large.
    , toListRev
    -- $toListRev
    , toStream
    , toStreamRev
    , topBy
    , top
    , bottomBy
    , bottom

    -- *** Scanners
    -- | Stateful transformation of the elements. Useful in combination with
    -- the 'scanMaybe' combinator. For scanners the result of the fold is
    -- usually a transformation of the current element rather than an
    -- aggregation of all elements till now.
    , latest
 -- , nthLast -- using Ring array
    , indexingWith
    , indexing
    , indexingRev
    , rollingMapM

    -- *** Filters
    -- | Useful in combination with the 'scanMaybe' combinator.
    , deleteBy
    , uniqBy
    , uniq
    , repeated
    , findIndices
    , elemIndices

    -- *** Singleton folds
    -- | Folds that terminate after consuming exactly one input element. All
    -- these can be implemented in terms of the 'maybe' fold.
    , one
    , null -- XXX not very useful and could be problematic, remove it?
    , satisfy
    , maybe

    -- *** Multi folds
    -- | Terminate after consuming one or more elements.
    , drainN
    -- , lastN
    -- , (!!)
    , indexGeneric
    , index
    , findM
    , find
    , lookup
    , findIndex
    , elemIndex
    , elem
    , notElem
    , all
    , any
    , and
    , or

    -- ** Trimmers
    -- | Useful in combination with the 'scanMaybe' combinator.
    , takingEndByM
    , takingEndBy
    , takingEndByM_
    , takingEndBy_
    , droppingWhileM
    , droppingWhile
    , prune

    -- * Running A Fold
    , drive
    -- , breakStream

    -- * Building Incrementally
    , addStream

    -- * Combinators
    -- ** Utilities
    , with

    -- ** Mapping on Input
    , transform

    -- ** Sliding Window
    , slide2

    -- ** Scanning Input
    , scan
    , scanMany
    , indexed

    -- ** Zipping Input
    , zipStreamWithM
    , zipStream

    -- ** Filtering Input
    , mapMaybeM
    , mapMaybe
    , sampleFromthen

    {-
    -- ** Insertion
    -- | Insertion adds more elements to the stream.

    , insertBy
    , intersperseM

    -- ** Reordering
    , reverse
    -}

    -- ** Trimming

    -- By elements
    , takeEndBySeq
    , takeEndBySeq_
    {-
    , drop
    , dropWhile
    , dropWhileM
    -}

    -- ** Serial Append
    -- , tail
    -- , init
    , splitAt -- spanN
    -- , splitIn -- sessionN

    -- ** Parallel Distribution
    , tee
    , distribute
    -- , distributeFst
    -- , distributeMin

    -- ** Unzipping
    , unzip
    -- These two can be expressed using lmap/lmapM and unzip
    , unzipWith
    , unzipWithM
    , unzipWithFstM
    , unzipWithMinM

    -- ** Partitioning
    , partitionByM
    , partitionByFstM
    , partitionByMinM
    , partitionBy
    , partition

    -- ** Splitting
    , chunksBetween
    , intersperseWithQuotes

    -- ** Nesting
    , unfoldMany
    , concatSequence

    -- * Deprecated
    , drainBy
    , last
    , head
    , sequence
    , mapM
    , variance
    , stdDev
    )
where

#include "inline.hs"
#include "ArrayMacros.h"

import Control.Monad (void)
import Control.Monad.IO.Class (MonadIO(..))
import Data.Bifunctor (first)
import Data.Bits (shiftL, shiftR, (.|.), (.&.))
import Data.Either (isLeft, isRight, fromLeft, fromRight)
import Data.Int (Int64)
import Data.Proxy (Proxy(..))
import Data.Word (Word32)
import Foreign.Storable (Storable, peek)
import Streamly.Internal.Data.MutArray.Type (MutArray(..))
import Streamly.Internal.Data.Maybe.Strict (Maybe'(..), toMaybe)
import Streamly.Internal.Data.Pipe.Type (Pipe (..), PipeState(..))
import Streamly.Internal.Data.Unbox (Unbox, sizeOf)
import Streamly.Internal.Data.Unfold.Type (Unfold(..))
import Streamly.Internal.Data.Tuple.Strict (Tuple'(..), Tuple3'(..))
import Streamly.Internal.Data.Stream.Type (Stream)

import qualified Prelude
import qualified Streamly.Internal.Data.MutArray.Type as MA
import qualified Streamly.Internal.Data.Array.Type as Array
import qualified Streamly.Internal.Data.Fold.Window as Fold
import qualified Streamly.Internal.Data.Pipe.Type as Pipe
import qualified Streamly.Internal.Data.Ring as Ring
import qualified Streamly.Internal.Data.Stream.Type as StreamD

import Prelude hiding
       ( Foldable(..), filter, drop, dropWhile, take, takeWhile, zipWith
       , map, mapM_, sequence, all, any
       , notElem, head, last, tail
       , reverse, iterate, init, and, or, lookup, (!!)
       , scanl, scanl1, replicate, concatMap, mconcat, unzip
       , span, splitAt, break, mapM, zip, maybe)
import Streamly.Internal.Data.Fold.Type

#include "DocTestDataFold.hs"

------------------------------------------------------------------------------
-- Running
------------------------------------------------------------------------------

-- | Drive a fold using the supplied 'Stream', reducing the resulting
-- expression strictly at each step.
--
-- Definition:
--
-- >>> drive = flip Stream.fold
--
-- Example:
--
-- >>> Fold.drive (Stream.enumerateFromTo 1 100) Fold.sum
-- 5050
--
{-# INLINE drive #-}
drive :: Monad m => Stream m a -> Fold m a b -> m b
drive :: forall (m :: * -> *) a b.
Monad m =>
Stream m a -> Fold m a b -> m b
drive = (Fold m a b -> Stream m a -> m b)
-> Stream m a -> Fold m a b -> m b
forall a b c. (a -> b -> c) -> b -> a -> c
flip Fold m a b -> Stream m a -> m b
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Stream m a -> m b
StreamD.fold

{-
-- | Like 'drive' but also returns the remaining stream. The resulting stream
-- would be 'Stream.nil' if the stream finished before the fold.
--
-- Definition:
--
-- >>> breakStream = flip Stream.foldBreak
--
-- /CPS/
--
{-# INLINE breakStreamK #-}
breakStreamK :: Monad m => StreamK m a -> Fold m a b -> m (b, StreamK m a)
breakStreamK strm fl = fmap f $ K.foldBreak fl (Stream.toStreamK strm)

    where

    f (b, str) = (b, Stream.fromStreamK str)
-}

-- | Append a stream to a fold to build the fold accumulator incrementally. We
-- can repeatedly call 'addStream' on the same fold to continue building the
-- fold and finally use 'drive' to finish the fold and extract the result. Also
-- see the 'Streamly.Data.Fold.addOne' operation which is a singleton version
-- of 'addStream'.
--
-- Definitions:
--
-- >>> addStream stream = Fold.drive stream . Fold.duplicate
--
-- Example, build a list incrementally:
--
-- >>> :{
-- pure (Fold.toList :: Fold IO Int [Int])
--     >>= Fold.addOne 1
--     >>= Fold.addStream (Stream.enumerateFromTo 2 4)
--     >>= Fold.drive Stream.nil
--     >>= print
-- :}
-- [1,2,3,4]
--
-- This can be used as an O(n) list append compared to the O(n^2) @++@ when
-- used for incrementally building a list.
--
-- Example, build a stream incrementally:
--
-- >>> :{
-- pure (Fold.toStream :: Fold IO Int (Stream Identity Int))
--     >>= Fold.addOne 1
--     >>= Fold.addStream (Stream.enumerateFromTo 2 4)
--     >>= Fold.drive Stream.nil
--     >>= print
-- :}
-- fromList [1,2,3,4]
--
-- This can be used as an O(n) stream append compared to the O(n^2) @<>@ when
-- used for incrementally building a stream.
--
-- Example, build an array incrementally:
--
-- >>> :{
-- pure (Array.write :: Fold IO Int (Array Int))
--     >>= Fold.addOne 1
--     >>= Fold.addStream (Stream.enumerateFromTo 2 4)
--     >>= Fold.drive Stream.nil
--     >>= print
-- :}
-- fromList [1,2,3,4]
--
-- Example, build an array stream incrementally:
--
-- >>> :{
-- let f :: Fold IO Int (Stream Identity (Array Int))
--     f = Fold.groupsOf 2 (Array.writeN 3) Fold.toStream
-- in pure f
--     >>= Fold.addOne 1
--     >>= Fold.addStream (Stream.enumerateFromTo 2 4)
--     >>= Fold.drive Stream.nil
--     >>= print
-- :}
-- fromList [fromList [1,2],fromList [3,4]]
--
addStream :: Monad m => Stream m a -> Fold m a b -> m (Fold m a b)
addStream :: forall (m :: * -> *) a b.
Monad m =>
Stream m a -> Fold m a b -> m (Fold m a b)
addStream Stream m a
stream = Stream m a -> Fold m a (Fold m a b) -> m (Fold m a b)
forall (m :: * -> *) a b.
Monad m =>
Stream m a -> Fold m a b -> m b
drive Stream m a
stream (Fold m a (Fold m a b) -> m (Fold m a b))
-> (Fold m a b -> Fold m a (Fold m a b))
-> Fold m a b
-> m (Fold m a b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Fold m a b -> Fold m a (Fold m a b)
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Fold m a (Fold m a b)
duplicate

------------------------------------------------------------------------------
-- Transformations on fold inputs
------------------------------------------------------------------------------

-- | Flatten the monadic output of a fold to pure output.
--
{-# DEPRECATED sequence "Use \"rmapM id\" instead" #-}
{-# INLINE sequence #-}
sequence :: Monad m => Fold m a (m b) -> Fold m a b
sequence :: forall (m :: * -> *) a b. Monad m => Fold m a (m b) -> Fold m a b
sequence = (m b -> m b) -> Fold m a (m b) -> Fold m a b
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> Fold m a b -> Fold m a c
rmapM m b -> m b
forall a. a -> a
id

-- | Map a monadic function on the output of a fold.
--
{-# DEPRECATED mapM "Use rmapM instead" #-}
{-# INLINE mapM #-}
mapM :: Monad m => (b -> m c) -> Fold m a b -> Fold m a c
mapM :: forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> Fold m a b -> Fold m a c
mapM = (b -> m c) -> Fold m a b -> Fold m a c
forall (m :: * -> *) b c a.
Monad m =>
(b -> m c) -> Fold m a b -> Fold m a c
rmapM

-- |
-- >>> mapMaybeM f = Fold.lmapM f . Fold.catMaybes
--
{-# INLINE mapMaybeM #-}
mapMaybeM :: Monad m => (a -> m (Maybe b)) -> Fold m b r -> Fold m a r
mapMaybeM :: forall (m :: * -> *) a b r.
Monad m =>
(a -> m (Maybe b)) -> Fold m b r -> Fold m a r
mapMaybeM a -> m (Maybe b)
f = (a -> m (Maybe b)) -> Fold m (Maybe b) r -> Fold m a r
forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m b r -> Fold m a r
lmapM a -> m (Maybe b)
f (Fold m (Maybe b) r -> Fold m a r)
-> (Fold m b r -> Fold m (Maybe b) r) -> Fold m b r -> Fold m a r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Fold m b r -> Fold m (Maybe b) r
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Fold m (Maybe a) b
catMaybes

-- | @mapMaybe f fold@ maps a 'Maybe' returning function @f@ on the input of
-- the fold, filters out 'Nothing' elements, and return the values extracted
-- from 'Just'.
--
-- >>> mapMaybe f = Fold.lmap f . Fold.catMaybes
-- >>> mapMaybe f = Fold.mapMaybeM (return . f)
--
-- >>> f x = if even x then Just x else Nothing
-- >>> fld = Fold.mapMaybe f Fold.toList
-- >>> Stream.fold fld (Stream.enumerateFromTo 1 10)
-- [2,4,6,8,10]
--
{-# INLINE mapMaybe #-}
mapMaybe :: Monad m => (a -> Maybe b) -> Fold m b r -> Fold m a r
mapMaybe :: forall (m :: * -> *) a b r.
Monad m =>
(a -> Maybe b) -> Fold m b r -> Fold m a r
mapMaybe a -> Maybe b
f = (a -> Maybe b) -> Fold m (Maybe b) r -> Fold m a r
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap a -> Maybe b
f (Fold m (Maybe b) r -> Fold m a r)
-> (Fold m b r -> Fold m (Maybe b) r) -> Fold m b r -> Fold m a r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Fold m b r -> Fold m (Maybe b) r
forall (m :: * -> *) a b.
Monad m =>
Fold m a b -> Fold m (Maybe a) b
catMaybes

------------------------------------------------------------------------------
-- Transformations on fold inputs
------------------------------------------------------------------------------

-- | Apply a monadic function on the input and return the input.
--
-- >>> Stream.fold (Fold.lmapM (Fold.tracing print) Fold.drain) $ (Stream.enumerateFromTo (1 :: Int) 2)
-- 1
-- 2
--
-- /Pre-release/
--
{-# INLINE tracing #-}
tracing :: Monad m => (a -> m b) -> (a -> m a)
tracing :: forall (m :: * -> *) a b. Monad m => (a -> m b) -> a -> m a
tracing a -> m b
f a
x = m b -> m ()
forall (f :: * -> *) a. Functor f => f a -> f ()
void (a -> m b
f a
x) m () -> m a -> m a
forall a b. m a -> m b -> m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> a -> m a
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x

-- | Apply a monadic function to each element flowing through and discard the
-- results.
--
-- >>> Stream.fold (Fold.trace print Fold.drain) $ (Stream.enumerateFromTo (1 :: Int) 2)
-- 1
-- 2
--
-- >>> trace f = Fold.lmapM (Fold.tracing f)
--
-- /Pre-release/
{-# INLINE trace #-}
trace :: Monad m => (a -> m b) -> Fold m a r -> Fold m a r
trace :: forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m a r -> Fold m a r
trace a -> m b
f = (a -> m a) -> Fold m a r -> Fold m a r
forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m b r -> Fold m a r
lmapM ((a -> m b) -> a -> m a
forall (m :: * -> *) a b. Monad m => (a -> m b) -> a -> m a
tracing a -> m b
f)

-- rename to lpipe?
--
-- | Apply a transformation on a 'Fold' using a 'Pipe'.
--
-- /Pre-release/
{-# INLINE transform #-}
transform :: Monad m => Pipe m a b -> Fold m b c -> Fold m a c
transform :: forall (m :: * -> *) a b c.
Monad m =>
Pipe m a b -> Fold m b c -> Fold m a c
transform (Pipe s1 -> a -> m (Step (PipeState s1 s2) b)
pstep1 s2 -> m (Step (PipeState s1 s2) b)
pstep2 s1
pinitial) (Fold s -> b -> m (Step s c)
fstep m (Step s c)
finitial s -> m c
fextract s -> m c
ffinal) =
    (Tuple' s1 s -> a -> m (Step (Tuple' s1 s) c))
-> m (Step (Tuple' s1 s) c)
-> (Tuple' s1 s -> m c)
-> (Tuple' s1 s -> m c)
-> Fold m a c
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold Tuple' s1 s -> a -> m (Step (Tuple' s1 s) c)
step m (Step (Tuple' s1 s) c)
initial Tuple' s1 s -> m c
forall {a}. Tuple' a s -> m c
extract Tuple' s1 s -> m c
forall {a}. Tuple' a s -> m c
final

    where

    initial :: m (Step (Tuple' s1 s) c)
initial = (s -> Tuple' s1 s) -> Step s c -> Step (Tuple' s1 s) c
forall a b c. (a -> b) -> Step a c -> Step b c
forall (p :: * -> * -> *) a b c.
Bifunctor p =>
(a -> b) -> p a c -> p b c
first (s1 -> s -> Tuple' s1 s
forall a b. a -> b -> Tuple' a b
Tuple' s1
pinitial) (Step s c -> Step (Tuple' s1 s) c)
-> m (Step s c) -> m (Step (Tuple' s1 s) c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (Step s c)
finitial

    step :: Tuple' s1 s -> a -> m (Step (Tuple' s1 s) c)
step (Tuple' s1
ps s
fs) a
x = do
        Step (PipeState s1 s2) b
r <- s1 -> a -> m (Step (PipeState s1 s2) b)
pstep1 s1
ps a
x
        s -> Step (PipeState s1 s2) b -> m (Step (Tuple' s1 s) c)
go s
fs Step (PipeState s1 s2) b
r

        where

        -- XXX use SPEC?
        go :: s -> Step (PipeState s1 s2) b -> m (Step (Tuple' s1 s) c)
go s
acc (Pipe.Yield b
b (Consume s1
ps')) = do
            Step s c
acc' <- s -> b -> m (Step s c)
fstep s
acc b
b
            Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
                (Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c))
-> Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a b. (a -> b) -> a -> b
$ case Step s c
acc' of
                      Partial s
s -> Tuple' s1 s -> Step (Tuple' s1 s) c
forall s b. s -> Step s b
Partial (Tuple' s1 s -> Step (Tuple' s1 s) c)
-> Tuple' s1 s -> Step (Tuple' s1 s) c
forall a b. (a -> b) -> a -> b
$ s1 -> s -> Tuple' s1 s
forall a b. a -> b -> Tuple' a b
Tuple' s1
ps' s
s
                      Done c
b2 -> c -> Step (Tuple' s1 s) c
forall s b. b -> Step s b
Done c
b2
        go s
acc (Pipe.Yield b
b (Produce s2
ps')) = do
            Step s c
acc' <- s -> b -> m (Step s c)
fstep s
acc b
b
            Step (PipeState s1 s2) b
r <- s2 -> m (Step (PipeState s1 s2) b)
pstep2 s2
ps'
            case Step s c
acc' of
                Partial s
s -> s -> Step (PipeState s1 s2) b -> m (Step (Tuple' s1 s) c)
go s
s Step (PipeState s1 s2) b
r
                Done c
b2 -> Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c))
-> Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a b. (a -> b) -> a -> b
$ c -> Step (Tuple' s1 s) c
forall s b. b -> Step s b
Done c
b2
        go s
acc (Pipe.Continue (Consume s1
ps')) =
            Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c))
-> Step (Tuple' s1 s) c -> m (Step (Tuple' s1 s) c)
forall a b. (a -> b) -> a -> b
$ Tuple' s1 s -> Step (Tuple' s1 s) c
forall s b. s -> Step s b
Partial (Tuple' s1 s -> Step (Tuple' s1 s) c)
-> Tuple' s1 s -> Step (Tuple' s1 s) c
forall a b. (a -> b) -> a -> b
$ s1 -> s -> Tuple' s1 s
forall a b. a -> b -> Tuple' a b
Tuple' s1
ps' s
acc
        go s
acc (Pipe.Continue (Produce s2
ps')) = do
            Step (PipeState s1 s2) b
r <- s2 -> m (Step (PipeState s1 s2) b)
pstep2 s2
ps'
            s -> Step (PipeState s1 s2) b -> m (Step (Tuple' s1 s) c)
go s
acc Step (PipeState s1 s2) b
r

    extract :: Tuple' a s -> m c
extract (Tuple' a
_ s
fs) = s -> m c
fextract s
fs

    final :: Tuple' a s -> m c
final (Tuple' a
_ s
fs) = s -> m c
ffinal s
fs

{-# INLINE scanWith #-}
scanWith :: Monad m => Bool -> Fold m a b -> Fold m b c -> Fold m a c
scanWith :: forall (m :: * -> *) a b c.
Monad m =>
Bool -> Fold m a b -> Fold m b c -> Fold m a c
scanWith Bool
isMany
    (Fold s -> a -> m (Step s b)
stepL m (Step s b)
initialL s -> m b
extractL s -> m b
finalL)
    (Fold s -> b -> m (Step s c)
stepR m (Step s c)
initialR s -> m c
extractR s -> m c
finalR) =
    ((s, s) -> a -> m (Step (s, s) c))
-> m (Step (s, s) c)
-> ((s, s) -> m c)
-> ((s, s) -> m c)
-> Fold m a c
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold (s, s) -> a -> m (Step (s, s) c)
step m (Step (s, s) c)
initial (s, s) -> m c
forall {a}. (a, s) -> m c
extract (s, s) -> m c
final

    where

    {-# INLINE runStep #-}
    runStep :: m (Step s b) -> s -> m (Step (s, s) c)
runStep m (Step s b)
actionL s
sR = do
        Step s b
rL <- m (Step s b)
actionL
        case Step s b
rL of
            Done b
bL -> do
                Step s c
rR <- s -> b -> m (Step s c)
stepR s
sR b
bL
                case Step s c
rR of
                    Partial s
sR1 ->
                        if Bool
isMany
                        then m (Step s b) -> s -> m (Step (s, s) c)
runStep m (Step s b)
initialL s
sR1
                        else c -> Step (s, s) c
forall s b. b -> Step s b
Done (c -> Step (s, s) c) -> m c -> m (Step (s, s) c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m c
finalR s
sR1
                    Done c
bR -> Step (s, s) c -> m (Step (s, s) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (s, s) c -> m (Step (s, s) c))
-> Step (s, s) c -> m (Step (s, s) c)
forall a b. (a -> b) -> a -> b
$ c -> Step (s, s) c
forall s b. b -> Step s b
Done c
bR
            Partial s
sL -> do
                !b
b <- s -> m b
extractL s
sL
                Step s c
rR <- s -> b -> m (Step s c)
stepR s
sR b
b
                case Step s c
rR of
                    Partial s
sR1 -> Step (s, s) c -> m (Step (s, s) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (s, s) c -> m (Step (s, s) c))
-> Step (s, s) c -> m (Step (s, s) c)
forall a b. (a -> b) -> a -> b
$ (s, s) -> Step (s, s) c
forall s b. s -> Step s b
Partial (s
sL, s
sR1)
                    Done c
bR -> s -> m b
finalL s
sL m b -> m (Step (s, s) c) -> m (Step (s, s) c)
forall a b. m a -> m b -> m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Step (s, s) c -> m (Step (s, s) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (c -> Step (s, s) c
forall s b. b -> Step s b
Done c
bR)

    initial :: m (Step (s, s) c)
initial = do
        Step s c
r <- m (Step s c)
initialR
        case Step s c
r of
            Partial s
sR -> m (Step s b) -> s -> m (Step (s, s) c)
runStep m (Step s b)
initialL s
sR
            Done c
b -> Step (s, s) c -> m (Step (s, s) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (s, s) c -> m (Step (s, s) c))
-> Step (s, s) c -> m (Step (s, s) c)
forall a b. (a -> b) -> a -> b
$ c -> Step (s, s) c
forall s b. b -> Step s b
Done c
b

    step :: (s, s) -> a -> m (Step (s, s) c)
step (s
sL, s
sR) a
x = m (Step s b) -> s -> m (Step (s, s) c)
runStep (s -> a -> m (Step s b)
stepL s
sL a
x) s
sR

    extract :: (a, s) -> m c
extract = s -> m c
extractR (s -> m c) -> ((a, s) -> s) -> (a, s) -> m c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a, s) -> s
forall a b. (a, b) -> b
snd

    final :: (s, s) -> m c
final (s
sL, s
sR) = s -> m b
finalL s
sL m b -> m c -> m c
forall a b. m a -> m b -> m b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> s -> m c
finalR s
sR

-- | Scan the input of a 'Fold' to change it in a stateful manner using another
-- 'Fold'. The scan stops as soon as the fold terminates.
--
-- /Pre-release/
{-# INLINE scan #-}
scan :: Monad m => Fold m a b -> Fold m b c -> Fold m a c
scan :: forall (m :: * -> *) a b c.
Monad m =>
Fold m a b -> Fold m b c -> Fold m a c
scan = Bool -> Fold m a b -> Fold m b c -> Fold m a c
forall (m :: * -> *) a b c.
Monad m =>
Bool -> Fold m a b -> Fold m b c -> Fold m a c
scanWith Bool
False

-- XXX This does not fuse beacuse of the recursive step. Need to investigate.
--
-- | Scan the input of a 'Fold' to change it in a stateful manner using another
-- 'Fold'. The scan restarts with a fresh state if the fold terminates.
--
-- /Pre-release/
{-# INLINE scanMany #-}
scanMany :: Monad m => Fold m a b -> Fold m b c -> Fold m a c
scanMany :: forall (m :: * -> *) a b c.
Monad m =>
Fold m a b -> Fold m b c -> Fold m a c
scanMany = Bool -> Fold m a b -> Fold m b c -> Fold m a c
forall (m :: * -> *) a b c.
Monad m =>
Bool -> Fold m a b -> Fold m b c -> Fold m a c
scanWith Bool
True

------------------------------------------------------------------------------
-- Filters
------------------------------------------------------------------------------

-- | Returns the latest element omitting the first occurrence that satisfies
-- the given equality predicate.
--
-- Example:
--
-- >>> input = Stream.fromList [1,3,3,5]
-- >>> Stream.fold Fold.toList $ Stream.scanMaybe (Fold.deleteBy (==) 3) input
-- [1,3,5]
--
{-# INLINE_NORMAL deleteBy #-}
deleteBy :: Monad m => (a -> a -> Bool) -> a -> Fold m a (Maybe a)
deleteBy :: forall (m :: * -> *) a.
Monad m =>
(a -> a -> Bool) -> a -> Fold m a (Maybe a)
deleteBy a -> a -> Bool
eq a
x0 = (Tuple' Bool (Maybe a) -> Maybe a)
-> Fold m a (Tuple' Bool (Maybe a)) -> Fold m a (Maybe a)
forall a b. (a -> b) -> Fold m a a -> Fold m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Tuple' Bool (Maybe a) -> Maybe a
forall {a} {b}. Tuple' a b -> b
extract (Fold m a (Tuple' Bool (Maybe a)) -> Fold m a (Maybe a))
-> Fold m a (Tuple' Bool (Maybe a)) -> Fold m a (Maybe a)
forall a b. (a -> b) -> a -> b
$ (Tuple' Bool (Maybe a) -> a -> Tuple' Bool (Maybe a))
-> Tuple' Bool (Maybe a) -> Fold m a (Tuple' Bool (Maybe a))
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Tuple' Bool (Maybe a) -> a -> Tuple' Bool (Maybe a)
forall {b}. Tuple' Bool b -> a -> Tuple' Bool (Maybe a)
step (Bool -> Maybe a -> Tuple' Bool (Maybe a)
forall a b. a -> b -> Tuple' a b
Tuple' Bool
False Maybe a
forall a. Maybe a
Nothing)

    where

    step :: Tuple' Bool b -> a -> Tuple' Bool (Maybe a)
step (Tuple' Bool
False b
_) a
x =
        if a -> a -> Bool
eq a
x a
x0
        then Bool -> Maybe a -> Tuple' Bool (Maybe a)
forall a b. a -> b -> Tuple' a b
Tuple' Bool
True Maybe a
forall a. Maybe a
Nothing
        else Bool -> Maybe a -> Tuple' Bool (Maybe a)
forall a b. a -> b -> Tuple' a b
Tuple' Bool
False (a -> Maybe a
forall a. a -> Maybe a
Just a
x)
    step (Tuple' Bool
True b
_) a
x = Bool -> Maybe a -> Tuple' Bool (Maybe a)
forall a b. a -> b -> Tuple' a b
Tuple' Bool
True (a -> Maybe a
forall a. a -> Maybe a
Just a
x)

    extract :: Tuple' a b -> b
extract (Tuple' a
_ b
x) = b
x

-- | Provide a sliding window of length 2 elements.
--
-- See "Streamly.Internal.Data.Fold.Window".
--
{-# INLINE slide2 #-}
slide2 :: Monad m => Fold m (a, Maybe a) b -> Fold m a b
slide2 :: forall (m :: * -> *) a b.
Monad m =>
Fold m (a, Maybe a) b -> Fold m a b
slide2 (Fold s -> (a, Maybe a) -> m (Step s b)
step1 m (Step s b)
initial1 s -> m b
extract1 s -> m b
final1) = (Tuple' (Maybe a) s -> a -> m (Step (Tuple' (Maybe a) s) b))
-> m (Step (Tuple' (Maybe a) s) b)
-> (Tuple' (Maybe a) s -> m b)
-> (Tuple' (Maybe a) s -> m b)
-> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold Tuple' (Maybe a) s -> a -> m (Step (Tuple' (Maybe a) s) b)
step m (Step (Tuple' (Maybe a) s) b)
forall {a}. m (Step (Tuple' (Maybe a) s) b)
initial Tuple' (Maybe a) s -> m b
forall {a}. Tuple' a s -> m b
extract Tuple' (Maybe a) s -> m b
forall {a}. Tuple' a s -> m b
final

    where

    initial :: m (Step (Tuple' (Maybe a) s) b)
initial =
        (s -> Tuple' (Maybe a) s)
-> Step s b -> Step (Tuple' (Maybe a) s) b
forall a b c. (a -> b) -> Step a c -> Step b c
forall (p :: * -> * -> *) a b c.
Bifunctor p =>
(a -> b) -> p a c -> p b c
first (Maybe a -> s -> Tuple' (Maybe a) s
forall a b. a -> b -> Tuple' a b
Tuple' Maybe a
forall a. Maybe a
Nothing) (Step s b -> Step (Tuple' (Maybe a) s) b)
-> m (Step s b) -> m (Step (Tuple' (Maybe a) s) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (Step s b)
initial1

    step :: Tuple' (Maybe a) s -> a -> m (Step (Tuple' (Maybe a) s) b)
step (Tuple' Maybe a
prev s
s) a
cur =
        (s -> Tuple' (Maybe a) s)
-> Step s b -> Step (Tuple' (Maybe a) s) b
forall a b c. (a -> b) -> Step a c -> Step b c
forall (p :: * -> * -> *) a b c.
Bifunctor p =>
(a -> b) -> p a c -> p b c
first (Maybe a -> s -> Tuple' (Maybe a) s
forall a b. a -> b -> Tuple' a b
Tuple' (a -> Maybe a
forall a. a -> Maybe a
Just a
cur)) (Step s b -> Step (Tuple' (Maybe a) s) b)
-> m (Step s b) -> m (Step (Tuple' (Maybe a) s) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> (a, Maybe a) -> m (Step s b)
step1 s
s (a
cur, Maybe a
prev)

    extract :: Tuple' a s -> m b
extract (Tuple' a
_ s
s) = s -> m b
extract1 s
s

    final :: Tuple' a s -> m b
final (Tuple' a
_ s
s) = s -> m b
final1 s
s

-- | Return the latest unique element using the supplied comparison function.
-- Returns 'Nothing' if the current element is same as the last element
-- otherwise returns 'Just'.
--
-- Example, strip duplicate path separators:
--
-- >>> input = Stream.fromList "//a//b"
-- >>> f x y = x == '/' && y == '/'
-- >>> Stream.fold Fold.toList $ Stream.scanMaybe (Fold.uniqBy f) input
-- "/a/b"
--
-- Space: @O(1)@
--
-- /Pre-release/
--
{-# INLINE uniqBy #-}
uniqBy :: Monad m => (a -> a -> Bool) -> Fold m a (Maybe a)
uniqBy :: forall (m :: * -> *) a.
Monad m =>
(a -> a -> Bool) -> Fold m a (Maybe a)
uniqBy a -> a -> Bool
eq = (Maybe a -> a -> Maybe a) -> Fold m a (Maybe a)
forall (m :: * -> *) a b.
Monad m =>
(Maybe a -> a -> b) -> Fold m a b
rollingMap Maybe a -> a -> Maybe a
f

    where

    f :: Maybe a -> a -> Maybe a
f Maybe a
pre a
curr =
        case Maybe a
pre of
            Maybe a
Nothing -> a -> Maybe a
forall a. a -> Maybe a
Just a
curr
            Just a
x -> if a
x a -> a -> Bool
`eq` a
curr then Maybe a
forall a. Maybe a
Nothing else a -> Maybe a
forall a. a -> Maybe a
Just a
curr

-- | See 'uniqBy'.
--
-- Definition:
--
-- >>> uniq = Fold.uniqBy (==)
--
{-# INLINE uniq #-}
uniq :: (Monad m, Eq a) => Fold m a (Maybe a)
uniq :: forall (m :: * -> *) a. (Monad m, Eq a) => Fold m a (Maybe a)
uniq = (a -> a -> Bool) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> Bool) -> Fold m a (Maybe a)
uniqBy a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==)

-- | Strip all leading and trailing occurrences of an element passing a
-- predicate and make all other consecutive occurrences uniq.
--
-- >> prune p = Stream.dropWhileAround p $ Stream.uniqBy (x y -> p x && p y)
--
-- @
-- > Stream.prune isSpace (Stream.fromList "  hello      world!   ")
-- "hello world!"
--
-- @
--
-- Space: @O(1)@
--
-- /Unimplemented/
{-# INLINE prune #-}
prune ::
    -- (Monad m, Eq a) =>
    (a -> Bool) -> Fold m a (Maybe a)
prune :: forall a (m :: * -> *). (a -> Bool) -> Fold m a (Maybe a)
prune = [Char] -> (a -> Bool) -> Fold m a (Maybe a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Not implemented yet!"

-- | Emit only repeated elements, once.
--
-- /Unimplemented/
repeated :: -- (Monad m, Eq a) =>
    Fold m a (Maybe a)
repeated :: forall (m :: * -> *) a. Fold m a (Maybe a)
repeated = [Char] -> Fold m a (Maybe a)
forall a. HasCallStack => [Char] -> a
error [Char]
"Not implemented yet!"

------------------------------------------------------------------------------
-- Left folds
------------------------------------------------------------------------------

------------------------------------------------------------------------------
-- Run Effects
------------------------------------------------------------------------------

-- |
-- Definitions:
--
-- >>> drainMapM f = Fold.lmapM f Fold.drain
-- >>> drainMapM f = Fold.foldMapM (void . f)
--
-- Drain all input after passing it through a monadic function. This is the
-- dual of mapM_ on stream producers.
--
{-# INLINE drainMapM #-}
drainMapM ::  Monad m => (a -> m b) -> Fold m a ()
drainMapM :: forall (m :: * -> *) a b. Monad m => (a -> m b) -> Fold m a ()
drainMapM a -> m b
f = (a -> m b) -> Fold m b () -> Fold m a ()
forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m b r -> Fold m a r
lmapM a -> m b
f Fold m b ()
forall (m :: * -> *) a. Monad m => Fold m a ()
drain

{-# DEPRECATED drainBy "Please use 'drainMapM' instead." #-}
{-# INLINE drainBy #-}
drainBy ::  Monad m => (a -> m b) -> Fold m a ()
drainBy :: forall (m :: * -> *) a b. Monad m => (a -> m b) -> Fold m a ()
drainBy = (a -> m b) -> Fold m a ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> Fold m a ()
drainMapM

-- | Returns the latest element of the input stream, if any.
--
-- >>> latest = Fold.foldl1' (\_ x -> x)
-- >>> latest = fmap getLast $ Fold.foldMap (Last . Just)
--
{-# INLINE latest #-}
latest :: Monad m => Fold m a (Maybe a)
latest :: forall (m :: * -> *) a. Monad m => Fold m a (Maybe a)
latest = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' (\a
_ a
x -> a
x)

{-# DEPRECATED last "Please use 'latest' instead." #-}
{-# INLINE last #-}
last :: Monad m => Fold m a (Maybe a)
last :: forall (m :: * -> *) a. Monad m => Fold m a (Maybe a)
last = Fold m a (Maybe a)
forall (m :: * -> *) a. Monad m => Fold m a (Maybe a)
latest

-- | Terminates with 'Nothing' as soon as it finds an element different than
-- the previous one, returns 'the' element if the entire input consists of the
-- same element.
--
{-# INLINE the #-}
the :: (Monad m, Eq a) => Fold m a (Maybe a)
the :: forall (m :: * -> *) a. (Monad m, Eq a) => Fold m a (Maybe a)
the = (Maybe a -> a -> Step (Maybe a) (Maybe a))
-> Step (Maybe a) (Maybe a)
-> (Maybe a -> Maybe a)
-> Fold m a (Maybe a)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' Maybe a -> a -> Step (Maybe a) (Maybe a)
forall {a} {a}. Eq a => Maybe a -> a -> Step (Maybe a) (Maybe a)
step Step (Maybe a) (Maybe a)
forall {a} {b}. Step (Maybe a) b
initial Maybe a -> Maybe a
forall a. a -> a
id

    where

    initial :: Step (Maybe a) b
initial = Maybe a -> Step (Maybe a) b
forall s b. s -> Step s b
Partial Maybe a
forall a. Maybe a
Nothing

    step :: Maybe a -> a -> Step (Maybe a) (Maybe a)
step Maybe a
Nothing a
x = Maybe a -> Step (Maybe a) (Maybe a)
forall s b. s -> Step s b
Partial (a -> Maybe a
forall a. a -> Maybe a
Just a
x)
    step old :: Maybe a
old@(Just a
x0) a
x =
            if a
x0 a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
x
            then Maybe a -> Step (Maybe a) (Maybe a)
forall s b. s -> Step s b
Partial Maybe a
old
            else Maybe a -> Step (Maybe a) (Maybe a)
forall s b. b -> Step s b
Done Maybe a
forall a. Maybe a
Nothing

------------------------------------------------------------------------------
-- To Summary
------------------------------------------------------------------------------

-- | Determine the sum of all elements of a stream of numbers. Returns additive
-- identity (@0@) when the stream is empty. Note that this is not numerically
-- stable for floating point numbers.
--
-- >>> sum = Fold.cumulative Fold.windowSum
--
-- Same as following but numerically stable:
--
-- >>> sum = Fold.foldl' (+) 0
-- >>> sum = fmap Data.Monoid.getSum $ Fold.foldMap Data.Monoid.Sum
--
{-# INLINE sum #-}
sum :: (Monad m, Num a) => Fold m a a
sum :: forall (m :: * -> *) a. (Monad m, Num a) => Fold m a a
sum = Fold m (a, Maybe a) a -> Fold m a a
forall (m :: * -> *) a b. Fold m (a, Maybe a) b -> Fold m a b
Fold.cumulative Fold m (a, Maybe a) a
forall (m :: * -> *) a. (Monad m, Num a) => Fold m (a, Maybe a) a
Fold.windowSum

-- | Determine the product of all elements of a stream of numbers. Returns
-- multiplicative identity (@1@) when the stream is empty. The fold terminates
-- when it encounters (@0@) in its input.
--
-- Same as the following but terminates on multiplication by @0@:
--
-- >>> product = fmap Data.Monoid.getProduct $ Fold.foldMap Data.Monoid.Product
--
{-# INLINE product #-}
product :: (Monad m, Num a, Eq a) => Fold m a a
product :: forall (m :: * -> *) a. (Monad m, Num a, Eq a) => Fold m a a
product =  (a -> a -> Step a a) -> Step a a -> (a -> a) -> Fold m a a
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' a -> a -> Step a a
forall {s} {b}. (Eq s, Num s, Num b) => s -> s -> Step s b
step (a -> Step a a
forall s b. s -> Step s b
Partial a
1) a -> a
forall a. a -> a
id

    where

    step :: s -> s -> Step s b
step s
x s
a =
        if s
a s -> s -> Bool
forall a. Eq a => a -> a -> Bool
== s
0
        then b -> Step s b
forall s b. b -> Step s b
Done b
0
        else s -> Step s b
forall s b. s -> Step s b
Partial (s -> Step s b) -> s -> Step s b
forall a b. (a -> b) -> a -> b
$ s
x s -> s -> s
forall a. Num a => a -> a -> a
* s
a

------------------------------------------------------------------------------
-- To Summary (Maybe)
------------------------------------------------------------------------------

-- | Determine the maximum element in a stream using the supplied comparison
-- function.
--
{-# INLINE maximumBy #-}
maximumBy :: Monad m => (a -> a -> Ordering) -> Fold m a (Maybe a)
maximumBy :: forall (m :: * -> *) a.
Monad m =>
(a -> a -> Ordering) -> Fold m a (Maybe a)
maximumBy a -> a -> Ordering
cmp = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' a -> a -> a
max'

    where

    max' :: a -> a -> a
max' a
x a
y =
        case a -> a -> Ordering
cmp a
x a
y of
            Ordering
GT -> a
x
            Ordering
_ -> a
y

-- | Determine the maximum element in a stream.
--
-- Definitions:
--
-- >>> maximum = Fold.maximumBy compare
-- >>> maximum = Fold.foldl1' max
--
-- Same as the following but without a default maximum. The 'Max' Monoid uses
-- the 'minBound' as the default maximum:
--
-- >>> maximum = fmap Data.Semigroup.getMax $ Fold.foldMap Data.Semigroup.Max
--
{-# INLINE maximum #-}
maximum :: (Monad m, Ord a) => Fold m a (Maybe a)
maximum :: forall (m :: * -> *) a. (Monad m, Ord a) => Fold m a (Maybe a)
maximum = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' a -> a -> a
forall a. Ord a => a -> a -> a
max

-- | Computes the minimum element with respect to the given comparison function
--
{-# INLINE minimumBy #-}
minimumBy :: Monad m => (a -> a -> Ordering) -> Fold m a (Maybe a)
minimumBy :: forall (m :: * -> *) a.
Monad m =>
(a -> a -> Ordering) -> Fold m a (Maybe a)
minimumBy a -> a -> Ordering
cmp = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' a -> a -> a
min'

    where

    min' :: a -> a -> a
min' a
x a
y =
        case a -> a -> Ordering
cmp a
x a
y of
            Ordering
GT -> a
y
            Ordering
_ -> a
x

-- | Determine the minimum element in a stream using the supplied comparison
-- function.
--
-- Definitions:
--
-- >>> minimum = Fold.minimumBy compare
-- >>> minimum = Fold.foldl1' min
--
-- Same as the following but without a default minimum. The 'Min' Monoid uses the
-- 'maxBound' as the default maximum:
--
-- >>> maximum = fmap Data.Semigroup.getMin $ Fold.foldMap Data.Semigroup.Min
--
{-# INLINE minimum #-}
minimum :: (Monad m, Ord a) => Fold m a (Maybe a)
minimum :: forall (m :: * -> *) a. (Monad m, Ord a) => Fold m a (Maybe a)
minimum = (a -> a -> a) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> a -> a) -> Fold m a (Maybe a)
foldl1' a -> a -> a
forall a. Ord a => a -> a -> a
min

------------------------------------------------------------------------------
-- To Summary (Statistical)
------------------------------------------------------------------------------

-- | Compute a numerically stable arithmetic mean of all elements in the input
-- stream.
--
{-# INLINE mean #-}
mean :: (Monad m, Fractional a) => Fold m a a
mean :: forall (m :: * -> *) a. (Monad m, Fractional a) => Fold m a a
mean = (Tuple' a a -> a) -> Fold m a (Tuple' a a) -> Fold m a a
forall a b. (a -> b) -> Fold m a a -> Fold m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Tuple' a a -> a
forall {a} {b}. Tuple' a b -> a
done (Fold m a (Tuple' a a) -> Fold m a a)
-> Fold m a (Tuple' a a) -> Fold m a a
forall a b. (a -> b) -> a -> b
$ (Tuple' a a -> a -> Tuple' a a)
-> Tuple' a a -> Fold m a (Tuple' a a)
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Tuple' a a -> a -> Tuple' a a
forall {b}. Fractional b => Tuple' b b -> b -> Tuple' b b
step Tuple' a a
begin

    where

    begin :: Tuple' a a
begin = a -> a -> Tuple' a a
forall a b. a -> b -> Tuple' a b
Tuple' a
0 a
0

    step :: Tuple' b b -> b -> Tuple' b b
step (Tuple' b
x b
n) b
y =
        let n1 :: b
n1 = b
n b -> b -> b
forall a. Num a => a -> a -> a
+ b
1
         in b -> b -> Tuple' b b
forall a b. a -> b -> Tuple' a b
Tuple' (b
x b -> b -> b
forall a. Num a => a -> a -> a
+ (b
y b -> b -> b
forall a. Num a => a -> a -> a
- b
x) b -> b -> b
forall a. Fractional a => a -> a -> a
/ b
n1) b
n1

    done :: Tuple' a b -> a
done (Tuple' a
x b
_) = a
x

-- | Compute a numerically stable (population) variance over all elements in
-- the input stream.
--
{-# DEPRECATED variance "Use the streamly-statistics package instead" #-}
{-# INLINE variance #-}
variance :: (Monad m, Fractional a) => Fold m a a
variance :: forall (m :: * -> *) a. (Monad m, Fractional a) => Fold m a a
variance = (Tuple3' a a a -> a) -> Fold m a (Tuple3' a a a) -> Fold m a a
forall a b. (a -> b) -> Fold m a a -> Fold m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Tuple3' a a a -> a
forall {a} {b}. Fractional a => Tuple3' a b a -> a
done (Fold m a (Tuple3' a a a) -> Fold m a a)
-> Fold m a (Tuple3' a a a) -> Fold m a a
forall a b. (a -> b) -> a -> b
$ (Tuple3' a a a -> a -> Tuple3' a a a)
-> Tuple3' a a a -> Fold m a (Tuple3' a a a)
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Tuple3' a a a -> a -> Tuple3' a a a
forall {c}. Fractional c => Tuple3' c c c -> c -> Tuple3' c c c
step Tuple3' a a a
begin

    where

    begin :: Tuple3' a a a
begin = a -> a -> a -> Tuple3' a a a
forall a b c. a -> b -> c -> Tuple3' a b c
Tuple3' a
0 a
0 a
0

    step :: Tuple3' c c c -> c -> Tuple3' c c c
step (Tuple3' c
n c
mean_ c
m2) c
x = c -> c -> c -> Tuple3' c c c
forall a b c. a -> b -> c -> Tuple3' a b c
Tuple3' c
n' c
mean' c
m2'

        where

        n' :: c
n' = c
n c -> c -> c
forall a. Num a => a -> a -> a
+ c
1
        mean' :: c
mean' = (c
n c -> c -> c
forall a. Num a => a -> a -> a
* c
mean_ c -> c -> c
forall a. Num a => a -> a -> a
+ c
x) c -> c -> c
forall a. Fractional a => a -> a -> a
/ (c
n c -> c -> c
forall a. Num a => a -> a -> a
+ c
1)
        delta :: c
delta = c
x c -> c -> c
forall a. Num a => a -> a -> a
- c
mean_
        m2' :: c
m2' = c
m2 c -> c -> c
forall a. Num a => a -> a -> a
+ c
delta c -> c -> c
forall a. Num a => a -> a -> a
* c
delta c -> c -> c
forall a. Num a => a -> a -> a
* c
n c -> c -> c
forall a. Fractional a => a -> a -> a
/ (c
n c -> c -> c
forall a. Num a => a -> a -> a
+ c
1)

    done :: Tuple3' a b a -> a
done (Tuple3' a
n b
_ a
m2) = a
m2 a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
n

-- | Compute a numerically stable (population) standard deviation over all
-- elements in the input stream.
--
{-# DEPRECATED stdDev "Use the streamly-statistics package instead" #-}
{-# INLINE stdDev #-}
stdDev :: (Monad m, Floating a) => Fold m a a
stdDev :: forall (m :: * -> *) a. (Monad m, Floating a) => Fold m a a
stdDev = a -> a
forall a. Floating a => a -> a
sqrt (a -> a) -> Fold m a a -> Fold m a a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Fold m a a
forall (m :: * -> *) a. (Monad m, Fractional a) => Fold m a a
variance

-- | Compute an 'Int' sized polynomial rolling hash
--
-- > H = salt * k ^ n + c1 * k ^ (n - 1) + c2 * k ^ (n - 2) + ... + cn * k ^ 0
--
-- Where @c1@, @c2@, @cn@ are the elements in the input stream and @k@ is a
-- constant.
--
-- This hash is often used in Rabin-Karp string search algorithm.
--
-- See https://en.wikipedia.org/wiki/Rolling_hash
--
{-# INLINE rollingHashWithSalt #-}
rollingHashWithSalt :: (Monad m, Enum a) => Int64 -> Fold m a Int64
rollingHashWithSalt :: forall (m :: * -> *) a.
(Monad m, Enum a) =>
Int64 -> Fold m a Int64
rollingHashWithSalt = (Int64 -> a -> Int64) -> Int64 -> Fold m a Int64
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Int64 -> a -> Int64
forall {a}. Enum a => Int64 -> a -> Int64
step

    where

    k :: Int64
k = Int64
2891336453 :: Int64

    step :: Int64 -> a -> Int64
step Int64
cksum a
a = Int64
cksum Int64 -> Int64 -> Int64
forall a. Num a => a -> a -> a
* Int64
k Int64 -> Int64 -> Int64
forall a. Num a => a -> a -> a
+ Int -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

-- | A default salt used in the implementation of 'rollingHash'.
{-# INLINE defaultSalt #-}
defaultSalt :: Int64
defaultSalt :: Int64
defaultSalt = -Int64
2578643520546668380

-- | Compute an 'Int' sized polynomial rolling hash of a stream.
--
-- >>> rollingHash = Fold.rollingHashWithSalt Fold.defaultSalt
--
{-# INLINE rollingHash #-}
rollingHash :: (Monad m, Enum a) => Fold m a Int64
rollingHash :: forall (m :: * -> *) a. (Monad m, Enum a) => Fold m a Int64
rollingHash = Int64 -> Fold m a Int64
forall (m :: * -> *) a.
(Monad m, Enum a) =>
Int64 -> Fold m a Int64
rollingHashWithSalt Int64
defaultSalt

-- | Compute an 'Int' sized polynomial rolling hash of the first n elements of
-- a stream.
--
-- >>> rollingHashFirstN n = Fold.take n Fold.rollingHash
--
-- /Pre-release/
{-# INLINE rollingHashFirstN #-}
rollingHashFirstN :: (Monad m, Enum a) => Int -> Fold m a Int64
rollingHashFirstN :: forall (m :: * -> *) a. (Monad m, Enum a) => Int -> Fold m a Int64
rollingHashFirstN Int
n = Int -> Fold m a Int64 -> Fold m a Int64
forall (m :: * -> *) a b.
Monad m =>
Int -> Fold m a b -> Fold m a b
take Int
n Fold m a Int64
forall (m :: * -> *) a. (Monad m, Enum a) => Fold m a Int64
rollingHash

-- XXX Compare this with the implementation in Fold.Window, preferrably use the
-- latter if performance is good.

-- | Apply a function on every two successive elements of a stream. The first
-- argument of the map function is the previous element and the second argument
-- is the current element. When processing the very first element in the
-- stream, the previous element is 'Nothing'.
--
-- /Pre-release/
--
{-# INLINE rollingMapM #-}
rollingMapM :: Monad m => (Maybe a -> a -> m b) -> Fold m a b
rollingMapM :: forall (m :: * -> *) a b.
Monad m =>
(Maybe a -> a -> m b) -> Fold m a b
rollingMapM Maybe a -> a -> m b
f = ((Maybe a, b) -> a -> m (Step (Maybe a, b) b))
-> m (Step (Maybe a, b) b)
-> ((Maybe a, b) -> m b)
-> ((Maybe a, b) -> m b)
-> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold (Maybe a, b) -> a -> m (Step (Maybe a, b) b)
forall {b} {b}. (Maybe a, b) -> a -> m (Step (Maybe a, b) b)
step m (Step (Maybe a, b) b)
forall {a} {b} {b}. m (Step (Maybe a, b) b)
initial (Maybe a, b) -> m b
forall {a} {b}. (a, b) -> m b
extract (Maybe a, b) -> m b
forall {a} {b}. (a, b) -> m b
extract

    where

    -- XXX We need just a postscan. We do not need an initial result here.
    -- Or we can supply a default initial result as an argument to rollingMapM.
    initial :: m (Step (Maybe a, b) b)
initial = Step (Maybe a, b) b -> m (Step (Maybe a, b) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe a, b) b -> m (Step (Maybe a, b) b))
-> Step (Maybe a, b) b -> m (Step (Maybe a, b) b)
forall a b. (a -> b) -> a -> b
$ (Maybe a, b) -> Step (Maybe a, b) b
forall s b. s -> Step s b
Partial (Maybe a
forall a. Maybe a
Nothing, [Char] -> b
forall a. HasCallStack => [Char] -> a
error [Char]
"Empty stream")

    step :: (Maybe a, b) -> a -> m (Step (Maybe a, b) b)
step (Maybe a
prev, b
_) a
cur = do
        b
x <- Maybe a -> a -> m b
f Maybe a
prev a
cur
        Step (Maybe a, b) b -> m (Step (Maybe a, b) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe a, b) b -> m (Step (Maybe a, b) b))
-> Step (Maybe a, b) b -> m (Step (Maybe a, b) b)
forall a b. (a -> b) -> a -> b
$ (Maybe a, b) -> Step (Maybe a, b) b
forall s b. s -> Step s b
Partial (a -> Maybe a
forall a. a -> Maybe a
Just a
cur, b
x)

    extract :: (a, b) -> m b
extract = b -> m b
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> ((a, b) -> b) -> (a, b) -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a, b) -> b
forall a b. (a, b) -> b
snd

-- |
-- >>> rollingMap f = Fold.rollingMapM (\x y -> return $ f x y)
--
{-# INLINE rollingMap #-}
rollingMap :: Monad m => (Maybe a -> a -> b) -> Fold m a b
rollingMap :: forall (m :: * -> *) a b.
Monad m =>
(Maybe a -> a -> b) -> Fold m a b
rollingMap Maybe a -> a -> b
f = (Maybe a -> a -> m b) -> Fold m a b
forall (m :: * -> *) a b.
Monad m =>
(Maybe a -> a -> m b) -> Fold m a b
rollingMapM (\Maybe a
x a
y -> b -> m b
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> b -> m b
forall a b. (a -> b) -> a -> b
$ Maybe a -> a -> b
f Maybe a
x a
y)

------------------------------------------------------------------------------
-- Monoidal left folds
------------------------------------------------------------------------------

-- | Semigroup concat. Append the elements of an input stream to a provided
-- starting value.
--
-- Definition:
--
-- >>> sconcat = Fold.foldl' (<>)
--
-- >>> semigroups = fmap Data.Monoid.Sum $ Stream.enumerateFromTo 1 10
-- >>> Stream.fold (Fold.sconcat 10) semigroups
-- Sum {getSum = 65}
--
{-# INLINE sconcat #-}
sconcat :: (Monad m, Semigroup a) => a -> Fold m a a
sconcat :: forall (m :: * -> *) a. (Monad m, Semigroup a) => a -> Fold m a a
sconcat = (a -> a -> a) -> a -> Fold m a a
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' a -> a -> a
forall a. Semigroup a => a -> a -> a
(<>)

-- | Monoid concat. Fold an input stream consisting of monoidal elements using
-- 'mappend' and 'mempty'.
--
-- Definition:
--
-- >>> mconcat = Fold.sconcat mempty
--
-- >>> monoids = fmap Data.Monoid.Sum $ Stream.enumerateFromTo 1 10
-- >>> Stream.fold Fold.mconcat monoids
-- Sum {getSum = 55}
--
{-# INLINE mconcat #-}
mconcat ::
    ( Monad m
    , Monoid a) => Fold m a a
mconcat :: forall (m :: * -> *) a. (Monad m, Monoid a) => Fold m a a
mconcat = a -> Fold m a a
forall (m :: * -> *) a. (Monad m, Semigroup a) => a -> Fold m a a
sconcat a
forall a. Monoid a => a
mempty

-- |
-- Definition:
--
-- >>> foldMap f = Fold.lmap f Fold.mconcat
--
-- Make a fold from a pure function that folds the output of the function
-- using 'mappend' and 'mempty'.
--
-- >>> sum = Fold.foldMap Data.Monoid.Sum
-- >>> Stream.fold sum $ Stream.enumerateFromTo 1 10
-- Sum {getSum = 55}
--
{-# INLINE foldMap #-}
foldMap :: (Monad m, Monoid b) => (a -> b) -> Fold m a b
foldMap :: forall (m :: * -> *) b a.
(Monad m, Monoid b) =>
(a -> b) -> Fold m a b
foldMap a -> b
f = (a -> b) -> Fold m b b -> Fold m a b
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap a -> b
f Fold m b b
forall (m :: * -> *) a. (Monad m, Monoid a) => Fold m a a
mconcat

-- |
-- Definition:
--
-- >>> foldMapM f = Fold.lmapM f Fold.mconcat
--
-- Make a fold from a monadic function that folds the output of the function
-- using 'mappend' and 'mempty'.
--
-- >>> sum = Fold.foldMapM (return . Data.Monoid.Sum)
-- >>> Stream.fold sum $ Stream.enumerateFromTo 1 10
-- Sum {getSum = 55}
--
{-# INLINE foldMapM #-}
foldMapM ::  (Monad m, Monoid b) => (a -> m b) -> Fold m a b
foldMapM :: forall (m :: * -> *) b a.
(Monad m, Monoid b) =>
(a -> m b) -> Fold m a b
foldMapM a -> m b
act = (b -> a -> m b) -> m b -> Fold m a b
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> m b) -> m b -> Fold m a b
foldlM' b -> a -> m b
step (b -> m b
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure b
forall a. Monoid a => a
mempty)

    where

    step :: b -> a -> m b
step b
m a
a = do
        b
m' <- a -> m b
act a
a
        b -> m b
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> b -> m b
forall a b. (a -> b) -> a -> b
$! b -> b -> b
forall a. Monoid a => a -> a -> a
mappend b
m b
m'

------------------------------------------------------------------------------
-- To Containers
------------------------------------------------------------------------------

-- $toListRev
-- This is more efficient than 'Streamly.Internal.Data.Fold.toList'. toList is
-- exactly the same as reversing the list after 'toListRev'.

-- | Buffers the input stream to a list in the reverse order of the input.
--
-- Definition:
--
-- >>> toListRev = Fold.foldl' (flip (:)) []
--
-- /Warning!/ working on large lists accumulated as buffers in memory could be
-- very inefficient, consider using "Streamly.Array" instead.
--

--  xn : ... : x2 : x1 : []
{-# INLINE toListRev #-}
toListRev :: Monad m => Fold m a [a]
toListRev :: forall (m :: * -> *) a. Monad m => Fold m a [a]
toListRev = ([a] -> a -> [a]) -> [a] -> Fold m a [a]
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' ((a -> [a] -> [a]) -> [a] -> a -> [a]
forall a b c. (a -> b -> c) -> b -> a -> c
flip (:)) []

------------------------------------------------------------------------------
-- Partial Folds
------------------------------------------------------------------------------

-- | A fold that drains the first n elements of its input, running the effects
-- and discarding the results.
--
-- Definition:
--
-- >>> drainN n = Fold.take n Fold.drain
--
-- /Pre-release/
{-# INLINE drainN #-}
drainN :: Monad m => Int -> Fold m a ()
drainN :: forall (m :: * -> *) a. Monad m => Int -> Fold m a ()
drainN Int
n = Int -> Fold m a () -> Fold m a ()
forall (m :: * -> *) a b.
Monad m =>
Int -> Fold m a b -> Fold m a b
take Int
n Fold m a ()
forall (m :: * -> *) a. Monad m => Fold m a ()
drain

------------------------------------------------------------------------------
-- To Elements
------------------------------------------------------------------------------

-- | Like 'index', except with a more general 'Integral' argument
--
-- /Pre-release/
{-# INLINE indexGeneric #-}
indexGeneric :: (Integral i, Monad m) => i -> Fold m a (Maybe a)
indexGeneric :: forall i (m :: * -> *) a.
(Integral i, Monad m) =>
i -> Fold m a (Maybe a)
indexGeneric i
i = (i -> a -> Step i (Maybe a))
-> Step i (Maybe a) -> (i -> Maybe a) -> Fold m a (Maybe a)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' i -> a -> Step i (Maybe a)
forall {a}. i -> a -> Step i (Maybe a)
step (i -> Step i (Maybe a)
forall s b. s -> Step s b
Partial i
0) (Maybe a -> i -> Maybe a
forall a b. a -> b -> a
const Maybe a
forall a. Maybe a
Nothing)

    where

    step :: i -> a -> Step i (Maybe a)
step i
j a
a =
        if i
i i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
j
        then Maybe a -> Step i (Maybe a)
forall s b. b -> Step s b
Done (Maybe a -> Step i (Maybe a)) -> Maybe a -> Step i (Maybe a)
forall a b. (a -> b) -> a -> b
$ a -> Maybe a
forall a. a -> Maybe a
Just a
a
        else i -> Step i (Maybe a)
forall s b. s -> Step s b
Partial (i
j i -> i -> i
forall a. Num a => a -> a -> a
+ i
1)

-- | Return the element at the given index.
--
-- Definition:
--
-- >>> index = Fold.indexGeneric
--
{-# INLINE index #-}
index :: Monad m => Int -> Fold m a (Maybe a)
index :: forall (m :: * -> *) a. Monad m => Int -> Fold m a (Maybe a)
index = Int -> Fold m a (Maybe a)
forall i (m :: * -> *) a.
(Integral i, Monad m) =>
i -> Fold m a (Maybe a)
indexGeneric

-- | Consume a single input and transform it using the supplied 'Maybe'
-- returning function.
--
-- /Pre-release/
--
{-# INLINE maybe #-}
maybe :: Monad m => (a -> Maybe b) -> Fold m a (Maybe b)
maybe :: forall (m :: * -> *) a b.
Monad m =>
(a -> Maybe b) -> Fold m a (Maybe b)
maybe a -> Maybe b
f = (Maybe b -> a -> Step (Maybe b) (Maybe b))
-> Step (Maybe b) (Maybe b)
-> (Maybe b -> Maybe b)
-> Fold m a (Maybe b)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' ((a -> Step (Maybe b) (Maybe b))
-> Maybe b -> a -> Step (Maybe b) (Maybe b)
forall a b. a -> b -> a
const (Maybe b -> Step (Maybe b) (Maybe b)
forall s b. b -> Step s b
Done (Maybe b -> Step (Maybe b) (Maybe b))
-> (a -> Maybe b) -> a -> Step (Maybe b) (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Maybe b
f)) (Maybe b -> Step (Maybe b) (Maybe b)
forall s b. s -> Step s b
Partial Maybe b
forall a. Maybe a
Nothing) Maybe b -> Maybe b
forall a. a -> a
id

-- | Consume a single element and return it if it passes the predicate else
-- return 'Nothing'.
--
-- Definition:
--
-- >>> satisfy f = Fold.maybe (\a -> if f a then Just a else Nothing)
--
-- /Pre-release/
{-# INLINE satisfy #-}
satisfy :: Monad m => (a -> Bool) -> Fold m a (Maybe a)
satisfy :: forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe a)
satisfy a -> Bool
f = (a -> Maybe a) -> Fold m a (Maybe a)
forall (m :: * -> *) a b.
Monad m =>
(a -> Maybe b) -> Fold m a (Maybe b)
maybe (\a
a -> if a -> Bool
f a
a then a -> Maybe a
forall a. a -> Maybe a
Just a
a else Maybe a
forall a. Maybe a
Nothing)
{-
satisfy f = Fold step (return $ Partial ()) (const (return Nothing))

    where

    step () a = return $ Done $ if f a then Just a else Nothing
-}

-- Naming notes:
--
-- "head" and "next" are two alternative names for the same API. head sounds
-- apt in the context of lists but next sounds more apt in the context of
-- streams where we think in terms of generating and consuming the next element
-- rather than taking the head of some static/persistent structure.
--
-- We also want to keep the nomenclature consistent across folds and parsers,
-- "head" becomes even more unintuitive for parsers because there are two
-- possible variants viz. peek and next.
--
-- Also, the "head" fold creates confusion in situations like
-- https://github.com/composewell/streamly/issues/1404 where intuitive
-- expectation from head is to consume the entire stream and just give us the
-- head. There we want to convey the notion that we consume one element from
-- the stream and stop. The name "one" already being used in parsers for this
-- purpose sounds more apt from this perspective.
--
-- The source of confusion is perhaps due to the fact that some folds consume
-- the entire stream and others terminate early. It may have been clearer if we
-- had separate abstractions for the two use cases.

-- XXX We can possibly use "head" for the purposes of reducing the entire
-- stream to the head element i.e. take the head and drain the rest.

-- | Take one element from the stream and stop.
--
-- Definition:
--
-- >>> one = Fold.maybe Just
--
-- This is similar to the stream 'Stream.uncons' operation.
--
{-# INLINE one #-}
one :: Monad m => Fold m a (Maybe a)
one :: forall (m :: * -> *) a. Monad m => Fold m a (Maybe a)
one = (a -> Maybe a) -> Fold m a (Maybe a)
forall (m :: * -> *) a b.
Monad m =>
(a -> Maybe b) -> Fold m a (Maybe b)
maybe a -> Maybe a
forall a. a -> Maybe a
Just

-- | Extract the first element of the stream, if any.
--
-- >>> head = Fold.one
--
{-# DEPRECATED head "Please use \"one\" instead" #-}
{-# INLINE head #-}
head :: Monad m => Fold m a (Maybe a)
head :: forall (m :: * -> *) a. Monad m => Fold m a (Maybe a)
head = Fold m a (Maybe a)
forall (m :: * -> *) a. Monad m => Fold m a (Maybe a)
one

-- | Returns the first element that satisfies the given predicate.
--
-- /Pre-release/
{-# INLINE findM #-}
findM :: Monad m => (a -> m Bool) -> Fold m a (Maybe a)
findM :: forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Fold m a (Maybe a)
findM a -> m Bool
predicate =
    (() -> a -> m (Step () (Maybe a)))
-> m (Step () (Maybe a))
-> (() -> m (Maybe a))
-> (() -> m (Maybe a))
-> Fold m a (Maybe a)
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold () -> a -> m (Step () (Maybe a))
step (Step () (Maybe a) -> m (Step () (Maybe a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step () (Maybe a) -> m (Step () (Maybe a)))
-> Step () (Maybe a) -> m (Step () (Maybe a))
forall a b. (a -> b) -> a -> b
$ () -> Step () (Maybe a)
forall s b. s -> Step s b
Partial ()) () -> m (Maybe a)
forall {b} {a}. b -> m (Maybe a)
extract () -> m (Maybe a)
forall {b} {a}. b -> m (Maybe a)
extract

    where

    step :: () -> a -> m (Step () (Maybe a))
step () a
a =
        let f :: Bool -> Step () (Maybe a)
f Bool
r =
                if Bool
r
                then Maybe a -> Step () (Maybe a)
forall s b. b -> Step s b
Done (a -> Maybe a
forall a. a -> Maybe a
Just a
a)
                else () -> Step () (Maybe a)
forall s b. s -> Step s b
Partial ()
         in Bool -> Step () (Maybe a)
f (Bool -> Step () (Maybe a)) -> m Bool -> m (Step () (Maybe a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m Bool
predicate a
a

    extract :: b -> m (Maybe a)
extract = m (Maybe a) -> b -> m (Maybe a)
forall a b. a -> b -> a
const (m (Maybe a) -> b -> m (Maybe a))
-> m (Maybe a) -> b -> m (Maybe a)
forall a b. (a -> b) -> a -> b
$ Maybe a -> m (Maybe a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe a
forall a. Maybe a
Nothing

-- | Returns the first element that satisfies the given predicate.
--
{-# INLINE find #-}
find :: Monad m => (a -> Bool) -> Fold m a (Maybe a)
find :: forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe a)
find a -> Bool
p = (a -> m Bool) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Fold m a (Maybe a)
findM (Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> (a -> Bool) -> a -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Bool
p)

-- | In a stream of (key-value) pairs @(a, b)@, return the value @b@ of the
-- first pair where the key equals the given value @a@.
--
-- Definition:
--
-- >>> lookup x = fmap snd <$> Fold.find ((== x) . fst)
--
{-# INLINE lookup #-}
lookup :: (Eq a, Monad m) => a -> Fold m (a,b) (Maybe b)
lookup :: forall a (m :: * -> *) b.
(Eq a, Monad m) =>
a -> Fold m (a, b) (Maybe b)
lookup a
a0 = (() -> (a, b) -> Step () (Maybe b))
-> Step () (Maybe b) -> (() -> Maybe b) -> Fold m (a, b) (Maybe b)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' () -> (a, b) -> Step () (Maybe b)
forall {a}. () -> (a, a) -> Step () (Maybe a)
step (() -> Step () (Maybe b)
forall s b. s -> Step s b
Partial ()) (Maybe b -> () -> Maybe b
forall a b. a -> b -> a
const Maybe b
forall a. Maybe a
Nothing)

    where

    step :: () -> (a, a) -> Step () (Maybe a)
step () (a
a, a
b) =
        if a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
a0
        then Maybe a -> Step () (Maybe a)
forall s b. b -> Step s b
Done (Maybe a -> Step () (Maybe a)) -> Maybe a -> Step () (Maybe a)
forall a b. (a -> b) -> a -> b
$ a -> Maybe a
forall a. a -> Maybe a
Just a
b
        else () -> Step () (Maybe a)
forall s b. s -> Step s b
Partial ()

-- | Returns the first index that satisfies the given predicate.
--
{-# INLINE findIndex #-}
findIndex :: Monad m => (a -> Bool) -> Fold m a (Maybe Int)
findIndex :: forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe Int)
findIndex a -> Bool
predicate = (Int -> a -> Step Int (Maybe Int))
-> Step Int (Maybe Int)
-> (Int -> Maybe Int)
-> Fold m a (Maybe Int)
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' Int -> a -> Step Int (Maybe Int)
forall {s}. Num s => s -> a -> Step s (Maybe s)
step (Int -> Step Int (Maybe Int)
forall s b. s -> Step s b
Partial Int
0) (Maybe Int -> Int -> Maybe Int
forall a b. a -> b -> a
const Maybe Int
forall a. Maybe a
Nothing)

    where

    step :: s -> a -> Step s (Maybe s)
step s
i a
a =
        if a -> Bool
predicate a
a
        then Maybe s -> Step s (Maybe s)
forall s b. b -> Step s b
Done (Maybe s -> Step s (Maybe s)) -> Maybe s -> Step s (Maybe s)
forall a b. (a -> b) -> a -> b
$ s -> Maybe s
forall a. a -> Maybe a
Just s
i
        else s -> Step s (Maybe s)
forall s b. s -> Step s b
Partial (s
i s -> s -> s
forall a. Num a => a -> a -> a
+ s
1)

-- | Returns the index of the latest element if the element satisfies the given
-- predicate.
--
{-# INLINE findIndices #-}
findIndices :: Monad m => (a -> Bool) -> Fold m a (Maybe Int)
findIndices :: forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe Int)
findIndices a -> Bool
predicate =
    -- XXX implement by combining indexing and filtering scans
    (Either Int Int -> Maybe Int)
-> Fold m a (Either Int Int) -> Fold m a (Maybe Int)
forall a b. (a -> b) -> Fold m a a -> Fold m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Int -> Maybe Int)
-> (Int -> Maybe Int) -> Either Int Int -> Maybe Int
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Maybe Int -> Int -> Maybe Int
forall a b. a -> b -> a
const Maybe Int
forall a. Maybe a
Nothing) Int -> Maybe Int
forall a. a -> Maybe a
Just) (Fold m a (Either Int Int) -> Fold m a (Maybe Int))
-> Fold m a (Either Int Int) -> Fold m a (Maybe Int)
forall a b. (a -> b) -> a -> b
$ (Either Int Int -> a -> Either Int Int)
-> Either Int Int -> Fold m a (Either Int Int)
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Either Int Int -> a -> Either Int Int
forall {a}. Num a => Either a a -> a -> Either a a
step (Int -> Either Int Int
forall a b. a -> Either a b
Left (-Int
1))

    where

    step :: Either a a -> a -> Either a a
step Either a a
i a
a =
        if a -> Bool
predicate a
a
        then a -> Either a a
forall a b. b -> Either a b
Right ((a -> a) -> (a -> a) -> Either a a -> a
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either a -> a
forall a. a -> a
id a -> a
forall a. a -> a
id Either a a
i a -> a -> a
forall a. Num a => a -> a -> a
+ a
1)
        else a -> Either a a
forall a b. a -> Either a b
Left ((a -> a) -> (a -> a) -> Either a a -> a
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either a -> a
forall a. a -> a
id a -> a
forall a. a -> a
id Either a a
i a -> a -> a
forall a. Num a => a -> a -> a
+ a
1)

-- | Returns the index of the latest element if the element matches the given
-- value.
--
-- Definition:
--
-- >>> elemIndices a = Fold.findIndices (== a)
--
{-# INLINE elemIndices #-}
elemIndices :: (Monad m, Eq a) => a -> Fold m a (Maybe Int)
elemIndices :: forall (m :: * -> *) a.
(Monad m, Eq a) =>
a -> Fold m a (Maybe Int)
elemIndices a
a = (a -> Bool) -> Fold m a (Maybe Int)
forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe Int)
findIndices (a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
a)

-- | Returns the first index where a given value is found in the stream.
--
-- Definition:
--
-- >>> elemIndex a = Fold.findIndex (== a)
--
{-# INLINE elemIndex #-}
elemIndex :: (Eq a, Monad m) => a -> Fold m a (Maybe Int)
elemIndex :: forall a (m :: * -> *).
(Eq a, Monad m) =>
a -> Fold m a (Maybe Int)
elemIndex a
a = (a -> Bool) -> Fold m a (Maybe Int)
forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe Int)
findIndex (a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
a)

------------------------------------------------------------------------------
-- To Boolean
------------------------------------------------------------------------------

-- Similar to 'eof' parser, but the fold consumes and discards an input element
-- when not at eof. XXX Remove or Rename to "eof"?

-- | Consume one element, return 'True' if successful else return 'False'. In
-- other words, test if the input is empty or not.
--
-- WARNING! It consumes one element if the stream is not empty. If that is not
-- what you want please use the eof parser instead.
--
-- Definition:
--
-- >>> null = fmap isJust Fold.one
--
{-# INLINE null #-}
null :: Monad m => Fold m a Bool
null :: forall (m :: * -> *) a. Monad m => Fold m a Bool
null = (() -> a -> Step () Bool)
-> Step () Bool -> (() -> Bool) -> Fold m a Bool
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' (\() a
_ -> Bool -> Step () Bool
forall s b. b -> Step s b
Done Bool
False) (() -> Step () Bool
forall s b. s -> Step s b
Partial ()) (Bool -> () -> Bool
forall a b. a -> b -> a
const Bool
True)

-- | Returns 'True' if any element of the input satisfies the predicate.
--
-- Definition:
--
-- >>> any p = Fold.lmap p Fold.or
--
-- Example:
--
-- >>> Stream.fold (Fold.any (== 0)) $ Stream.fromList [1,0,1]
-- True
--
{-# INLINE any #-}
any :: Monad m => (a -> Bool) -> Fold m a Bool
any :: forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
any a -> Bool
predicate = (Bool -> a -> Step Bool Bool)
-> Step Bool Bool -> (Bool -> Bool) -> Fold m a Bool
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' Bool -> a -> Step Bool Bool
forall {p}. p -> a -> Step Bool Bool
step Step Bool Bool
forall {b}. Step Bool b
initial Bool -> Bool
forall a. a -> a
id

    where

    initial :: Step Bool b
initial = Bool -> Step Bool b
forall s b. s -> Step s b
Partial Bool
False

    step :: p -> a -> Step Bool Bool
step p
_ a
a =
        if a -> Bool
predicate a
a
        then Bool -> Step Bool Bool
forall s b. b -> Step s b
Done Bool
True
        else Bool -> Step Bool Bool
forall s b. s -> Step s b
Partial Bool
False

-- | Return 'True' if the given element is present in the stream.
--
-- Definition:
--
-- >>> elem a = Fold.any (== a)
--
{-# INLINE elem #-}
elem :: (Eq a, Monad m) => a -> Fold m a Bool
elem :: forall a (m :: * -> *). (Eq a, Monad m) => a -> Fold m a Bool
elem a
a = (a -> Bool) -> Fold m a Bool
forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
any (a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
a)

-- | Returns 'True' if all elements of the input satisfy the predicate.
--
-- Definition:
--
-- >>> all p = Fold.lmap p Fold.and
--
-- Example:
--
-- >>> Stream.fold (Fold.all (== 0)) $ Stream.fromList [1,0,1]
-- False
--
{-# INLINE all #-}
all :: Monad m => (a -> Bool) -> Fold m a Bool
all :: forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
all a -> Bool
predicate = (Bool -> a -> Step Bool Bool)
-> Step Bool Bool -> (Bool -> Bool) -> Fold m a Bool
forall (m :: * -> *) s a b.
Monad m =>
(s -> a -> Step s b) -> Step s b -> (s -> b) -> Fold m a b
foldt' Bool -> a -> Step Bool Bool
forall {p}. p -> a -> Step Bool Bool
step Step Bool Bool
forall {b}. Step Bool b
initial Bool -> Bool
forall a. a -> a
id

    where

    initial :: Step Bool b
initial = Bool -> Step Bool b
forall s b. s -> Step s b
Partial Bool
True

    step :: p -> a -> Step Bool Bool
step p
_ a
a =
        if a -> Bool
predicate a
a
        then Bool -> Step Bool Bool
forall s b. s -> Step s b
Partial Bool
True
        else Bool -> Step Bool Bool
forall s b. b -> Step s b
Done Bool
False

-- | Returns 'True' if the given element is not present in the stream.
--
-- Definition:
--
-- >>> notElem a = Fold.all (/= a)
--
{-# INLINE notElem #-}
notElem :: (Eq a, Monad m) => a -> Fold m a Bool
notElem :: forall a (m :: * -> *). (Eq a, Monad m) => a -> Fold m a Bool
notElem a
a = (a -> Bool) -> Fold m a Bool
forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
all (a -> a -> Bool
forall a. Eq a => a -> a -> Bool
/= a
a)

-- | Returns 'True' if all elements are 'True', 'False' otherwise
--
-- Definition:
--
-- >>> and = Fold.all (== True)
--
{-# INLINE and #-}
and :: Monad m => Fold m Bool Bool
and :: forall (m :: * -> *). Monad m => Fold m Bool Bool
and = (Bool -> Bool) -> Fold m Bool Bool
forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
all (Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool
True)

-- | Returns 'True' if any element is 'True', 'False' otherwise
--
-- Definition:
--
-- >>> or = Fold.any (== True)
--
{-# INLINE or #-}
or :: Monad m => Fold m Bool Bool
or :: forall (m :: * -> *). Monad m => Fold m Bool Bool
or = (Bool -> Bool) -> Fold m Bool Bool
forall (m :: * -> *) a. Monad m => (a -> Bool) -> Fold m a Bool
any (Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool
True)

------------------------------------------------------------------------------
-- Grouping/Splitting
------------------------------------------------------------------------------

------------------------------------------------------------------------------
-- Grouping without looking at elements
------------------------------------------------------------------------------

------------------------------------------------------------------------------
-- Binary APIs
------------------------------------------------------------------------------

-- | @splitAt n f1 f2@ composes folds @f1@ and @f2@ such that first @n@
-- elements of its input are consumed by fold @f1@ and the rest of the stream
-- is consumed by fold @f2@.
--
-- >>> let splitAt_ n xs = Stream.fold (Fold.splitAt n Fold.toList Fold.toList) $ Stream.fromList xs
--
-- >>> splitAt_ 6 "Hello World!"
-- ("Hello ","World!")
--
-- >>> splitAt_ (-1) [1,2,3]
-- ([],[1,2,3])
--
-- >>> splitAt_ 0 [1,2,3]
-- ([],[1,2,3])
--
-- >>> splitAt_ 1 [1,2,3]
-- ([1],[2,3])
--
-- >>> splitAt_ 3 [1,2,3]
-- ([1,2,3],[])
--
-- >>> splitAt_ 4 [1,2,3]
-- ([1,2,3],[])
--
-- > splitAt n f1 f2 = Fold.splitWith (,) (Fold.take n f1) f2
--
-- /Internal/

{-# INLINE splitAt #-}
splitAt
    :: Monad m
    => Int
    -> Fold m a b
    -> Fold m a c
    -> Fold m a (b, c)
splitAt :: forall (m :: * -> *) a b c.
Monad m =>
Int -> Fold m a b -> Fold m a c -> Fold m a (b, c)
splitAt Int
n Fold m a b
fld = (b -> c -> (b, c)) -> Fold m a b -> Fold m a c -> Fold m a (b, c)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
splitWith (,) (Int -> Fold m a b -> Fold m a b
forall (m :: * -> *) a b.
Monad m =>
Int -> Fold m a b -> Fold m a b
take Int
n Fold m a b
fld)

------------------------------------------------------------------------------
-- Element Aware APIs
------------------------------------------------------------------------------
--
------------------------------------------------------------------------------
-- Binary APIs
------------------------------------------------------------------------------

{-# INLINE takingEndByM #-}
takingEndByM :: Monad m => (a -> m Bool) -> Fold m a (Maybe a)
takingEndByM :: forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Fold m a (Maybe a)
takingEndByM a -> m Bool
p = (Maybe' a -> a -> m (Step (Maybe' a) (Maybe a)))
-> m (Step (Maybe' a) (Maybe a))
-> (Maybe' a -> m (Maybe a))
-> (Maybe' a -> m (Maybe a))
-> Fold m a (Maybe a)
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold Maybe' a -> a -> m (Step (Maybe' a) (Maybe a))
forall {p}. p -> a -> m (Step (Maybe' a) (Maybe a))
step m (Step (Maybe' a) (Maybe a))
forall {a} {b}. m (Step (Maybe' a) b)
initial Maybe' a -> m (Maybe a)
forall {a}. Maybe' a -> m (Maybe a)
extract Maybe' a -> m (Maybe a)
forall {a}. Maybe' a -> m (Maybe a)
extract

    where

    initial :: m (Step (Maybe' a) b)
initial = Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe' a) b -> m (Step (Maybe' a) b))
-> Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a b. (a -> b) -> a -> b
$ Maybe' a -> Step (Maybe' a) b
forall s b. s -> Step s b
Partial Maybe' a
forall a. Maybe' a
Nothing'

    step :: p -> a -> m (Step (Maybe' a) (Maybe a))
step p
_ a
a = do
        Bool
r <- a -> m Bool
p a
a
        Step (Maybe' a) (Maybe a) -> m (Step (Maybe' a) (Maybe a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (Maybe' a) (Maybe a) -> m (Step (Maybe' a) (Maybe a)))
-> Step (Maybe' a) (Maybe a) -> m (Step (Maybe' a) (Maybe a))
forall a b. (a -> b) -> a -> b
$ if Bool
r
              then Maybe a -> Step (Maybe' a) (Maybe a)
forall s b. b -> Step s b
Done (Maybe a -> Step (Maybe' a) (Maybe a))
-> Maybe a -> Step (Maybe' a) (Maybe a)
forall a b. (a -> b) -> a -> b
$ a -> Maybe a
forall a. a -> Maybe a
Just a
a
              else Maybe' a -> Step (Maybe' a) (Maybe a)
forall s b. s -> Step s b
Partial (Maybe' a -> Step (Maybe' a) (Maybe a))
-> Maybe' a -> Step (Maybe' a) (Maybe a)
forall a b. (a -> b) -> a -> b
$ a -> Maybe' a
forall a. a -> Maybe' a
Just' a
a

    extract :: Maybe' a -> m (Maybe a)
extract = Maybe a -> m (Maybe a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe a -> m (Maybe a))
-> (Maybe' a -> Maybe a) -> Maybe' a -> m (Maybe a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Maybe' a -> Maybe a
forall a. Maybe' a -> Maybe a
toMaybe

-- |
--
-- >>> takingEndBy p = Fold.takingEndByM (return . p)
--
{-# INLINE takingEndBy #-}
takingEndBy :: Monad m => (a -> Bool) -> Fold m a (Maybe a)
takingEndBy :: forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe a)
takingEndBy a -> Bool
p = (a -> m Bool) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Fold m a (Maybe a)
takingEndByM (Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> (a -> Bool) -> a -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Bool
p)

{-# INLINE takingEndByM_ #-}
takingEndByM_ :: Monad m => (a -> m Bool) -> Fold m a (Maybe a)
takingEndByM_ :: forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Fold m a (Maybe a)
takingEndByM_ a -> m Bool
p = (Maybe' a -> a -> m (Step (Maybe' a) (Maybe a)))
-> m (Step (Maybe' a) (Maybe a))
-> (Maybe' a -> m (Maybe a))
-> (Maybe' a -> m (Maybe a))
-> Fold m a (Maybe a)
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold Maybe' a -> a -> m (Step (Maybe' a) (Maybe a))
forall {p} {a}. p -> a -> m (Step (Maybe' a) (Maybe a))
step m (Step (Maybe' a) (Maybe a))
forall {a} {b}. m (Step (Maybe' a) b)
initial Maybe' a -> m (Maybe a)
forall {a}. Maybe' a -> m (Maybe a)
extract Maybe' a -> m (Maybe a)
forall {a}. Maybe' a -> m (Maybe a)
extract

    where

    initial :: m (Step (Maybe' a) b)
initial = Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe' a) b -> m (Step (Maybe' a) b))
-> Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a b. (a -> b) -> a -> b
$ Maybe' a -> Step (Maybe' a) b
forall s b. s -> Step s b
Partial Maybe' a
forall a. Maybe' a
Nothing'

    step :: p -> a -> m (Step (Maybe' a) (Maybe a))
step p
_ a
a = do
        Bool
r <- a -> m Bool
p a
a
        Step (Maybe' a) (Maybe a) -> m (Step (Maybe' a) (Maybe a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (Maybe' a) (Maybe a) -> m (Step (Maybe' a) (Maybe a)))
-> Step (Maybe' a) (Maybe a) -> m (Step (Maybe' a) (Maybe a))
forall a b. (a -> b) -> a -> b
$ if Bool
r
              then Maybe a -> Step (Maybe' a) (Maybe a)
forall s b. b -> Step s b
Done Maybe a
forall a. Maybe a
Nothing
              else Maybe' a -> Step (Maybe' a) (Maybe a)
forall s b. s -> Step s b
Partial (Maybe' a -> Step (Maybe' a) (Maybe a))
-> Maybe' a -> Step (Maybe' a) (Maybe a)
forall a b. (a -> b) -> a -> b
$ a -> Maybe' a
forall a. a -> Maybe' a
Just' a
a

    extract :: Maybe' a -> m (Maybe a)
extract = Maybe a -> m (Maybe a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe a -> m (Maybe a))
-> (Maybe' a -> Maybe a) -> Maybe' a -> m (Maybe a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Maybe' a -> Maybe a
forall a. Maybe' a -> Maybe a
toMaybe

-- |
--
-- >>> takingEndBy_ p = Fold.takingEndByM_ (return . p)
--
{-# INLINE takingEndBy_ #-}
takingEndBy_ :: Monad m => (a -> Bool) -> Fold m a (Maybe a)
takingEndBy_ :: forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe a)
takingEndBy_ a -> Bool
p = (a -> m Bool) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Fold m a (Maybe a)
takingEndByM_ (Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> (a -> Bool) -> a -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Bool
p)

{-# INLINE droppingWhileM #-}
droppingWhileM :: Monad m => (a -> m Bool) -> Fold m a (Maybe a)
droppingWhileM :: forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Fold m a (Maybe a)
droppingWhileM a -> m Bool
p = (Maybe' a -> a -> m (Step (Maybe' a) (Maybe a)))
-> m (Step (Maybe' a) (Maybe a))
-> (Maybe' a -> m (Maybe a))
-> (Maybe' a -> m (Maybe a))
-> Fold m a (Maybe a)
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold Maybe' a -> a -> m (Step (Maybe' a) (Maybe a))
forall {a} {b}. Maybe' a -> a -> m (Step (Maybe' a) b)
step m (Step (Maybe' a) (Maybe a))
forall {a} {b}. m (Step (Maybe' a) b)
initial Maybe' a -> m (Maybe a)
forall {a}. Maybe' a -> m (Maybe a)
extract Maybe' a -> m (Maybe a)
forall {a}. Maybe' a -> m (Maybe a)
extract

    where

    initial :: m (Step (Maybe' a) b)
initial = Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe' a) b -> m (Step (Maybe' a) b))
-> Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a b. (a -> b) -> a -> b
$ Maybe' a -> Step (Maybe' a) b
forall s b. s -> Step s b
Partial Maybe' a
forall a. Maybe' a
Nothing'

    step :: Maybe' a -> a -> m (Step (Maybe' a) b)
step Maybe' a
Nothing' a
a = do
        Bool
r <- a -> m Bool
p a
a
        Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
            (Step (Maybe' a) b -> m (Step (Maybe' a) b))
-> Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a b. (a -> b) -> a -> b
$ Maybe' a -> Step (Maybe' a) b
forall s b. s -> Step s b
Partial
            (Maybe' a -> Step (Maybe' a) b) -> Maybe' a -> Step (Maybe' a) b
forall a b. (a -> b) -> a -> b
$ if Bool
r
              then Maybe' a
forall a. Maybe' a
Nothing'
              else a -> Maybe' a
forall a. a -> Maybe' a
Just' a
a
    step Maybe' a
_ a
a = Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (Maybe' a) b -> m (Step (Maybe' a) b))
-> Step (Maybe' a) b -> m (Step (Maybe' a) b)
forall a b. (a -> b) -> a -> b
$ Maybe' a -> Step (Maybe' a) b
forall s b. s -> Step s b
Partial (Maybe' a -> Step (Maybe' a) b) -> Maybe' a -> Step (Maybe' a) b
forall a b. (a -> b) -> a -> b
$ a -> Maybe' a
forall a. a -> Maybe' a
Just' a
a

    extract :: Maybe' a -> m (Maybe a)
extract = Maybe a -> m (Maybe a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe a -> m (Maybe a))
-> (Maybe' a -> Maybe a) -> Maybe' a -> m (Maybe a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Maybe' a -> Maybe a
forall a. Maybe' a -> Maybe a
toMaybe

-- |
-- >>> droppingWhile p = Fold.droppingWhileM (return . p)
--
{-# INLINE droppingWhile #-}
droppingWhile :: Monad m => (a -> Bool) -> Fold m a (Maybe a)
droppingWhile :: forall (m :: * -> *) a.
Monad m =>
(a -> Bool) -> Fold m a (Maybe a)
droppingWhile a -> Bool
p = (a -> m Bool) -> Fold m a (Maybe a)
forall (m :: * -> *) a.
Monad m =>
(a -> m Bool) -> Fold m a (Maybe a)
droppingWhileM (Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> (a -> Bool) -> a -> m Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Bool
p)

------------------------------------------------------------------------------
-- Binary splitting on a separator
------------------------------------------------------------------------------

data SplitOnSeqState acc a rb rh w ck =
      SplitOnSeqEmpty !acc
    | SplitOnSeqSingle !acc !a
    | SplitOnSeqWord !acc !Int !w
    | SplitOnSeqWordLoop !acc !w
    | SplitOnSeqKR !acc !Int !rb !rh
    | SplitOnSeqKRLoop !acc !ck !rb !rh

-- XXX Need to add tests for takeEndBySeq, we have tests for takeEndBySeq_ .

-- | Continue taking the input until the input sequence matches the supplied
-- sequence, taking the supplied sequence as well. If the pattern is empty this
-- acts as an identity fold.
--
-- >>> s = Stream.fromList "hello there. How are you?"
-- >>> f = Fold.takeEndBySeq (Array.fromList "re") Fold.toList
-- >>> Stream.fold f s
-- "hello there"
--
-- >>> Stream.fold Fold.toList $ Stream.foldMany f s
-- ["hello there",". How are"," you?"]
--
-- /Pre-release/
{-# INLINE takeEndBySeq #-}
takeEndBySeq :: forall m a b. (MonadIO m, Storable a, Unbox a, Enum a, Eq a) =>
       Array.Array a
    -> Fold m a b
    -> Fold m a b
takeEndBySeq :: forall (m :: * -> *) a b.
(MonadIO m, Storable a, Unbox a, Enum a, Eq a) =>
Array a -> Fold m a b -> Fold m a b
takeEndBySeq Array a
patArr (Fold s -> a -> m (Step s b)
fstep m (Step s b)
finitial s -> m b
fextract s -> m b
ffinal) =
    (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> a
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32 -> m b)
-> (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32 -> m b)
-> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> a
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
step m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall {ck}.
m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
initial SplitOnSeqState s a (Ring a) (Ptr a) Word Word32 -> m b
forall {a} {rb} {rh} {w} {ck}.
SplitOnSeqState s a rb rh w ck -> m b
extract SplitOnSeqState s a (Ring a) (Ptr a) Word Word32 -> m b
forall {a} {rb} {rh} {w} {ck}.
SplitOnSeqState s a rb rh w ck -> m b
final

    where

    patLen :: Int
patLen = Array a -> Int
forall a. Unbox a => Array a -> Int
Array.length Array a
patArr

    initial :: m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
initial = do
        Step s b
res <- m (Step s b)
finitial
        case Step s b
res of
            Partial s
acc
                | Int
patLen Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 ->
                    -- XXX Should we match nothing or everything on empty
                    -- pattern?
                    -- Done <$> ffinal acc
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word ck
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall a b. (a -> b) -> a -> b
$ s -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
forall acc a rb rh w ck. acc -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqEmpty s
acc
                | Int
patLen Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> do
                    a
pat <- IO a -> m a
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Int -> Array a -> IO a
forall a. Unbox a => Int -> Array a -> IO a
Array.unsafeIndexIO Int
0 Array a
patArr
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word ck
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall a b. (a -> b) -> a -> b
$ s -> a -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
forall acc a rb rh w ck.
acc -> a -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqSingle s
acc a
pat
                | SIZE_OF(a) * patLen <= sizeOf (Proxy :: Proxy Word) ->
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word ck
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall a b. (a -> b) -> a -> b
$ s -> Int -> Word -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
forall acc a rb rh w ck.
acc -> Int -> w -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqWord s
acc Int
0 Word
0
                | Bool
otherwise -> do
                    (Ring a
rb, Ptr a
rhead) <- IO (Ring a, Ptr a) -> m (Ring a, Ptr a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ring a, Ptr a) -> m (Ring a, Ptr a))
-> IO (Ring a, Ptr a) -> m (Ring a, Ptr a)
forall a b. (a -> b) -> a -> b
$ Int -> IO (Ring a, Ptr a)
forall a. Storable a => Int -> IO (Ring a, Ptr a)
Ring.new Int
patLen
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word ck
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall a b. (a -> b) -> a -> b
$ s
-> Int
-> Ring a
-> Ptr a
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
forall acc a rb rh w ck.
acc -> Int -> rb -> rh -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqKR s
acc Int
0 Ring a
rb Ptr a
rhead
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. b -> Step s b
Done b
b

    -- Word pattern related
    maxIndex :: Int
maxIndex = Int
patLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1

    elemBits :: Int
elemBits = SIZE_OF(a) * 8

    wordMask :: Word
    wordMask :: Word
wordMask = (Word
1 Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftL` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
patLen)) Word -> Word -> Word
forall a. Num a => a -> a -> a
- Word
1

    wordPat :: Word
    wordPat :: Word
wordPat = Word
wordMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. (Word -> a -> Word) -> Word -> Array a -> Word
forall a b. Unbox a => (b -> a -> b) -> b -> Array a -> b
Array.foldl' Word -> a -> Word
forall {a} {a}. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
0 Array a
patArr

    addToWord :: a -> a -> a
addToWord a
wd a
a = (a
wd a -> Int -> a
forall a. Bits a => a -> Int -> a
`shiftL` Int
elemBits) a -> a -> a
forall a. Bits a => a -> a -> a
.|. Int -> a
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

    -- For Rabin-Karp search
    k :: Word32
k = Word32
2891336453 :: Word32
    coeff :: Word32
coeff = Word32
k Word32 -> Int -> Word32
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
patLen

    addCksum :: Word32 -> a -> Word32
addCksum Word32
cksum a
a = Word32
cksum Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
* Word32
k Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
+ Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

    deltaCksum :: Word32 -> a -> a -> Word32
deltaCksum Word32
cksum a
old a
new =
        Word32 -> a -> Word32
forall {a}. Enum a => Word32 -> a -> Word32
addCksum Word32
cksum a
new Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
- Word32
coeff Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
* Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
old)

    -- XXX shall we use a random starting hash or 1 instead of 0?
    -- XXX Need to keep this cached across fold calls in foldmany
    -- XXX We may need refold to inject the cached state instead of
    -- initializing the state every time.
    -- XXX Allocation of ring buffer should also be done once
    patHash :: Word32
patHash = (Word32 -> a -> Word32) -> Word32 -> Array a -> Word32
forall a b. Unbox a => (b -> a -> b) -> b -> Array a -> b
Array.foldl' Word32 -> a -> Word32
forall {a}. Enum a => Word32 -> a -> Word32
addCksum Word32
0 Array a
patArr

    step :: SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> a
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
step (SplitOnSeqEmpty s
s) a
x = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
x
        case Step s b
res of
            Partial s
s1 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck. acc -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqEmpty s
s1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b
    step (SplitOnSeqSingle s
s a
pat) a
x = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
x
        case Step s b
res of
            Partial s
s1
                | a
pat a -> a -> Bool
forall a. Eq a => a -> a -> Bool
/= a
x -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s -> a -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> a -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqSingle s
s1 a
pat
                | Bool
otherwise -> b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b
    step (SplitOnSeqWord s
s Int
idx Word
wrd) a
x = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
x
        let wrd1 :: Word
wrd1 = Word -> a -> Word
forall {a} {a}. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
wrd a
x
        case Step s b
res of
            Partial s
s1
                | Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxIndex -> do
                    if Word
wrd1 Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
wordPat
                    then b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s1
                    else Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s -> Word -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> w -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqWordLoop s
s1 Word
wrd1
                | Bool
otherwise ->
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s
-> Int -> Word -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> Int -> w -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqWord s
s1 (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Word
wrd1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b
    step (SplitOnSeqWordLoop s
s Word
wrd) a
x = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
x
        let wrd1 :: Word
wrd1 = Word -> a -> Word
forall {a} {a}. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
wrd a
x
        case Step s b
res of
            Partial s
s1
                | Word
wrd1 Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
wordPat ->
                    b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s1
                | Bool
otherwise ->
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s -> Word -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> w -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqWordLoop s
s1 Word
wrd1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b
    step (SplitOnSeqKR s
s Int
idx Ring a
rb Ptr a
rh) a
x = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
x
        case Step s b
res of
            Partial s
s1 -> do
                Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ptr a) -> m (Ptr a)) -> IO (Ptr a) -> m (Ptr a)
forall a b. (a -> b) -> a -> b
$ Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
Ring.unsafeInsert Ring a
rb Ptr a
rh a
x
                if Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxIndex
                then do
                    let fld :: (b -> a -> b) -> b -> Ring a -> b
fld = Ptr a -> (b -> a -> b) -> b -> Ring a -> b
forall a b.
Storable a =>
Ptr a -> (b -> a -> b) -> b -> Ring a -> b
Ring.unsafeFoldRing (Ring a -> Ptr a
forall a. Ring a -> Ptr a
Ring.ringBound Ring a
rb)
                    let !ringHash :: Word32
ringHash = (Word32 -> a -> Word32) -> Word32 -> Ring a -> Word32
forall {b}. (b -> a -> b) -> b -> Ring a -> b
fld Word32 -> a -> Word32
forall {a}. Enum a => Word32 -> a -> Word32
addCksum Word32
0 Ring a
rb
                    if Word32
ringHash Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
== Word32
patHash Bool -> Bool -> Bool
&& Ring a -> Ptr a -> Array a -> Bool
forall a. Ring a -> Ptr a -> Array a -> Bool
Ring.unsafeEqArray Ring a
rb Ptr a
rh1 Array a
patArr
                    then b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s1
                    else Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s
-> Word32
-> Ring a
-> Ptr a
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> ck -> rb -> rh -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqKRLoop s
s1 Word32
ringHash Ring a
rb Ptr a
rh1
                else
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s
-> Int
-> Ring a
-> Ptr a
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> Int -> rb -> rh -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqKR s
s1 (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Ring a
rb Ptr a
rh1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b
    step (SplitOnSeqKRLoop s
s Word32
cksum Ring a
rb Ptr a
rh) a
x = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
x
        case Step s b
res of
            Partial s
s1 -> do
                a
old <- IO a -> m a
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Ptr a -> IO a
forall a. Storable a => Ptr a -> IO a
peek Ptr a
rh
                Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ptr a) -> m (Ptr a)) -> IO (Ptr a) -> m (Ptr a)
forall a b. (a -> b) -> a -> b
$ Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
Ring.unsafeInsert Ring a
rb Ptr a
rh a
x
                let ringHash :: Word32
ringHash = Word32 -> a -> a -> Word32
forall {a} {a}. (Enum a, Enum a) => Word32 -> a -> a -> Word32
deltaCksum Word32
cksum a
old a
x
                if Word32
ringHash Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
== Word32
patHash Bool -> Bool -> Bool
&& Ring a -> Ptr a -> Array a -> Bool
forall a. Ring a -> Ptr a -> Array a -> Bool
Ring.unsafeEqArray Ring a
rb Ptr a
rh1 Array a
patArr
                then b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s1
                else Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s
-> Word32
-> Ring a
-> Ptr a
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> ck -> rb -> rh -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqKRLoop s
s1 Word32
ringHash Ring a
rb Ptr a
rh1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b

    extractFunc :: (t -> t) -> SplitOnSeqState t a rb rh w ck -> t
extractFunc t -> t
fex SplitOnSeqState t a rb rh w ck
state =
        let st :: t
st =
                case SplitOnSeqState t a rb rh w ck
state of
                    SplitOnSeqEmpty t
s -> t
s
                    SplitOnSeqSingle t
s a
_ -> t
s
                    SplitOnSeqWord t
s Int
_ w
_ -> t
s
                    SplitOnSeqWordLoop t
s w
_ -> t
s
                    SplitOnSeqKR t
s Int
_ rb
_ rh
_ -> t
s
                    SplitOnSeqKRLoop t
s ck
_ rb
_ rh
_ -> t
s
        in t -> t
fex t
st

    extract :: SplitOnSeqState s a rb rh w ck -> m b
extract SplitOnSeqState s a rb rh w ck
state = (s -> m b) -> SplitOnSeqState s a rb rh w ck -> m b
forall {t} {t} {a} {rb} {rh} {w} {ck}.
(t -> t) -> SplitOnSeqState t a rb rh w ck -> t
extractFunc s -> m b
fextract SplitOnSeqState s a rb rh w ck
state

    final :: SplitOnSeqState s a rb rh w ck -> m b
final SplitOnSeqState s a rb rh w ck
state = (s -> m b) -> SplitOnSeqState s a rb rh w ck -> m b
forall {t} {t} {a} {rb} {rh} {w} {ck}.
(t -> t) -> SplitOnSeqState t a rb rh w ck -> t
extractFunc s -> m b
ffinal SplitOnSeqState s a rb rh w ck
state

-- | Like 'takeEndBySeq' but discards the matched sequence.
--
-- /Pre-release/
--
{-# INLINE takeEndBySeq_ #-}
takeEndBySeq_ :: forall m a b. (MonadIO m, Storable a, Unbox a, Enum a, Eq a) =>
       Array.Array a
    -> Fold m a b
    -> Fold m a b
takeEndBySeq_ :: forall (m :: * -> *) a b.
(MonadIO m, Storable a, Unbox a, Enum a, Eq a) =>
Array a -> Fold m a b -> Fold m a b
takeEndBySeq_ Array a
patArr (Fold s -> a -> m (Step s b)
fstep m (Step s b)
finitial s -> m b
fextract s -> m b
ffinal) =
    (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> a
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32 -> m b)
-> (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32 -> m b)
-> Fold m a b
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> a
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
step m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall {ck}.
m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
initial SplitOnSeqState s a (Ring a) (Ptr a) Word Word32 -> m b
forall {a} {ck}.
SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
extract SplitOnSeqState s a (Ring a) (Ptr a) Word Word32 -> m b
forall {a} {ck}.
SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
final

    where

    patLen :: Int
patLen = Array a -> Int
forall a. Unbox a => Array a -> Int
Array.length Array a
patArr

    initial :: m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
initial = do
        Step s b
res <- m (Step s b)
finitial
        case Step s b
res of
            Partial s
acc
                | Int
patLen Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 ->
                    -- XXX Should we match nothing or everything on empty
                    -- pattern?
                    -- Done <$> ffinal acc
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word ck
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall a b. (a -> b) -> a -> b
$ s -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
forall acc a rb rh w ck. acc -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqEmpty s
acc
                | Int
patLen Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> do
                    a
pat <- IO a -> m a
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Int -> Array a -> IO a
forall a. Unbox a => Int -> Array a -> IO a
Array.unsafeIndexIO Int
0 Array a
patArr
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word ck
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall a b. (a -> b) -> a -> b
$ s -> a -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
forall acc a rb rh w ck.
acc -> a -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqSingle s
acc a
pat
                -- XXX Need to add tests for this case
                | SIZE_OF(a) * patLen <= sizeOf (Proxy :: Proxy Word) ->
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word ck
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall a b. (a -> b) -> a -> b
$ s -> Int -> Word -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
forall acc a rb rh w ck.
acc -> Int -> w -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqWord s
acc Int
0 Word
0
                | Bool
otherwise -> do
                    (Ring a
rb, Ptr a
rhead) <- IO (Ring a, Ptr a) -> m (Ring a, Ptr a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ring a, Ptr a) -> m (Ring a, Ptr a))
-> IO (Ring a, Ptr a) -> m (Ring a, Ptr a)
forall a b. (a -> b) -> a -> b
$ Int -> IO (Ring a, Ptr a)
forall a. Storable a => Int -> IO (Ring a, Ptr a)
Ring.new Int
patLen
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word ck
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall a b. (a -> b) -> a -> b
$ s
-> Int
-> Ring a
-> Ptr a
-> SplitOnSeqState s a (Ring a) (Ptr a) Word ck
forall acc a rb rh w ck.
acc -> Int -> rb -> rh -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqKR s
acc Int
0 Ring a
rb Ptr a
rhead
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word ck) b
forall s b. b -> Step s b
Done b
b

    -- Word pattern related
    maxIndex :: Int
maxIndex = Int
patLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1

    elemBits :: Int
elemBits = SIZE_OF(a) * 8

    wordMask :: Word
    wordMask :: Word
wordMask = (Word
1 Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftL` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
patLen)) Word -> Word -> Word
forall a. Num a => a -> a -> a
- Word
1

    elemMask :: Word
    elemMask :: Word
elemMask = (Word
1 Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftL` Int
elemBits) Word -> Word -> Word
forall a. Num a => a -> a -> a
- Word
1

    wordPat :: Word
    wordPat :: Word
wordPat = Word
wordMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. (Word -> a -> Word) -> Word -> Array a -> Word
forall a b. Unbox a => (b -> a -> b) -> b -> Array a -> b
Array.foldl' Word -> a -> Word
forall {a} {a}. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
0 Array a
patArr

    addToWord :: a -> a -> a
addToWord a
wd a
a = (a
wd a -> Int -> a
forall a. Bits a => a -> Int -> a
`shiftL` Int
elemBits) a -> a -> a
forall a. Bits a => a -> a -> a
.|. Int -> a
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

    -- For Rabin-Karp search
    k :: Word32
k = Word32
2891336453 :: Word32
    coeff :: Word32
coeff = Word32
k Word32 -> Int -> Word32
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
patLen

    addCksum :: Word32 -> a -> Word32
addCksum Word32
cksum a
a = Word32
cksum Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
* Word32
k Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
+ Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
a)

    deltaCksum :: Word32 -> a -> a -> Word32
deltaCksum Word32
cksum a
old a
new =
        Word32 -> a -> Word32
forall {a}. Enum a => Word32 -> a -> Word32
addCksum Word32
cksum a
new Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
- Word32
coeff Word32 -> Word32 -> Word32
forall a. Num a => a -> a -> a
* Int -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral (a -> Int
forall a. Enum a => a -> Int
fromEnum a
old)

    -- XXX shall we use a random starting hash or 1 instead of 0?
    -- XXX Need to keep this cached across fold calls in foldMany
    -- XXX We may need refold to inject the cached state instead of
    -- initializing the state every time.
    -- XXX Allocation of ring buffer should also be done once
    patHash :: Word32
patHash = (Word32 -> a -> Word32) -> Word32 -> Array a -> Word32
forall a b. Unbox a => (b -> a -> b) -> b -> Array a -> b
Array.foldl' Word32 -> a -> Word32
forall {a}. Enum a => Word32 -> a -> Word32
addCksum Word32
0 Array a
patArr

    step :: SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> a
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
step (SplitOnSeqEmpty s
s) a
x = do
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
x
        case Step s b
res of
            Partial s
s1 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck. acc -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqEmpty s
s1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b
    step (SplitOnSeqSingle s
s a
pat) a
x = do
        if a
pat a -> a -> Bool
forall a. Eq a => a -> a -> Bool
/= a
x
        then do
            Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
x
            case Step s b
res of
                Partial s
s1 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s -> a -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> a -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqSingle s
s1 a
pat
                Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b
        else b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s
    step (SplitOnSeqWord s
s Int
idx Word
wrd) a
x = do
        let wrd1 :: Word
wrd1 = Word -> a -> Word
forall {a} {a}. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
wrd a
x
        if Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxIndex
        then do
            if Word
wrd1 Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
wordPat
            then b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s
            else Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s -> Word -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> w -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqWordLoop s
s Word
wrd1
        else Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s
-> Int -> Word -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> Int -> w -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqWord s
s (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Word
wrd1
    step (SplitOnSeqWordLoop s
s Word
wrd) a
x = do
        let wrd1 :: Word
wrd1 = Word -> a -> Word
forall {a} {a}. (Bits a, Num a, Enum a) => a -> a -> a
addToWord Word
wrd a
x
            old :: Word
old = (Word
wordMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wrd)
                    Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftR` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
patLen Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1))
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s (Int -> a
forall a. Enum a => Int -> a
toEnum (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$ Word -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word
old)
        case Step s b
res of
            Partial s
s1
                | Word
wrd1 Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. Word
wordMask Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
wordPat ->
                    b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s1
                | Bool
otherwise ->
                    Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s -> Word -> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> w -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqWordLoop s
s1 Word
wrd1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b
    step (SplitOnSeqKR s
s Int
idx Ring a
rb Ptr a
rh) a
x = do
        Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ptr a) -> m (Ptr a)) -> IO (Ptr a) -> m (Ptr a)
forall a b. (a -> b) -> a -> b
$ Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
Ring.unsafeInsert Ring a
rb Ptr a
rh a
x
        if Int
idx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
maxIndex
        then do
            let fld :: (b -> a -> b) -> b -> Ring a -> b
fld = Ptr a -> (b -> a -> b) -> b -> Ring a -> b
forall a b.
Storable a =>
Ptr a -> (b -> a -> b) -> b -> Ring a -> b
Ring.unsafeFoldRing (Ring a -> Ptr a
forall a. Ring a -> Ptr a
Ring.ringBound Ring a
rb)
            let !ringHash :: Word32
ringHash = (Word32 -> a -> Word32) -> Word32 -> Ring a -> Word32
forall {b}. (b -> a -> b) -> b -> Ring a -> b
fld Word32 -> a -> Word32
forall {a}. Enum a => Word32 -> a -> Word32
addCksum Word32
0 Ring a
rb
            if Word32
ringHash Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
== Word32
patHash Bool -> Bool -> Bool
&& Ring a -> Ptr a -> Array a -> Bool
forall a. Ring a -> Ptr a -> Array a -> Bool
Ring.unsafeEqArray Ring a
rb Ptr a
rh1 Array a
patArr
            then b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s
            else Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s
-> Word32
-> Ring a
-> Ptr a
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> ck -> rb -> rh -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqKRLoop s
s Word32
ringHash Ring a
rb Ptr a
rh1
        else Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s
-> Int
-> Ring a
-> Ptr a
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> Int -> rb -> rh -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqKR s
s (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Ring a
rb Ptr a
rh1
    step (SplitOnSeqKRLoop s
s Word32
cksum Ring a
rb Ptr a
rh) a
x = do
        a
old <- IO a -> m a
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Ptr a -> IO a
forall a. Storable a => Ptr a -> IO a
peek Ptr a
rh
        Step s b
res <- s -> a -> m (Step s b)
fstep s
s a
old
        case Step s b
res of
            Partial s
s1 -> do
                Ptr a
rh1 <- IO (Ptr a) -> m (Ptr a)
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO (Ptr a) -> m (Ptr a)) -> IO (Ptr a) -> m (Ptr a)
forall a b. (a -> b) -> a -> b
$ Ring a -> Ptr a -> a -> IO (Ptr a)
forall a. Storable a => Ring a -> Ptr a -> a -> IO (Ptr a)
Ring.unsafeInsert Ring a
rb Ptr a
rh a
x
                let ringHash :: Word32
ringHash = Word32 -> a -> a -> Word32
forall {a} {a}. (Enum a, Enum a) => Word32 -> a -> a -> Word32
deltaCksum Word32
cksum a
old a
x
                if Word32
ringHash Word32 -> Word32 -> Bool
forall a. Eq a => a -> a -> Bool
== Word32
patHash Bool -> Bool -> Bool
&& Ring a -> Ptr a -> Array a -> Bool
forall a. Ring a -> Ptr a -> Array a -> Bool
Ring.unsafeEqArray Ring a
rb Ptr a
rh1 Array a
patArr
                then b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done (b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> m b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> s -> m b
ffinal s
s1
                else Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. s -> Step s b
Partial (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
 -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall a b. (a -> b) -> a -> b
$ s
-> Word32
-> Ring a
-> Ptr a
-> SplitOnSeqState s a (Ring a) (Ptr a) Word Word32
forall acc a rb rh w ck.
acc -> ck -> rb -> rh -> SplitOnSeqState acc a rb rh w ck
SplitOnSeqKRLoop s
s1 Word32
ringHash Ring a
rb Ptr a
rh1
            Done b
b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
 -> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b))
-> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
-> m (Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b)
forall a b. (a -> b) -> a -> b
$ b -> Step (SplitOnSeqState s a (Ring a) (Ptr a) Word Word32) b
forall s b. b -> Step s b
Done b
b

    -- XXX extract should return backtrack count as well. If the fold
    -- terminates early inside extract, we may still have buffered data
    -- remaining which will be lost if we do not communicate that to the
    -- driver.
    extractFunc :: (s -> m b) -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
extractFunc s -> m b
fex SplitOnSeqState s a (Ring a) (Ptr a) Word ck
state = do
        let consumeWord :: s -> Int -> Word -> m b
consumeWord s
s Int
n Word
wrd = do
                if Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
                then s -> m b
fex s
s
                else do
                    let old :: Word
old = Word
elemMask Word -> Word -> Word
forall a. Bits a => a -> a -> a
.&. (Word
wrd Word -> Int -> Word
forall a. Bits a => a -> Int -> a
`shiftR` (Int
elemBits Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)))
                    Step s b
r <- s -> a -> m (Step s b)
fstep s
s (Int -> a
forall a. Enum a => Int -> a
toEnum (Int -> a) -> Int -> a
forall a b. (a -> b) -> a -> b
$ Word -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Word
old)
                    case Step s b
r of
                        Partial s
s1 -> s -> Int -> Word -> m b
consumeWord s
s1 (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Word
wrd
                        Done b
b -> b -> m b
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return b
b

        let consumeRing :: s -> t -> Ring a -> Ptr a -> m b
consumeRing s
s t
n Ring a
rb Ptr a
rh =
                if t
n t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
0
                then s -> m b
fex s
s
                else do
                    a
old <- IO a -> m a
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO a -> m a) -> IO a -> m a
forall a b. (a -> b) -> a -> b
$ Ptr a -> IO a
forall a. Storable a => Ptr a -> IO a
peek Ptr a
rh
                    let rh1 :: Ptr a
rh1 = Ring a -> Ptr a -> Ptr a
forall a. Storable a => Ring a -> Ptr a -> Ptr a
Ring.advance Ring a
rb Ptr a
rh
                    Step s b
r <- s -> a -> m (Step s b)
fstep s
s a
old
                    case Step s b
r of
                        Partial s
s1 -> s -> t -> Ring a -> Ptr a -> m b
consumeRing s
s1 (t
n t -> t -> t
forall a. Num a => a -> a -> a
- t
1) Ring a
rb Ptr a
rh1
                        Done b
b -> b -> m b
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return b
b

        case SplitOnSeqState s a (Ring a) (Ptr a) Word ck
state of
            SplitOnSeqEmpty s
s -> s -> m b
fex s
s
            SplitOnSeqSingle s
s a
_ -> s -> m b
fex s
s
            SplitOnSeqWord s
s Int
idx Word
wrd -> s -> Int -> Word -> m b
consumeWord s
s Int
idx Word
wrd
            SplitOnSeqWordLoop s
s Word
wrd -> s -> Int -> Word -> m b
consumeWord s
s Int
patLen Word
wrd
            SplitOnSeqKR s
s Int
idx Ring a
rb Ptr a
_ -> s -> Int -> Ring a -> Ptr a -> m b
forall {t}. (Eq t, Num t) => s -> t -> Ring a -> Ptr a -> m b
consumeRing s
s Int
idx Ring a
rb (Ring a -> Ptr a
forall a. Ring a -> Ptr a
Ring.startOf Ring a
rb)
            SplitOnSeqKRLoop s
s ck
_ Ring a
rb Ptr a
rh -> s -> Int -> Ring a -> Ptr a -> m b
forall {t}. (Eq t, Num t) => s -> t -> Ring a -> Ptr a -> m b
consumeRing s
s Int
patLen Ring a
rb Ptr a
rh

    extract :: SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
extract SplitOnSeqState s a (Ring a) (Ptr a) Word ck
state = (s -> m b) -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
forall {a} {ck}.
(s -> m b) -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
extractFunc s -> m b
fextract SplitOnSeqState s a (Ring a) (Ptr a) Word ck
state

    final :: SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
final SplitOnSeqState s a (Ring a) (Ptr a) Word ck
state = (s -> m b) -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
forall {a} {ck}.
(s -> m b) -> SplitOnSeqState s a (Ring a) (Ptr a) Word ck -> m b
extractFunc s -> m b
ffinal SplitOnSeqState s a (Ring a) (Ptr a) Word ck
state

------------------------------------------------------------------------------
-- Distributing
------------------------------------------------------------------------------
--
-- | Distribute one copy of the stream to each fold and zip the results.
--
-- @
--                 |-------Fold m a b--------|
-- ---stream m a---|                         |---m (b,c)
--                 |-------Fold m a c--------|
-- @
--
--  Definition:
--
-- >>> tee = Fold.teeWith (,)
--
-- Example:
--
-- >>> t = Fold.tee Fold.sum Fold.length
-- >>> Stream.fold t (Stream.enumerateFromTo 1.0 100.0)
-- (5050.0,100)
--
{-# INLINE tee #-}
tee :: Monad m => Fold m a b -> Fold m a c -> Fold m a (b,c)
tee :: forall (m :: * -> *) a b c.
Monad m =>
Fold m a b -> Fold m a c -> Fold m a (b, c)
tee = (b -> c -> (b, c)) -> Fold m a b -> Fold m a c -> Fold m a (b, c)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWith (,)

-- XXX use "List" instead of "[]"?, use Array for output to scale it to a large
-- number of consumers? For polymorphic case a vector could be helpful. For
-- Storables we can use arrays. Will need separate APIs for those.
--
-- | Distribute one copy of the stream to each fold and collect the results in
-- a container.
--
-- @
--
--                 |-------Fold m a b--------|
-- ---stream m a---|                         |---m [b]
--                 |-------Fold m a b--------|
--                 |                         |
--                            ...
-- @
--
-- >>> Stream.fold (Fold.distribute [Fold.sum, Fold.length]) (Stream.enumerateFromTo 1 5)
-- [15,5]
--
-- >>> distribute = Prelude.foldr (Fold.teeWith (:)) (Fold.fromPure [])
--
-- This is the consumer side dual of the producer side 'sequence' operation.
--
-- Stops when all the folds stop.
--
{-# INLINE distribute #-}
distribute :: Monad m => [Fold m a b] -> Fold m a [b]
distribute :: forall (m :: * -> *) a b. Monad m => [Fold m a b] -> Fold m a [b]
distribute = (Fold m a b -> Fold m a [b] -> Fold m a [b])
-> Fold m a [b] -> [Fold m a b] -> Fold m a [b]
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Prelude.foldr ((b -> [b] -> [b]) -> Fold m a b -> Fold m a [b] -> Fold m a [b]
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWith (:)) ([b] -> Fold m a [b]
forall (m :: * -> *) b a. Applicative m => b -> Fold m a b
fromPure [])

------------------------------------------------------------------------------
-- Partitioning
------------------------------------------------------------------------------

{-# INLINE partitionByMUsing #-}
partitionByMUsing :: Monad m =>
       (  (x -> y -> (x, y))
       -> Fold m (Either b c) x
       -> Fold m (Either b c) y
       -> Fold m (Either b c) (x, y)
       )
    -> (a -> m (Either b c))
    -> Fold m b x
    -> Fold m c y
    -> Fold m a (x, y)
partitionByMUsing :: forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
 -> Fold m (Either b c) x
 -> Fold m (Either b c) y
 -> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
t a -> m (Either b c)
f Fold m b x
fld1 Fold m c y
fld2 =
    let l :: Fold m (Either b b) x
l = (Either b b -> b) -> Fold m b x -> Fold m (Either b b) x
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (b -> Either b b -> b
forall a b. a -> Either a b -> a
fromLeft b
forall a. HasCallStack => a
undefined) Fold m b x
fld1  -- :: Fold m (Either b c) x
        r :: Fold m (Either a c) y
r = (Either a c -> c) -> Fold m c y -> Fold m (Either a c) y
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (c -> Either a c -> c
forall b a. b -> Either a b -> b
fromRight c
forall a. HasCallStack => a
undefined) Fold m c y
fld2 -- :: Fold m (Either b c) y
     in (a -> m (Either b c))
-> Fold m (Either b c) (x, y) -> Fold m a (x, y)
forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m b r -> Fold m a r
lmapM a -> m (Either b c)
f ((x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
t (,) ((Either b c -> Bool)
-> Fold m (Either b c) x -> Fold m (Either b c) x
forall (m :: * -> *) a r.
Monad m =>
(a -> Bool) -> Fold m a r -> Fold m a r
filter Either b c -> Bool
forall a b. Either a b -> Bool
isLeft Fold m (Either b c) x
forall {b}. Fold m (Either b b) x
l) ((Either b c -> Bool)
-> Fold m (Either b c) y -> Fold m (Either b c) y
forall (m :: * -> *) a r.
Monad m =>
(a -> Bool) -> Fold m a r -> Fold m a r
filter Either b c -> Bool
forall a b. Either a b -> Bool
isRight Fold m (Either b c) y
forall {a}. Fold m (Either a c) y
r))

-- | Partition the input over two folds using an 'Either' partitioning
-- predicate.
--
-- @
--
--                                     |-------Fold b x--------|
-- -----stream m a --> (Either b c)----|                       |----(x,y)
--                                     |-------Fold c y--------|
-- @
--
-- Example, send input to either fold randomly:
--
-- >>> :set -package random
-- >>> import System.Random (randomIO)
-- >>> randomly a = randomIO >>= \x -> return $ if x then Left a else Right a
-- >>> f = Fold.partitionByM randomly Fold.length Fold.length
-- >>> Stream.fold f (Stream.enumerateFromTo 1 100)
-- ...
--
-- Example, send input to the two folds in a proportion of 2:1:
--
-- >>> :{
-- proportionately m n = do
--  ref <- newIORef $ cycle $ concat [replicate m Left, replicate n Right]
--  return $ \a -> do
--      r <- readIORef ref
--      writeIORef ref $ tail r
--      return $ Prelude.head r a
-- :}
--
-- >>> :{
-- main = do
--  g <- proportionately 2 1
--  let f = Fold.partitionByM g Fold.length Fold.length
--  r <- Stream.fold f (Stream.enumerateFromTo (1 :: Int) 100)
--  print r
-- :}
--
-- >>> main
-- (67,33)
--
--
-- This is the consumer side dual of the producer side 'mergeBy' operation.
--
-- When one fold is done, any input meant for it is ignored until the other
-- fold is also done.
--
-- Stops when both the folds stop.
--
-- /See also: 'partitionByFstM' and 'partitionByMinM'./
--
-- /Pre-release/
{-# INLINE partitionByM #-}
partitionByM :: Monad m
    => (a -> m (Either b c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByM :: forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByM = ((x -> y -> (x, y))
 -> Fold m (Either b c) x
 -> Fold m (Either b c) y
 -> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
 -> Fold m (Either b c) x
 -> Fold m (Either b c) y
 -> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWith

-- | Similar to 'partitionByM' but terminates when the first fold terminates.
--
{-# INLINE partitionByFstM #-}
partitionByFstM :: Monad m
    => (a -> m (Either b c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByFstM :: forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByFstM = ((x -> y -> (x, y))
 -> Fold m (Either b c) x
 -> Fold m (Either b c) y
 -> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
 -> Fold m (Either b c) x
 -> Fold m (Either b c) y
 -> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWithFst

-- | Similar to 'partitionByM' but terminates when any fold terminates.
--
{-# INLINE partitionByMinM #-}
partitionByMinM :: Monad m =>
    (a -> m (Either b c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByMinM :: forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByMinM = ((x -> y -> (x, y))
 -> Fold m (Either b c) x
 -> Fold m (Either b c) y
 -> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
 -> Fold m (Either b c) x
 -> Fold m (Either b c) y
 -> Fold m (Either b c) (x, y))
-> (a -> m (Either b c))
-> Fold m b x
-> Fold m c y
-> Fold m a (x, y)
partitionByMUsing (x -> y -> (x, y))
-> Fold m (Either b c) x
-> Fold m (Either b c) y
-> Fold m (Either b c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWithMin

-- Note: we could use (a -> Bool) instead of (a -> Either b c), but the latter
-- makes the signature clearer as to which case belongs to which fold.
-- XXX need to check the performance in both cases.

-- | Same as 'partitionByM' but with a pure partition function.
--
-- Example, count even and odd numbers in a stream:
--
-- >>> :{
--  let f = Fold.partitionBy (\n -> if even n then Left n else Right n)
--                      (fmap (("Even " ++) . show) Fold.length)
--                      (fmap (("Odd "  ++) . show) Fold.length)
--   in Stream.fold f (Stream.enumerateFromTo 1 100)
-- :}
-- ("Even 50","Odd 50")
--
-- /Pre-release/
{-# INLINE partitionBy #-}
partitionBy :: Monad m
    => (a -> Either b c) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionBy :: forall (m :: * -> *) a b c x y.
Monad m =>
(a -> Either b c) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionBy a -> Either b c
f = (a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (Either b c))
-> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionByM (Either b c -> m (Either b c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Either b c -> m (Either b c))
-> (a -> Either b c) -> a -> m (Either b c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Either b c
f)

-- | Compose two folds such that the combined fold accepts a stream of 'Either'
-- and routes the 'Left' values to the first fold and 'Right' values to the
-- second fold.
--
-- Definition:
--
-- >>> partition = Fold.partitionBy id
--
{-# INLINE partition #-}
partition :: Monad m
    => Fold m b x -> Fold m c y -> Fold m (Either b c) (x, y)
partition :: forall (m :: * -> *) b x c y.
Monad m =>
Fold m b x -> Fold m c y -> Fold m (Either b c) (x, y)
partition = (Either b c -> Either b c)
-> Fold m b x -> Fold m c y -> Fold m (Either b c) (x, y)
forall (m :: * -> *) a b c x y.
Monad m =>
(a -> Either b c) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
partitionBy Either b c -> Either b c
forall a. a -> a
id

{-
-- | Send one item to each fold in a round-robin fashion. This is the consumer
-- side dual of producer side 'mergeN' operation.
--
-- partitionN :: Monad m => [Fold m a b] -> Fold m a [b]
-- partitionN fs = Fold step begin done
-}

------------------------------------------------------------------------------
-- Unzipping
------------------------------------------------------------------------------

{-# INLINE unzipWithMUsing #-}
unzipWithMUsing :: Monad m =>
       (  (x -> y -> (x, y))
       -> Fold m (b, c) x
       -> Fold m (b, c) y
       -> Fold m (b, c) (x, y)
       )
    -> (a -> m (b, c))
    -> Fold m b x
    -> Fold m c y
    -> Fold m a (x, y)
unzipWithMUsing :: forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
 -> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMUsing (x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
t a -> m (b, c)
f Fold m b x
fld1 Fold m c y
fld2 =
    let f1 :: Fold m (b, b) x
f1 = ((b, b) -> b) -> Fold m b x -> Fold m (b, b) x
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (b, b) -> b
forall a b. (a, b) -> a
fst Fold m b x
fld1  -- :: Fold m (b, c) b
        f2 :: Fold m (a, c) y
f2 = ((a, c) -> c) -> Fold m c y -> Fold m (a, c) y
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (a, c) -> c
forall a b. (a, b) -> b
snd Fold m c y
fld2  -- :: Fold m (b, c) c
     in (a -> m (b, c)) -> Fold m (b, c) (x, y) -> Fold m a (x, y)
forall (m :: * -> *) a b r.
Monad m =>
(a -> m b) -> Fold m b r -> Fold m a r
lmapM a -> m (b, c)
f ((x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
t (,) Fold m (b, c) x
forall {b}. Fold m (b, b) x
f1 Fold m (b, c) y
forall {a}. Fold m (a, c) y
f2)

-- | Like 'unzipWith' but with a monadic splitter function.
--
-- Definition:
--
-- >>> unzipWithM k f1 f2 = Fold.lmapM k (Fold.unzip f1 f2)
--
-- /Pre-release/
{-# INLINE unzipWithM #-}
unzipWithM :: Monad m
    => (a -> m (b,c)) -> Fold m b x -> Fold m c y -> Fold m a (x,y)
unzipWithM :: forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithM = ((x -> y -> (x, y))
 -> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
 -> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMUsing (x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWith

-- | Similar to 'unzipWithM' but terminates when the first fold terminates.
--
{-# INLINE unzipWithFstM #-}
unzipWithFstM :: Monad m =>
    (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithFstM :: forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithFstM = ((x -> y -> (x, y))
 -> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
 -> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMUsing (x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWithFst

-- | Similar to 'unzipWithM' but terminates when any fold terminates.
--
{-# INLINE unzipWithMinM #-}
unzipWithMinM :: Monad m =>
    (a -> m (b,c)) -> Fold m b x -> Fold m c y -> Fold m a (x,y)
unzipWithMinM :: forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMinM = ((x -> y -> (x, y))
 -> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) x y b c a.
Monad m =>
((x -> y -> (x, y))
 -> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y))
-> (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithMUsing (x -> y -> (x, y))
-> Fold m (b, c) x -> Fold m (b, c) y -> Fold m (b, c) (x, y)
forall (m :: * -> *) a b c x.
Monad m =>
(a -> b -> c) -> Fold m x a -> Fold m x b -> Fold m x c
teeWithMin

-- | Split elements in the input stream into two parts using a pure splitter
-- function, direct each part to a different fold and zip the results.
--
-- Definitions:
--
-- >>> unzipWith f = Fold.unzipWithM (return . f)
-- >>> unzipWith f fld1 fld2 = Fold.lmap f (Fold.unzip fld1 fld2)
--
-- This fold terminates when both the input folds terminate.
--
-- /Pre-release/
{-# INLINE unzipWith #-}
unzipWith :: Monad m
    => (a -> (b,c)) -> Fold m b x -> Fold m c y -> Fold m a (x,y)
unzipWith :: forall (m :: * -> *) a b c x y.
Monad m =>
(a -> (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWith a -> (b, c)
f = (a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
forall (m :: * -> *) a b c x y.
Monad m =>
(a -> m (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWithM ((b, c) -> m (b, c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return ((b, c) -> m (b, c)) -> (a -> (b, c)) -> a -> m (b, c)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (b, c)
f)

-- | Send the elements of tuples in a stream of tuples through two different
-- folds.
--
-- @
--
--                           |-------Fold m a x--------|
-- ---------stream of (a,b)--|                         |----m (x,y)
--                           |-------Fold m b y--------|
--
-- @
--
-- Definition:
--
-- >>> unzip = Fold.unzipWith id
--
-- This is the consumer side dual of the producer side 'zip' operation.
--
{-# INLINE unzip #-}
unzip :: Monad m => Fold m a x -> Fold m b y -> Fold m (a,b) (x,y)
unzip :: forall (m :: * -> *) a x b y.
Monad m =>
Fold m a x -> Fold m b y -> Fold m (a, b) (x, y)
unzip = ((a, b) -> (a, b))
-> Fold m a x -> Fold m b y -> Fold m (a, b) (x, y)
forall (m :: * -> *) a b c x y.
Monad m =>
(a -> (b, c)) -> Fold m b x -> Fold m c y -> Fold m a (x, y)
unzipWith (a, b) -> (a, b)
forall a. a -> a
id

------------------------------------------------------------------------------
-- Combining streams and folds - Zipping
------------------------------------------------------------------------------

-- XXX These can be implemented using the fold scan, using the stream as a
-- state.
-- XXX Stream Skip state cannot be efficiently handled in folds but can be
-- handled in parsers using the Continue facility. See zipWithM in the Parser
-- module.
--
-- cmpBy, eqBy, isPrefixOf, isSubsequenceOf etc can be implemented using
-- zipStream.

-- | Zip a stream with the input of a fold using the supplied function.
--
-- /Unimplemented/
--
{-# INLINE zipStreamWithM #-}
zipStreamWithM :: -- Monad m =>
    (a -> b -> m c) -> Stream m a -> Fold m c x -> Fold m b x
zipStreamWithM :: forall a b (m :: * -> *) c x.
(a -> b -> m c) -> Stream m a -> Fold m c x -> Fold m b x
zipStreamWithM = (a -> b -> m c) -> Stream m a -> Fold m c x -> Fold m b x
forall a. HasCallStack => a
undefined

-- | Zip a stream with the input of a fold.
--
-- >>> zip = Fold.zipStreamWithM (curry return)
--
-- /Unimplemented/
--
{-# INLINE zipStream #-}
zipStream :: Monad m => Stream m a -> Fold m (a, b) x -> Fold m b x
zipStream :: forall (m :: * -> *) a b x.
Monad m =>
Stream m a -> Fold m (a, b) x -> Fold m b x
zipStream = (a -> b -> m (a, b)) -> Stream m a -> Fold m (a, b) x -> Fold m b x
forall a b (m :: * -> *) c x.
(a -> b -> m c) -> Stream m a -> Fold m c x -> Fold m b x
zipStreamWithM (((a, b) -> m (a, b)) -> a -> b -> m (a, b)
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (a, b) -> m (a, b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return)

-- | Pair each element of a fold input with its index, starting from index 0.
--
{-# INLINE indexingWith #-}
indexingWith :: Monad m => Int -> (Int -> Int) -> Fold m a (Maybe (Int, a))
indexingWith :: forall (m :: * -> *) a.
Monad m =>
Int -> (Int -> Int) -> Fold m a (Maybe (Int, a))
indexingWith Int
i Int -> Int
f = (Maybe' (Int, a) -> Maybe (Int, a))
-> Fold m a (Maybe' (Int, a)) -> Fold m a (Maybe (Int, a))
forall a b. (a -> b) -> Fold m a a -> Fold m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Maybe' (Int, a) -> Maybe (Int, a)
forall a. Maybe' a -> Maybe a
toMaybe (Fold m a (Maybe' (Int, a)) -> Fold m a (Maybe (Int, a)))
-> Fold m a (Maybe' (Int, a)) -> Fold m a (Maybe (Int, a))
forall a b. (a -> b) -> a -> b
$ (Maybe' (Int, a) -> a -> Maybe' (Int, a))
-> Maybe' (Int, a) -> Fold m a (Maybe' (Int, a))
forall (m :: * -> *) b a.
Monad m =>
(b -> a -> b) -> b -> Fold m a b
foldl' Maybe' (Int, a) -> a -> Maybe' (Int, a)
forall {b} {b}. Maybe' (Int, b) -> b -> Maybe' (Int, b)
step Maybe' (Int, a)
forall a. Maybe' a
initial

    where

    initial :: Maybe' a
initial = Maybe' a
forall a. Maybe' a
Nothing'

    step :: Maybe' (Int, b) -> b -> Maybe' (Int, b)
step Maybe' (Int, b)
Nothing' b
a = (Int, b) -> Maybe' (Int, b)
forall a. a -> Maybe' a
Just' (Int
i, b
a)
    step (Just' (Int
n, b
_)) b
a = (Int, b) -> Maybe' (Int, b)
forall a. a -> Maybe' a
Just' (Int -> Int
f Int
n, b
a)

-- |
-- >>> indexing = Fold.indexingWith 0 (+ 1)
--
{-# INLINE indexing #-}
indexing :: Monad m => Fold m a (Maybe (Int, a))
indexing :: forall (m :: * -> *) a. Monad m => Fold m a (Maybe (Int, a))
indexing = Int -> (Int -> Int) -> Fold m a (Maybe (Int, a))
forall (m :: * -> *) a.
Monad m =>
Int -> (Int -> Int) -> Fold m a (Maybe (Int, a))
indexingWith Int
0 (Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)

-- |
-- >>> indexingRev n = Fold.indexingWith n (subtract 1)
--
{-# INLINE indexingRev #-}
indexingRev :: Monad m => Int -> Fold m a (Maybe (Int, a))
indexingRev :: forall (m :: * -> *) a. Monad m => Int -> Fold m a (Maybe (Int, a))
indexingRev Int
n = Int -> (Int -> Int) -> Fold m a (Maybe (Int, a))
forall (m :: * -> *) a.
Monad m =>
Int -> (Int -> Int) -> Fold m a (Maybe (Int, a))
indexingWith Int
n (Int -> Int -> Int
forall a. Num a => a -> a -> a
subtract Int
1)

-- | Pair each element of a fold input with its index, starting from index 0.
--
-- >>> indexed = Fold.scanMaybe Fold.indexing
--
{-# INLINE indexed #-}
indexed :: Monad m => Fold m (Int, a) b -> Fold m a b
indexed :: forall (m :: * -> *) a b.
Monad m =>
Fold m (Int, a) b -> Fold m a b
indexed = Fold m a (Maybe (Int, a)) -> Fold m (Int, a) b -> Fold m a b
forall (m :: * -> *) a b c.
Monad m =>
Fold m a (Maybe b) -> Fold m b c -> Fold m a c
scanMaybe Fold m a (Maybe (Int, a))
forall (m :: * -> *) a. Monad m => Fold m a (Maybe (Int, a))
indexing

-- | Change the predicate function of a Fold from @a -> b@ to accept an
-- additional state input @(s, a) -> b@. Convenient to filter with an
-- addiitonal index or time input.
--
-- >>> filterWithIndex = Fold.with Fold.indexed Fold.filter
--
-- @
-- filterWithAbsTime = with timestamped filter
-- filterWithRelTime = with timeIndexed filter
-- @
--
-- /Pre-release/
{-# INLINE with #-}
with ::
       (Fold m (s, a) b -> Fold m a b)
    -> (((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b)
    -> (((s, a) -> c) -> Fold m a b -> Fold m a b)
with :: forall (m :: * -> *) s a b c.
(Fold m (s, a) b -> Fold m a b)
-> (((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b)
-> ((s, a) -> c)
-> Fold m a b
-> Fold m a b
with Fold m (s, a) b -> Fold m a b
f ((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b
comb (s, a) -> c
g = Fold m (s, a) b -> Fold m a b
f (Fold m (s, a) b -> Fold m a b)
-> (Fold m a b -> Fold m (s, a) b) -> Fold m a b -> Fold m a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b
comb (s, a) -> c
g (Fold m (s, a) b -> Fold m (s, a) b)
-> (Fold m a b -> Fold m (s, a) b) -> Fold m a b -> Fold m (s, a) b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((s, a) -> a) -> Fold m a b -> Fold m (s, a) b
forall a b (m :: * -> *) r. (a -> b) -> Fold m b r -> Fold m a r
lmap (s, a) -> a
forall a b. (a, b) -> b
snd

-- XXX Implement as a filter
-- sampleFromthen :: Monad m => Int -> Int -> Fold m a (Maybe a)

-- | @sampleFromthen offset stride@ samples the element at @offset@ index and
-- then every element at strides of @stride@.
--
{-# INLINE sampleFromthen #-}
sampleFromthen :: Monad m => Int -> Int -> Fold m a b -> Fold m a b
sampleFromthen :: forall (m :: * -> *) a b.
Monad m =>
Int -> Int -> Fold m a b -> Fold m a b
sampleFromthen Int
offset Int
size =
    (Fold m (Int, a) b -> Fold m a b)
-> (((Int, a) -> Bool) -> Fold m (Int, a) b -> Fold m (Int, a) b)
-> ((Int, a) -> Bool)
-> Fold m a b
-> Fold m a b
forall (m :: * -> *) s a b c.
(Fold m (s, a) b -> Fold m a b)
-> (((s, a) -> c) -> Fold m (s, a) b -> Fold m (s, a) b)
-> ((s, a) -> c)
-> Fold m a b
-> Fold m a b
with Fold m (Int, a) b -> Fold m a b
forall (m :: * -> *) a b.
Monad m =>
Fold m (Int, a) b -> Fold m a b
indexed ((Int, a) -> Bool) -> Fold m (Int, a) b -> Fold m (Int, a) b
forall (m :: * -> *) a r.
Monad m =>
(a -> Bool) -> Fold m a r -> Fold m a r
filter (\(Int
i, a
_) -> (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
offset) Int -> Int -> Int
forall a. Integral a => a -> a -> a
`mod` Int
size Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0)

------------------------------------------------------------------------------
-- Nesting
------------------------------------------------------------------------------

-- | @concatSequence f t@ applies folds from stream @t@ sequentially and
-- collects the results using the fold @f@.
--
-- /Unimplemented/
--
{-# INLINE concatSequence #-}
concatSequence ::
    -- IsStream t =>
    Fold m b c -> t (Fold m a b) -> Fold m a c
concatSequence :: forall (m :: * -> *) b c (t :: * -> *) a.
Fold m b c -> t (Fold m a b) -> Fold m a c
concatSequence Fold m b c
_f t (Fold m a b)
_p = Fold m a c
forall a. HasCallStack => a
undefined

-- | Group the input stream into groups of elements between @low@ and @high@.
-- Collection starts in chunks of @low@ and then keeps doubling until we reach
-- @high@. Each chunk is folded using the provided fold function.
--
-- This could be useful, for example, when we are folding a stream of unknown
-- size to a stream of arrays and we want to minimize the number of
-- allocations.
--
-- NOTE: this would be an application of "many" using a terminating fold.
--
-- /Unimplemented/
--
{-# INLINE chunksBetween #-}
chunksBetween :: -- Monad m =>
       Int -> Int -> Fold m a b -> Fold m b c -> Fold m a c
chunksBetween :: forall (m :: * -> *) a b c.
Int -> Int -> Fold m a b -> Fold m b c -> Fold m a c
chunksBetween Int
_low Int
_high Fold m a b
_f1 Fold m b c
_f2 = Fold m a c
forall a. HasCallStack => a
undefined

-- | A fold that buffers its input to a pure stream.
--
-- /Warning!/ working on large streams accumulated as buffers in memory could
-- be very inefficient, consider using "Streamly.Data.Array" instead.
--
-- >>> toStream = fmap Stream.fromList Fold.toList
--
-- /Pre-release/
{-# INLINE toStream #-}
toStream :: (Monad m, Monad n) => Fold m a (Stream n a)
toStream :: forall (m :: * -> *) (n :: * -> *) a.
(Monad m, Monad n) =>
Fold m a (Stream n a)
toStream = ([a] -> Stream n a) -> Fold m a [a] -> Fold m a (Stream n a)
forall a b. (a -> b) -> Fold m a a -> Fold m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [a] -> Stream n a
forall (m :: * -> *) a. Applicative m => [a] -> Stream m a
StreamD.fromList Fold m a [a]
forall (m :: * -> *) a. Monad m => Fold m a [a]
toList

-- This is more efficient than 'toStream'. toStream is exactly the same as
-- reversing the stream after toStreamRev.
--
-- | Buffers the input stream to a pure stream in the reverse order of the
-- input.
--
-- >>> toStreamRev = fmap Stream.fromList Fold.toListRev
--
-- /Warning!/ working on large streams accumulated as buffers in memory could
-- be very inefficient, consider using "Streamly.Data.Array" instead.
--
-- /Pre-release/

--  xn : ... : x2 : x1 : []
{-# INLINE toStreamRev #-}
toStreamRev :: (Monad m, Monad n) => Fold m a (Stream n a)
toStreamRev :: forall (m :: * -> *) (n :: * -> *) a.
(Monad m, Monad n) =>
Fold m a (Stream n a)
toStreamRev = ([a] -> Stream n a) -> Fold m a [a] -> Fold m a (Stream n a)
forall a b. (a -> b) -> Fold m a a -> Fold m a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [a] -> Stream n a
forall (m :: * -> *) a. Applicative m => [a] -> Stream m a
StreamD.fromList Fold m a [a]
forall (m :: * -> *) a. Monad m => Fold m a [a]
toListRev

-- XXX This does not fuse. It contains a recursive step function. We will need
-- a Skip input constructor in the fold type to make it fuse.
--
-- | Unfold and flatten the input stream of a fold.
--
-- @
-- Stream.fold (unfoldMany u f) = Stream.fold f . Stream.unfoldMany u
-- @
--
-- /Pre-release/
{-# INLINE unfoldMany #-}
unfoldMany :: Monad m => Unfold m a b -> Fold m b c -> Fold m a c
unfoldMany :: forall (m :: * -> *) a b c.
Monad m =>
Unfold m a b -> Fold m b c -> Fold m a c
unfoldMany (Unfold s -> m (Step s b)
ustep a -> m s
inject) (Fold s -> b -> m (Step s c)
fstep m (Step s c)
initial s -> m c
extract s -> m c
final) =
    (s -> a -> m (Step s c))
-> m (Step s c) -> (s -> m c) -> (s -> m c) -> Fold m a c
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold s -> a -> m (Step s c)
consume m (Step s c)
initial s -> m c
extract s -> m c
final

    where

    {-# INLINE produce #-}
    produce :: s -> s -> m (Step s c)
produce s
fs s
us = do
        Step s b
ures <- s -> m (Step s b)
ustep s
us
        case Step s b
ures of
            StreamD.Yield b
b s
us1 -> do
                Step s c
fres <- s -> b -> m (Step s c)
fstep s
fs b
b
                case Step s c
fres of
                    Partial s
fs1 -> s -> s -> m (Step s c)
produce s
fs1 s
us1
                    -- XXX What to do with the remaining stream?
                    Done c
c -> Step s c -> m (Step s c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s c -> m (Step s c)) -> Step s c -> m (Step s c)
forall a b. (a -> b) -> a -> b
$ c -> Step s c
forall s b. b -> Step s b
Done c
c
            StreamD.Skip s
us1 -> s -> s -> m (Step s c)
produce s
fs s
us1
            Step s b
StreamD.Stop -> Step s c -> m (Step s c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s c -> m (Step s c)) -> Step s c -> m (Step s c)
forall a b. (a -> b) -> a -> b
$ s -> Step s c
forall s b. s -> Step s b
Partial s
fs

    {-# INLINE_LATE consume #-}
    consume :: s -> a -> m (Step s c)
consume s
s a
a = a -> m s
inject a
a m s -> (s -> m (Step s c)) -> m (Step s c)
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= s -> s -> m (Step s c)
produce s
s

-- | Get the bottom most @n@ elements using the supplied comparison function.
--
{-# INLINE bottomBy #-}
bottomBy :: (MonadIO m, Unbox a) =>
       (a -> a -> Ordering)
    -> Int
    -> Fold m a (MutArray a)
bottomBy :: forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
(a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
bottomBy a -> a -> Ordering
cmp Int
n = ((MutArray a, Int) -> a -> m (Step (MutArray a, Int) (MutArray a)))
-> m (Step (MutArray a, Int) (MutArray a))
-> ((MutArray a, Int) -> m (MutArray a))
-> ((MutArray a, Int) -> m (MutArray a))
-> Fold m a (MutArray a)
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold (MutArray a, Int) -> a -> m (Step (MutArray a, Int) (MutArray a))
forall {m :: * -> *} {b}.
MonadIO m =>
(MutArray a, Int) -> a -> m (Step (MutArray a, Int) b)
step m (Step (MutArray a, Int) (MutArray a))
initial (MutArray a, Int) -> m (MutArray a)
forall {b} {b}. (b, b) -> m b
extract (MutArray a, Int) -> m (MutArray a)
forall {b} {b}. (b, b) -> m b
extract

    where

    initial :: m (Step (MutArray a, Int) (MutArray a))
initial = do
        MutArray a
arr <- Int -> m (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> m (MutArray a)
MA.pinnedNew Int
n
        if Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0
        then Step (MutArray a, Int) (MutArray a)
-> m (Step (MutArray a, Int) (MutArray a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (MutArray a, Int) (MutArray a)
 -> m (Step (MutArray a, Int) (MutArray a)))
-> Step (MutArray a, Int) (MutArray a)
-> m (Step (MutArray a, Int) (MutArray a))
forall a b. (a -> b) -> a -> b
$ MutArray a -> Step (MutArray a, Int) (MutArray a)
forall s b. b -> Step s b
Done MutArray a
arr
        else Step (MutArray a, Int) (MutArray a)
-> m (Step (MutArray a, Int) (MutArray a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (MutArray a, Int) (MutArray a)
 -> m (Step (MutArray a, Int) (MutArray a)))
-> Step (MutArray a, Int) (MutArray a)
-> m (Step (MutArray a, Int) (MutArray a))
forall a b. (a -> b) -> a -> b
$ (MutArray a, Int) -> Step (MutArray a, Int) (MutArray a)
forall s b. s -> Step s b
Partial (MutArray a
arr, Int
0)

    step :: (MutArray a, Int) -> a -> m (Step (MutArray a, Int) b)
step (MutArray a
arr, Int
i) a
x =
        if Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n
        then do
            MutArray a
arr' <- MutArray a -> a -> m (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
MutArray a -> a -> m (MutArray a)
MA.snoc MutArray a
arr a
x
            (a -> a -> Ordering) -> MutArray a -> m ()
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
(a -> a -> Ordering) -> MutArray a -> m ()
MA.bubble a -> a -> Ordering
cmp MutArray a
arr'
            Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b))
-> Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b)
forall a b. (a -> b) -> a -> b
$ (MutArray a, Int) -> Step (MutArray a, Int) b
forall s b. s -> Step s b
Partial (MutArray a
arr', Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
        else do
            a
x1 <- Int -> MutArray a -> m a
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> MutArray a -> m a
MA.getIndexUnsafe (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) MutArray a
arr
            case a
x a -> a -> Ordering
`cmp` a
x1 of
                Ordering
LT -> do
                    Int -> MutArray a -> a -> m ()
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
Int -> MutArray a -> a -> m ()
MA.putIndexUnsafe (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) MutArray a
arr a
x
                    (a -> a -> Ordering) -> MutArray a -> m ()
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
(a -> a -> Ordering) -> MutArray a -> m ()
MA.bubble a -> a -> Ordering
cmp MutArray a
arr
                    Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b))
-> Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b)
forall a b. (a -> b) -> a -> b
$ (MutArray a, Int) -> Step (MutArray a, Int) b
forall s b. s -> Step s b
Partial (MutArray a
arr, Int
i)
                Ordering
_ -> Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b))
-> Step (MutArray a, Int) b -> m (Step (MutArray a, Int) b)
forall a b. (a -> b) -> a -> b
$ (MutArray a, Int) -> Step (MutArray a, Int) b
forall s b. s -> Step s b
Partial (MutArray a
arr, Int
i)

    extract :: (b, b) -> m b
extract = b -> m b
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> m b) -> ((b, b) -> b) -> (b, b) -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b, b) -> b
forall a b. (a, b) -> a
fst

-- | Get the top @n@ elements using the supplied comparison function.
--
-- To get bottom n elements instead:
--
-- >>> bottomBy cmp = Fold.topBy (flip cmp)
--
-- Example:
--
-- >>> stream = Stream.fromList [2::Int,7,9,3,1,5,6,11,17]
-- >>> Stream.fold (Fold.topBy compare 3) stream >>= MutArray.toList
-- [17,11,9]
--
-- /Pre-release/
--
{-# INLINE topBy #-}
topBy :: (MonadIO m, Unbox a) =>
       (a -> a -> Ordering)
    -> Int
    -> Fold m a (MutArray a)
topBy :: forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
(a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
topBy a -> a -> Ordering
cmp = (a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
(a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
bottomBy ((a -> a -> Ordering) -> a -> a -> Ordering
forall a b c. (a -> b -> c) -> b -> a -> c
flip a -> a -> Ordering
cmp)

-- | Fold the input stream to top n elements.
--
-- Definition:
--
-- >>> top = Fold.topBy compare
--
-- >>> stream = Stream.fromList [2::Int,7,9,3,1,5,6,11,17]
-- >>> Stream.fold (Fold.top 3) stream >>= MutArray.toList
-- [17,11,9]
--
-- /Pre-release/
{-# INLINE top #-}
top :: (MonadIO m, Unbox a, Ord a) => Int -> Fold m a (MutArray a)
top :: forall (m :: * -> *) a.
(MonadIO m, Unbox a, Ord a) =>
Int -> Fold m a (MutArray a)
top = (a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
(a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
bottomBy ((a -> a -> Ordering) -> Int -> Fold m a (MutArray a))
-> (a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
forall a b. (a -> b) -> a -> b
$ (a -> a -> Ordering) -> a -> a -> Ordering
forall a b c. (a -> b -> c) -> b -> a -> c
flip a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare

-- | Fold the input stream to bottom n elements.
--
-- Definition:
--
-- >>> bottom = Fold.bottomBy compare
--
-- >>> stream = Stream.fromList [2::Int,7,9,3,1,5,6,11,17]
-- >>> Stream.fold (Fold.bottom 3) stream >>= MutArray.toList
-- [1,2,3]
--
-- /Pre-release/
{-# INLINE bottom #-}
bottom :: (MonadIO m, Unbox a, Ord a) => Int -> Fold m a (MutArray a)
bottom :: forall (m :: * -> *) a.
(MonadIO m, Unbox a, Ord a) =>
Int -> Fold m a (MutArray a)
bottom = (a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
forall (m :: * -> *) a.
(MonadIO m, Unbox a) =>
(a -> a -> Ordering) -> Int -> Fold m a (MutArray a)
bottomBy a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare

------------------------------------------------------------------------------
-- Interspersed parsing
------------------------------------------------------------------------------

data IntersperseQState fs ps =
      IntersperseQUnquoted !fs !ps
    | IntersperseQQuoted !fs !ps
    | IntersperseQQuotedEsc !fs !ps

-- Useful for parsing CSV with quoting and escaping
{-# INLINE intersperseWithQuotes #-}
intersperseWithQuotes :: (Monad m, Eq a) =>
    a -> a -> a -> Fold m a b -> Fold m b c -> Fold m a c
intersperseWithQuotes :: forall (m :: * -> *) a b c.
(Monad m, Eq a) =>
a -> a -> a -> Fold m a b -> Fold m b c -> Fold m a c
intersperseWithQuotes
    a
quote
    a
esc
    a
separator
    (Fold s -> a -> m (Step s b)
stepL m (Step s b)
initialL s -> m b
_ s -> m b
finalL)
    (Fold s -> b -> m (Step s c)
stepR m (Step s c)
initialR s -> m c
extractR s -> m c
finalR) = (IntersperseQState s s -> a -> m (Step (IntersperseQState s s) c))
-> m (Step (IntersperseQState s s) c)
-> (IntersperseQState s s -> m c)
-> (IntersperseQState s s -> m c)
-> Fold m a c
forall (m :: * -> *) a b s.
(s -> a -> m (Step s b))
-> m (Step s b) -> (s -> m b) -> (s -> m b) -> Fold m a b
Fold IntersperseQState s s -> a -> m (Step (IntersperseQState s s) c)
step m (Step (IntersperseQState s s) c)
initial IntersperseQState s s -> m c
forall {ps}. IntersperseQState s ps -> m c
extract IntersperseQState s s -> m c
final

    where

    errMsg :: [Char] -> [Char] -> a
errMsg [Char]
p [Char]
status =
        [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char] -> a) -> [Char] -> a
forall a b. (a -> b) -> a -> b
$ [Char]
"intersperseWithQuotes: " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
p [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" parsing fold cannot "
                [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
status [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" without input"

    {-# INLINE initL #-}
    initL :: (s -> s) -> m (Step s b)
initL s -> s
mkState = do
        Step s b
resL <- m (Step s b)
initialL
        case Step s b
resL of
            Partial s
sL ->
                Step s b -> m (Step s b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
Partial (s -> Step s b) -> s -> Step s b
forall a b. (a -> b) -> a -> b
$ s -> s
mkState s
sL
            Done b
_ ->
                [Char] -> [Char] -> m (Step s b)
forall {a}. [Char] -> [Char] -> a
errMsg [Char]
"content" [Char]
"succeed"

    initial :: m (Step (IntersperseQState s s) c)
initial = do
        Step s c
res <- m (Step s c)
initialR
        case Step s c
res of
            Partial s
sR -> (s -> IntersperseQState s s) -> m (Step (IntersperseQState s s) c)
forall {s} {b}. (s -> s) -> m (Step s b)
initL (s -> s -> IntersperseQState s s
forall fs ps. fs -> ps -> IntersperseQState fs ps
IntersperseQUnquoted s
sR)
            Done c
b -> Step (IntersperseQState s s) c
-> m (Step (IntersperseQState s s) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (IntersperseQState s s) c
 -> m (Step (IntersperseQState s s) c))
-> Step (IntersperseQState s s) c
-> m (Step (IntersperseQState s s) c)
forall a b. (a -> b) -> a -> b
$ c -> Step (IntersperseQState s s) c
forall s b. b -> Step s b
Done c
b

    {-# INLINE collect #-}
    collect :: (s -> s -> s) -> s -> b -> m (Step s c)
collect s -> s -> s
nextS s
sR b
b = do
        Step s c
res <- s -> b -> m (Step s c)
stepR s
sR b
b
        case Step s c
res of
            Partial s
s ->
                (s -> s) -> m (Step s c)
forall {s} {b}. (s -> s) -> m (Step s b)
initL (s -> s -> s
nextS s
s)
            Done c
c -> Step s c -> m (Step s c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (c -> Step s c
forall s b. b -> Step s b
Done c
c)

    {-# INLINE process #-}
    process :: a -> s -> s -> (s -> s -> s) -> m (Step s c)
process a
a s
sL s
sR s -> s -> s
nextState = do
        Step s b
r <- s -> a -> m (Step s b)
stepL s
sL a
a
        case Step s b
r of
            Partial s
s -> Step s c -> m (Step s c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s c -> m (Step s c)) -> Step s c -> m (Step s c)
forall a b. (a -> b) -> a -> b
$ s -> Step s c
forall s b. s -> Step s b
Partial (s -> s -> s
nextState s
sR s
s)
            Done b
b -> (s -> s -> s) -> s -> b -> m (Step s c)
forall {s}. (s -> s -> s) -> s -> b -> m (Step s c)
collect s -> s -> s
nextState s
sR b
b

    {-# INLINE processQuoted #-}
    processQuoted :: a -> s -> s -> (s -> s -> s) -> m (Step s b)
processQuoted a
a s
sL s
sR s -> s -> s
nextState = do
        Step s b
r <- s -> a -> m (Step s b)
stepL s
sL a
a
        case Step s b
r of
            Partial s
s -> Step s b -> m (Step s b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step s b -> m (Step s b)) -> Step s b -> m (Step s b)
forall a b. (a -> b) -> a -> b
$ s -> Step s b
forall s b. s -> Step s b
Partial (s -> s -> s
nextState s
sR s
s)
            Done b
_ -> do
                c
_ <- s -> m c
finalR s
sR
                [Char] -> m (Step s b)
forall a. HasCallStack => [Char] -> a
error [Char]
"Collecting fold finished inside quote"

    step :: IntersperseQState s s -> a -> m (Step (IntersperseQState s s) c)
step (IntersperseQUnquoted s
sR s
sL) a
a
        | a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
separator = do
            b
b <- s -> m b
finalL s
sL
            (s -> s -> IntersperseQState s s)
-> s -> b -> m (Step (IntersperseQState s s) c)
forall {s}. (s -> s -> s) -> s -> b -> m (Step s c)
collect s -> s -> IntersperseQState s s
forall fs ps. fs -> ps -> IntersperseQState fs ps
IntersperseQUnquoted s
sR b
b
        | a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
quote = a
-> s
-> s
-> (s -> s -> IntersperseQState s s)
-> m (Step (IntersperseQState s s) c)
forall {s} {b}. a -> s -> s -> (s -> s -> s) -> m (Step s b)
processQuoted a
a s
sL s
sR s -> s -> IntersperseQState s s
forall fs ps. fs -> ps -> IntersperseQState fs ps
IntersperseQQuoted
        | Bool
otherwise = a
-> s
-> s
-> (s -> s -> IntersperseQState s s)
-> m (Step (IntersperseQState s s) c)
forall {s}. a -> s -> s -> (s -> s -> s) -> m (Step s c)
process a
a s
sL s
sR s -> s -> IntersperseQState s s
forall fs ps. fs -> ps -> IntersperseQState fs ps
IntersperseQUnquoted

    step (IntersperseQQuoted s
sR s
sL) a
a
        | a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
esc = a
-> s
-> s
-> (s -> s -> IntersperseQState s s)
-> m (Step (IntersperseQState s s) c)
forall {s} {b}. a -> s -> s -> (s -> s -> s) -> m (Step s b)
processQuoted a
a s
sL s
sR s -> s -> IntersperseQState s s
forall fs ps. fs -> ps -> IntersperseQState fs ps
IntersperseQQuotedEsc
        | a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
quote = a
-> s
-> s
-> (s -> s -> IntersperseQState s s)
-> m (Step (IntersperseQState s s) c)
forall {s}. a -> s -> s -> (s -> s -> s) -> m (Step s c)
process a
a s
sL s
sR s -> s -> IntersperseQState s s
forall fs ps. fs -> ps -> IntersperseQState fs ps
IntersperseQUnquoted
        | Bool
otherwise = a
-> s
-> s
-> (s -> s -> IntersperseQState s s)
-> m (Step (IntersperseQState s s) c)
forall {s} {b}. a -> s -> s -> (s -> s -> s) -> m (Step s b)
processQuoted a
a s
sL s
sR s -> s -> IntersperseQState s s
forall fs ps. fs -> ps -> IntersperseQState fs ps
IntersperseQQuoted

    step (IntersperseQQuotedEsc s
sR s
sL) a
a =
        a
-> s
-> s
-> (s -> s -> IntersperseQState s s)
-> m (Step (IntersperseQState s s) c)
forall {s} {b}. a -> s -> s -> (s -> s -> s) -> m (Step s b)
processQuoted a
a s
sL s
sR s -> s -> IntersperseQState s s
forall fs ps. fs -> ps -> IntersperseQState fs ps
IntersperseQQuoted

    extract :: IntersperseQState s ps -> m c
extract (IntersperseQUnquoted s
sR ps
_) = s -> m c
extractR s
sR
    extract (IntersperseQQuoted s
_ ps
_) =
        [Char] -> m c
forall a. HasCallStack => [Char] -> a
error [Char]
"intersperseWithQuotes: finished inside quote"
    extract (IntersperseQQuotedEsc s
_ ps
_) =
        [Char] -> m c
forall a. HasCallStack => [Char] -> a
error [Char]
"intersperseWithQuotes: finished inside quote, at escape char"

    final :: IntersperseQState s s -> m c
final (IntersperseQUnquoted s
sR s
sL) = s -> m b
finalL s
sL m b -> m c -> m c
forall a b. m a -> m b -> m b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> s -> m c
finalR s
sR
    final (IntersperseQQuoted s
sR s
sL) = do
        c
_ <- s -> m c
finalR s
sR
        b
_ <- s -> m b
finalL s
sL
        [Char] -> m c
forall a. HasCallStack => [Char] -> a
error [Char]
"intersperseWithQuotes: finished inside quote"
    final (IntersperseQQuotedEsc s
sR s
sL) = do
        c
_ <- s -> m c
finalR s
sR
        b
_ <- s -> m b
finalL s
sL
        [Char] -> m c
forall a. HasCallStack => [Char] -> a
error [Char]
"intersperseWithQuotes: finished inside quote, at escape char"