module Streamly.Internal.Data.Unfold.Enumeration
(
Enumerable (..)
, enumerateFromStepNum
, enumerateFromNum
, enumerateFromThenNum
, enumerateFromStepIntegral
, enumerateFromIntegral
, enumerateFromThenIntegral
, enumerateFromToIntegral
, enumerateFromThenToIntegral
, enumerateFromIntegralBounded
, enumerateFromThenIntegralBounded
, enumerateFromToIntegralBounded
, enumerateFromThenToIntegralBounded
, enumerateFromSmallBounded
, enumerateFromThenSmallBounded
, enumerateFromToSmall
, enumerateFromThenToSmall
, enumerateFromFractional
, enumerateFromThenFractional
, enumerateFromToFractional
, enumerateFromThenToFractional
)
where
#include "inline.hs"
import Data.Fixed
import Data.Bifunctor (bimap)
import Data.Int
import Data.Ratio
import Data.Word
import Numeric.Natural
import Data.Functor.Identity (Identity(..))
import Streamly.Internal.Data.Unfold.Type
import Prelude
hiding (map, mapM, takeWhile, take, filter, const, zipWith
, drop, dropWhile)
{-# INLINE enumerateFromStepNum #-}
enumerateFromStepNum :: (Monad m, Num a) => Unfold m (a, a) a
enumerateFromStepNum :: forall (m :: * -> *) a. (Monad m, Num a) => Unfold m (a, a) a
enumerateFromStepNum = ((a, a, a) -> m (Step (a, a, a) a))
-> ((a, a) -> m (a, a, a)) -> Unfold m (a, a) a
forall (m :: * -> *) a b s.
(s -> m (Step s b)) -> (a -> m s) -> Unfold m a b
Unfold (a, a, a) -> m (Step (a, a, a) a)
forall {m :: * -> *} {c}.
(Monad m, Num c) =>
(c, c, c) -> m (Step (c, c, c) c)
step (a, a) -> m (a, a, a)
forall {m :: * -> *} {c} {a} {b}.
(Monad m, Num c) =>
(a, b) -> m (a, b, c)
inject
where
inject :: (a, b) -> m (a, b, c)
inject (!a
from, !b
stride) = (a, b, c) -> m (a, b, c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
from, b
stride, c
0)
{-# INLINE_LATE step #-}
step :: (c, c, c) -> m (Step (c, c, c) c)
step (c
from, c
stride, c
i) =
Step (c, c, c) c -> m (Step (c, c, c) c)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (c, c, c) c -> m (Step (c, c, c) c))
-> Step (c, c, c) c -> m (Step (c, c, c) c)
forall a b. (a -> b) -> a -> b
$
(c -> (c, c, c) -> Step (c, c, c) c
forall s a. a -> s -> Step s a
Yield (c -> (c, c, c) -> Step (c, c, c) c)
-> c -> (c, c, c) -> Step (c, c, c) c
forall a b. (a -> b) -> a -> b
$! (c
from c -> c -> c
forall a. Num a => a -> a -> a
+ c
i c -> c -> c
forall a. Num a => a -> a -> a
* c
stride)) ((c, c, c) -> Step (c, c, c) c) -> (c, c, c) -> Step (c, c, c) c
forall a b. (a -> b) -> a -> b
$! (c
from, c
stride, c
i c -> c -> c
forall a. Num a => a -> a -> a
+ c
1)
{-# INLINE enumerateFromThenNum #-}
enumerateFromThenNum :: (Monad m, Num a) => Unfold m (a, a) a
enumerateFromThenNum :: forall (m :: * -> *) a. (Monad m, Num a) => Unfold m (a, a) a
enumerateFromThenNum =
((a, a) -> (a, a)) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (\(a
from, a
next) -> (a
from, a
next a -> a -> a
forall a. Num a => a -> a -> a
- a
from)) Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Num a) => Unfold m (a, a) a
enumerateFromStepNum
{-# INLINE enumerateFromNum #-}
enumerateFromNum :: (Monad m, Num a) => Unfold m a a
enumerateFromNum :: forall (m :: * -> *) a. (Monad m, Num a) => Unfold m a a
enumerateFromNum = (a -> (a, a)) -> Unfold m (a, a) a -> Unfold m a a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (\a
from -> (a
from, a
1)) Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Num a) => Unfold m (a, a) a
enumerateFromStepNum
{-# INLINE_NORMAL enumerateFromStepIntegral #-}
enumerateFromStepIntegral :: (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromStepIntegral :: forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromStepIntegral = ((a, a) -> m (Step (a, a) a))
-> ((a, a) -> m (a, a)) -> Unfold m (a, a) a
forall (m :: * -> *) a b s.
(s -> m (Step s b)) -> (a -> m s) -> Unfold m a b
Unfold (a, a) -> m (Step (a, a) a)
forall {m :: * -> *} {b}.
(Monad m, Num b) =>
(b, b) -> m (Step (b, b) b)
step (a, a) -> m (a, a)
forall {m :: * -> *} {a} {b}. Monad m => (a, b) -> m (a, b)
inject
where
inject :: (a, b) -> m (a, b)
inject (a
from, b
stride) = a
from a -> m (a, b) -> m (a, b)
forall a b. a -> b -> b
`seq` b
stride b -> m (a, b) -> m (a, b)
forall a b. a -> b -> b
`seq` (a, b) -> m (a, b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
from, b
stride)
{-# INLINE_LATE step #-}
step :: (b, b) -> m (Step (b, b) b)
step (b
x, b
stride) = Step (b, b) b -> m (Step (b, b) b)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Step (b, b) b -> m (Step (b, b) b))
-> Step (b, b) b -> m (Step (b, b) b)
forall a b. (a -> b) -> a -> b
$ b -> (b, b) -> Step (b, b) b
forall s a. a -> s -> Step s a
Yield b
x ((b, b) -> Step (b, b) b) -> (b, b) -> Step (b, b) b
forall a b. (a -> b) -> a -> b
$! (b
x b -> b -> b
forall a. Num a => a -> a -> a
+ b
stride, b
stride)
{-# INLINE enumerateFromIntegral #-}
enumerateFromIntegral :: (Monad m, Integral a) => Unfold m a a
enumerateFromIntegral :: forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m a a
enumerateFromIntegral = (a -> (a, a)) -> Unfold m (a, a) a -> Unfold m a a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (\a
from -> (a
from, a
1)) Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromStepIntegral
{-# INLINE enumerateFromThenIntegral #-}
enumerateFromThenIntegral :: (Monad m, Integral a ) => Unfold m (a, a) a
enumerateFromThenIntegral :: forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromThenIntegral =
((a, a) -> (a, a)) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (\(a
from, a
next) -> (a
from, a
next a -> a -> a
forall a. Num a => a -> a -> a
- a
from)) Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromStepIntegral
{-# INLINE enumerateFromToIntegral #-}
enumerateFromToIntegral :: (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromToIntegral :: forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromToIntegral =
((a, a) -> a -> m Bool) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> m Bool) -> Unfold m a b -> Unfold m a b
takeWhileMWithInput (\(a
_, a
to) a
b -> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to)
(Unfold m (a, a) a -> Unfold m (a, a) a)
-> Unfold m (a, a) a -> Unfold m (a, a) a
forall a b. (a -> b) -> a -> b
$ ((a, a) -> (a, a)) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (\(a
from, a
_) -> (a
from, a
1)) Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromStepIntegral
{-# INLINE enumerateFromThenToIntegral #-}
enumerateFromThenToIntegral :: (Monad m, Integral a) => Unfold m (a, a, a) a
enumerateFromThenToIntegral :: forall (m :: * -> *) a.
(Monad m, Integral a) =>
Unfold m (a, a, a) a
enumerateFromThenToIntegral =
((a, a, a) -> a -> m Bool)
-> Unfold m (a, a, a) a -> Unfold m (a, a, a) a
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> m Bool) -> Unfold m a b -> Unfold m a b
takeWhileMWithInput (a, a, a) -> a -> m Bool
forall {m :: * -> *} {a} {a}.
(Monad m, Ord a, Ord a) =>
(a, a, a) -> a -> m Bool
cond (Unfold m (a, a, a) a -> Unfold m (a, a, a) a)
-> Unfold m (a, a, a) a -> Unfold m (a, a, a) a
forall a b. (a -> b) -> a -> b
$ ((a, a, a) -> (a, a)) -> Unfold m (a, a) a -> Unfold m (a, a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (a, a, a) -> (a, a)
forall {b} {c}. Num b => (b, b, c) -> (b, b)
toFromStep Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromStepIntegral
where
toFromStep :: (b, b, c) -> (b, b)
toFromStep (b
from, b
next, c
_) = (b
from, b
next b -> b -> b
forall a. Num a => a -> a -> a
- b
from)
cond :: (a, a, a) -> a -> m Bool
cond (a
from, a
next, a
to) a
b =
Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
(Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ if a
next a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
from
then a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to
else a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
to
{-# INLINE enumerateFromIntegralBounded #-}
enumerateFromIntegralBounded :: (Monad m, Integral a, Bounded a) =>
Unfold m a a
enumerateFromIntegralBounded :: forall (m :: * -> *) a.
(Monad m, Integral a, Bounded a) =>
Unfold m a a
enumerateFromIntegralBounded = a -> Unfold m (a, a) a -> Unfold m a a
forall b (m :: * -> *) a c. b -> Unfold m (a, b) c -> Unfold m a c
second a
forall a. Bounded a => a
maxBound Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromToIntegral
{-# INLINE enumerateFromThenIntegralBounded #-}
enumerateFromThenIntegralBounded :: (Monad m, Integral a, Bounded a ) =>
Unfold m (a, a) a
enumerateFromThenIntegralBounded :: forall (m :: * -> *) a.
(Monad m, Integral a, Bounded a) =>
Unfold m (a, a) a
enumerateFromThenIntegralBounded =
((a, a) -> a -> m Bool) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> m Bool) -> Unfold m a b -> Unfold m a b
takeWhileMWithInput (a, a) -> a -> m Bool
forall {m :: * -> *} {a} {a}.
(Monad m, Ord a, Ord a, Bounded a) =>
(a, a) -> a -> m Bool
cond (Unfold m (a, a) a -> Unfold m (a, a) a)
-> Unfold m (a, a) a -> Unfold m (a, a) a
forall a b. (a -> b) -> a -> b
$ ((a, a) -> (a, a)) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (a, a) -> (a, a)
forall {b}. Num b => (b, b) -> (b, b)
toFromStep Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromStepIntegral
where
toFromStep :: (b, b) -> (b, b)
toFromStep (b
from, b
next) = (b
from, b
next b -> b -> b
forall a. Num a => a -> a -> a
- b
from)
cond :: (a, a) -> a -> m Bool
cond (a
from, a
next) a
b =
Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
(Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ if a
next a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
from
then a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
forall a. Bounded a => a
maxBound
else a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
forall a. Bounded a => a
minBound
{-# INLINE enumerateFromToIntegralBounded #-}
enumerateFromToIntegralBounded :: (Monad m, Integral a, Bounded a) =>
Unfold m (a, a) a
enumerateFromToIntegralBounded :: forall (m :: * -> *) a.
(Monad m, Integral a, Bounded a) =>
Unfold m (a, a) a
enumerateFromToIntegralBounded =
((a, a) -> a -> m Bool) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> m Bool) -> Unfold m a b -> Unfold m a b
takeWhileMWithInput (\(a
_, a
to) a
b -> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to)
(Unfold m (a, a) a -> Unfold m (a, a) a)
-> Unfold m (a, a) a -> Unfold m (a, a) a
forall a b. (a -> b) -> a -> b
$ ((a, a) -> a) -> Unfold m a a -> Unfold m (a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (a, a) -> a
forall a b. (a, b) -> a
fst Unfold m a a
forall (m :: * -> *) a.
(Monad m, Integral a, Bounded a) =>
Unfold m a a
enumerateFromIntegralBounded
{-# INLINE enumerateFromThenToIntegralBounded #-}
enumerateFromThenToIntegralBounded :: (Monad m, Integral a, Bounded a) =>
Unfold m (a, a, a) a
enumerateFromThenToIntegralBounded :: forall (m :: * -> *) a.
(Monad m, Integral a, Bounded a) =>
Unfold m (a, a, a) a
enumerateFromThenToIntegralBounded =
((a, a, a) -> a -> m Bool)
-> Unfold m (a, a, a) a -> Unfold m (a, a, a) a
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> m Bool) -> Unfold m a b -> Unfold m a b
takeWhileMWithInput (a, a, a) -> a -> m Bool
forall {m :: * -> *} {a} {a}.
(Monad m, Ord a, Ord a) =>
(a, a, a) -> a -> m Bool
cond (Unfold m (a, a, a) a -> Unfold m (a, a, a) a)
-> Unfold m (a, a, a) a -> Unfold m (a, a, a) a
forall a b. (a -> b) -> a -> b
$ ((a, a, a) -> (a, a)) -> Unfold m (a, a) a -> Unfold m (a, a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (a, a, a) -> (a, a)
forall {a} {b} {c}. (a, b, c) -> (a, b)
toFromThen Unfold m (a, a) a
forall (m :: * -> *) a.
(Monad m, Integral a, Bounded a) =>
Unfold m (a, a) a
enumerateFromThenIntegralBounded
where
toFromThen :: (a, b, c) -> (a, b)
toFromThen (a
from, b
next, c
_) = (a
from, b
next)
cond :: (a, a, a) -> a -> m Bool
cond (a
from, a
next, a
to) a
b =
Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
(Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ if a
next a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
from
then a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to
else a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
to
{-# INLINE_NORMAL enumerateFromFractional #-}
enumerateFromFractional :: (Monad m, Fractional a) => Unfold m a a
enumerateFromFractional :: forall (m :: * -> *) a. (Monad m, Fractional a) => Unfold m a a
enumerateFromFractional = Unfold m a a
forall (m :: * -> *) a. (Monad m, Num a) => Unfold m a a
enumerateFromNum
{-# INLINE_NORMAL enumerateFromThenFractional #-}
enumerateFromThenFractional :: (Monad m, Fractional a) => Unfold m (a, a) a
enumerateFromThenFractional :: forall (m :: * -> *) a.
(Monad m, Fractional a) =>
Unfold m (a, a) a
enumerateFromThenFractional = Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Num a) => Unfold m (a, a) a
enumerateFromThenNum
{-# INLINE_NORMAL enumerateFromToFractional #-}
enumerateFromToFractional :: (Monad m, Fractional a, Ord a) =>
Unfold m (a, a) a
enumerateFromToFractional :: forall (m :: * -> *) a.
(Monad m, Fractional a, Ord a) =>
Unfold m (a, a) a
enumerateFromToFractional =
((a, a) -> a -> m Bool) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> m Bool) -> Unfold m a b -> Unfold m a b
takeWhileMWithInput (\(a
_, a
to) a
b -> Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to a -> a -> a
forall a. Num a => a -> a -> a
+ a
1 a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
2)
(Unfold m (a, a) a -> Unfold m (a, a) a)
-> Unfold m (a, a) a -> Unfold m (a, a) a
forall a b. (a -> b) -> a -> b
$ ((a, a) -> (a, a)) -> Unfold m (a, a) a -> Unfold m (a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (\(a
from, a
_) -> (a
from, a
1)) Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Num a) => Unfold m (a, a) a
enumerateFromStepNum
{-# INLINE enumerateFromThenToFractional #-}
enumerateFromThenToFractional :: (Monad m, Fractional a, Ord a) =>
Unfold m (a, a, a) a
enumerateFromThenToFractional :: forall (m :: * -> *) a.
(Monad m, Fractional a, Ord a) =>
Unfold m (a, a, a) a
enumerateFromThenToFractional =
((a, a, a) -> a -> m Bool)
-> Unfold m (a, a, a) a -> Unfold m (a, a, a) a
forall (m :: * -> *) a b.
Monad m =>
(a -> b -> m Bool) -> Unfold m a b -> Unfold m a b
takeWhileMWithInput (a, a, a) -> a -> m Bool
forall {m :: * -> *} {a}.
(Monad m, Ord a, Fractional a) =>
(a, a, a) -> a -> m Bool
cond (Unfold m (a, a, a) a -> Unfold m (a, a, a) a)
-> Unfold m (a, a, a) a -> Unfold m (a, a, a) a
forall a b. (a -> b) -> a -> b
$ ((a, a, a) -> (a, a)) -> Unfold m (a, a) a -> Unfold m (a, a, a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (a, a, a) -> (a, a)
forall {b} {c}. Num b => (b, b, c) -> (b, b)
toFromStep Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Num a) => Unfold m (a, a) a
enumerateFromStepNum
where
toFromStep :: (b, b, c) -> (b, b)
toFromStep (b
from, b
next, c
_) = (b
from, b
next b -> b -> b
forall a. Num a => a -> a -> a
- b
from)
cond :: (a, a, a) -> a -> m Bool
cond (a
from, a
next, a
to) a
b =
let stride :: a
stride = a
next a -> a -> a
forall a. Num a => a -> a -> a
- a
from
in Bool -> m Bool
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
(Bool -> m Bool) -> Bool -> m Bool
forall a b. (a -> b) -> a -> b
$ if a
next a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
from
then a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
to a -> a -> a
forall a. Num a => a -> a -> a
+ a
stride a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
2
else a
b a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
to a -> a -> a
forall a. Num a => a -> a -> a
+ a
stride a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
2
{-# INLINE enumerateFromToSmall #-}
enumerateFromToSmall :: (Monad m, Enum a) => Unfold m (a, a) a
enumerateFromToSmall :: forall (m :: * -> *) a. (Monad m, Enum a) => Unfold m (a, a) a
enumerateFromToSmall =
(Int -> a) -> Unfold m (a, a) Int -> Unfold m (a, a) a
forall a b. (a -> b) -> Unfold m (a, a) a -> Unfold m (a, a) b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> a
forall a. Enum a => Int -> a
toEnum (((a, a) -> (Int, Int))
-> Unfold m (Int, Int) Int -> Unfold m (a, a) Int
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap ((a -> Int) -> (a -> Int) -> (a, a) -> (Int, Int)
forall a b c d. (a -> b) -> (c -> d) -> (a, c) -> (b, d)
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap a -> Int
forall a. Enum a => a -> Int
fromEnum a -> Int
forall a. Enum a => a -> Int
fromEnum) Unfold m (Int, Int) Int
forall (m :: * -> *) a. (Monad m, Integral a) => Unfold m (a, a) a
enumerateFromToIntegral)
{-# INLINE enumerateFromThenToSmall #-}
enumerateFromThenToSmall :: (Monad m, Enum a) => Unfold m (a, a, a) a
enumerateFromThenToSmall :: forall (m :: * -> *) a. (Monad m, Enum a) => Unfold m (a, a, a) a
enumerateFromThenToSmall =
let toInts :: (a, a, a) -> (Int, Int, Int)
toInts (a
x, a
y, a
z) = (a -> Int
forall a. Enum a => a -> Int
fromEnum a
x, a -> Int
forall a. Enum a => a -> Int
fromEnum a
y, a -> Int
forall a. Enum a => a -> Int
fromEnum a
z)
in (Int -> a) -> Unfold m (a, a, a) Int -> Unfold m (a, a, a) a
forall a b.
(a -> b) -> Unfold m (a, a, a) a -> Unfold m (a, a, a) b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> a
forall a. Enum a => Int -> a
toEnum (((a, a, a) -> (Int, Int, Int))
-> Unfold m (Int, Int, Int) Int -> Unfold m (a, a, a) Int
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (a, a, a) -> (Int, Int, Int)
forall {a} {a} {a}.
(Enum a, Enum a, Enum a) =>
(a, a, a) -> (Int, Int, Int)
toInts Unfold m (Int, Int, Int) Int
forall (m :: * -> *) a.
(Monad m, Integral a) =>
Unfold m (a, a, a) a
enumerateFromThenToIntegral)
{-# INLINE enumerateFromSmallBounded #-}
enumerateFromSmallBounded :: (Monad m, Enum a, Bounded a) => Unfold m a a
enumerateFromSmallBounded :: forall (m :: * -> *) a.
(Monad m, Enum a, Bounded a) =>
Unfold m a a
enumerateFromSmallBounded = a -> Unfold m (a, a) a -> Unfold m a a
forall b (m :: * -> *) a c. b -> Unfold m (a, b) c -> Unfold m a c
second a
forall a. Bounded a => a
maxBound Unfold m (a, a) a
forall (m :: * -> *) a. (Monad m, Enum a) => Unfold m (a, a) a
enumerateFromToSmall
{-# INLINE enumerateFromThenSmallBounded #-}
enumerateFromThenSmallBounded :: forall m a. (Monad m, Enum a, Bounded a) =>
Unfold m (a, a) a
enumerateFromThenSmallBounded :: forall (m :: * -> *) a.
(Monad m, Enum a, Bounded a) =>
Unfold m (a, a) a
enumerateFromThenSmallBounded =
let adapt :: (a, b) -> (Int, Int, Int)
adapt (a
from, b
next) =
let frm :: Int
frm = a -> Int
forall a. Enum a => a -> Int
fromEnum a
from
nxt :: Int
nxt = b -> Int
forall a. Enum a => a -> Int
fromEnum b
next
stride :: Int
stride = Int
nxt Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
frm
to :: Int
to = if Int
stride Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0
then a -> Int
forall a. Enum a => a -> Int
fromEnum (a
forall a. Bounded a => a
maxBound :: a)
else a -> Int
forall a. Enum a => a -> Int
fromEnum (a
forall a. Bounded a => a
minBound :: a)
in (Int
frm, Int
nxt, Int
to)
in (Int -> a) -> Unfold m (a, a) Int -> Unfold m (a, a) a
forall a b. (a -> b) -> Unfold m (a, a) a -> Unfold m (a, a) b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> a
forall a. Enum a => Int -> a
toEnum (((a, a) -> (Int, Int, Int))
-> Unfold m (Int, Int, Int) Int -> Unfold m (a, a) Int
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap (a, a) -> (Int, Int, Int)
forall {b} {a}. (Enum b, Enum a) => (a, b) -> (Int, Int, Int)
adapt Unfold m (Int, Int, Int) Int
forall (m :: * -> *) a.
(Monad m, Integral a) =>
Unfold m (a, a, a) a
enumerateFromThenToIntegral)
class Enum a => Enumerable a where
enumerateFrom :: Monad m => Unfold m a a
enumerateFromTo :: Monad m => Unfold m (a, a) a
enumerateFromThen :: Monad m => Unfold m (a, a) a
enumerateFromThenTo :: Monad m => Unfold m (a, a, a) a
#define ENUMERABLE_BOUNDED_SMALL(SMALL_TYPE) \
instance Enumerable SMALL_TYPE where { \
{-# INLINE enumerateFrom #-}; \
enumerateFrom = enumerateFromSmallBounded; \
{-# INLINE enumerateFromThen #-}; \
enumerateFromThen = enumerateFromThenSmallBounded; \
{-# INLINE enumerateFromTo #-}; \
enumerateFromTo = enumerateFromToSmall; \
{-# INLINE enumerateFromThenTo #-}; \
enumerateFromThenTo = enumerateFromThenToSmall }
ENUMERABLE_BOUNDED_SMALL(())
ENUMERABLE_BOUNDED_SMALL(Bool)
ENUMERABLE_BOUNDED_SMALL(Ordering)
ENUMERABLE_BOUNDED_SMALL(Char)
#define ENUMERABLE_BOUNDED_INTEGRAL(INTEGRAL_TYPE) \
instance Enumerable INTEGRAL_TYPE where { \
{-# INLINE enumerateFrom #-}; \
enumerateFrom = enumerateFromIntegralBounded; \
{-# INLINE enumerateFromThen #-}; \
enumerateFromThen = enumerateFromThenIntegralBounded; \
{-# INLINE enumerateFromTo #-}; \
enumerateFromTo = enumerateFromToIntegralBounded; \
{-# INLINE enumerateFromThenTo #-}; \
enumerateFromThenTo = enumerateFromThenToIntegralBounded }
ENUMERABLE_BOUNDED_INTEGRAL(Int)
ENUMERABLE_BOUNDED_INTEGRAL(Int8)
ENUMERABLE_BOUNDED_INTEGRAL(Int16)
ENUMERABLE_BOUNDED_INTEGRAL(Int32)
ENUMERABLE_BOUNDED_INTEGRAL(Int64)
ENUMERABLE_BOUNDED_INTEGRAL(Word)
ENUMERABLE_BOUNDED_INTEGRAL(Word8)
ENUMERABLE_BOUNDED_INTEGRAL(Word16)
ENUMERABLE_BOUNDED_INTEGRAL(Word32)
ENUMERABLE_BOUNDED_INTEGRAL(Word64)
#define ENUMERABLE_UNBOUNDED_INTEGRAL(INTEGRAL_TYPE) \
instance Enumerable INTEGRAL_TYPE where { \
{-# INLINE enumerateFrom #-}; \
enumerateFrom = enumerateFromIntegral; \
{-# INLINE enumerateFromThen #-}; \
enumerateFromThen = enumerateFromThenIntegral; \
{-# INLINE enumerateFromTo #-}; \
enumerateFromTo = enumerateFromToIntegral; \
{-# INLINE enumerateFromThenTo #-}; \
enumerateFromThenTo = enumerateFromThenToIntegral }
ENUMERABLE_UNBOUNDED_INTEGRAL(Integer)
ENUMERABLE_UNBOUNDED_INTEGRAL(Natural)
#define ENUMERABLE_FRACTIONAL(FRACTIONAL_TYPE,CONSTRAINT) \
instance (CONSTRAINT) => Enumerable FRACTIONAL_TYPE where { \
{-# INLINE enumerateFrom #-}; \
enumerateFrom = enumerateFromFractional; \
{-# INLINE enumerateFromThen #-}; \
enumerateFromThen = enumerateFromThenFractional; \
{-# INLINE enumerateFromTo #-}; \
enumerateFromTo = enumerateFromToFractional; \
{-# INLINE enumerateFromThenTo #-}; \
enumerateFromThenTo = enumerateFromThenToFractional }
ENUMERABLE_FRACTIONAL(Float,)
ENUMERABLE_FRACTIONAL(Double,)
ENUMERABLE_FRACTIONAL((Fixed a),HasResolution a)
ENUMERABLE_FRACTIONAL((Ratio a),Integral a)
instance Enumerable a => Enumerable (Identity a) where
{-# INLINE enumerateFrom #-}
enumerateFrom :: forall (m :: * -> *). Monad m => Unfold m (Identity a) (Identity a)
enumerateFrom =
(a -> Identity a)
-> Unfold m (Identity a) a -> Unfold m (Identity a) (Identity a)
forall (m :: * -> *) b c a.
Functor m =>
(b -> c) -> Unfold m a b -> Unfold m a c
map a -> Identity a
forall a. a -> Identity a
Identity (Unfold m (Identity a) a -> Unfold m (Identity a) (Identity a))
-> Unfold m (Identity a) a -> Unfold m (Identity a) (Identity a)
forall a b. (a -> b) -> a -> b
$ (Identity a -> a) -> Unfold m a a -> Unfold m (Identity a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap Identity a -> a
forall a. Identity a -> a
runIdentity Unfold m a a
forall a (m :: * -> *). (Enumerable a, Monad m) => Unfold m a a
forall (m :: * -> *). Monad m => Unfold m a a
enumerateFrom
{-# INLINE enumerateFromThen #-}
enumerateFromThen :: forall (m :: * -> *).
Monad m =>
Unfold m (Identity a, Identity a) (Identity a)
enumerateFromThen =
(a -> Identity a)
-> Unfold m (Identity a, Identity a) a
-> Unfold m (Identity a, Identity a) (Identity a)
forall (m :: * -> *) b c a.
Functor m =>
(b -> c) -> Unfold m a b -> Unfold m a c
map a -> Identity a
forall a. a -> Identity a
Identity (Unfold m (Identity a, Identity a) a
-> Unfold m (Identity a, Identity a) (Identity a))
-> Unfold m (Identity a, Identity a) a
-> Unfold m (Identity a, Identity a) (Identity a)
forall a b. (a -> b) -> a -> b
$ ((Identity a, Identity a) -> (a, a))
-> Unfold m (a, a) a -> Unfold m (Identity a, Identity a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap ((Identity a -> a)
-> (Identity a -> a) -> (Identity a, Identity a) -> (a, a)
forall a b c d. (a -> b) -> (c -> d) -> (a, c) -> (b, d)
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap Identity a -> a
forall a. Identity a -> a
runIdentity Identity a -> a
forall a. Identity a -> a
runIdentity) Unfold m (a, a) a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
Unfold m (a, a) a
forall (m :: * -> *). Monad m => Unfold m (a, a) a
enumerateFromThen
{-# INLINE enumerateFromTo #-}
enumerateFromTo :: forall (m :: * -> *).
Monad m =>
Unfold m (Identity a, Identity a) (Identity a)
enumerateFromTo =
(a -> Identity a)
-> Unfold m (Identity a, Identity a) a
-> Unfold m (Identity a, Identity a) (Identity a)
forall (m :: * -> *) b c a.
Functor m =>
(b -> c) -> Unfold m a b -> Unfold m a c
map a -> Identity a
forall a. a -> Identity a
Identity (Unfold m (Identity a, Identity a) a
-> Unfold m (Identity a, Identity a) (Identity a))
-> Unfold m (Identity a, Identity a) a
-> Unfold m (Identity a, Identity a) (Identity a)
forall a b. (a -> b) -> a -> b
$ ((Identity a, Identity a) -> (a, a))
-> Unfold m (a, a) a -> Unfold m (Identity a, Identity a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap ((Identity a -> a)
-> (Identity a -> a) -> (Identity a, Identity a) -> (a, a)
forall a b c d. (a -> b) -> (c -> d) -> (a, c) -> (b, d)
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap Identity a -> a
forall a. Identity a -> a
runIdentity Identity a -> a
forall a. Identity a -> a
runIdentity) Unfold m (a, a) a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
Unfold m (a, a) a
forall (m :: * -> *). Monad m => Unfold m (a, a) a
enumerateFromThen
{-# INLINE enumerateFromThenTo #-}
enumerateFromThenTo :: forall (m :: * -> *).
Monad m =>
Unfold m (Identity a, Identity a, Identity a) (Identity a)
enumerateFromThenTo =
(a -> Identity a)
-> Unfold m (Identity a, Identity a, Identity a) a
-> Unfold m (Identity a, Identity a, Identity a) (Identity a)
forall (m :: * -> *) b c a.
Functor m =>
(b -> c) -> Unfold m a b -> Unfold m a c
map a -> Identity a
forall a. a -> Identity a
Identity (Unfold m (Identity a, Identity a, Identity a) a
-> Unfold m (Identity a, Identity a, Identity a) (Identity a))
-> Unfold m (Identity a, Identity a, Identity a) a
-> Unfold m (Identity a, Identity a, Identity a) (Identity a)
forall a b. (a -> b) -> a -> b
$
((Identity a, Identity a, Identity a) -> (a, a, a))
-> Unfold m (a, a, a) a
-> Unfold m (Identity a, Identity a, Identity a) a
forall a c (m :: * -> *) b.
(a -> c) -> Unfold m c b -> Unfold m a b
lmap
(\(Identity a
from, Identity a
next, Identity a
to) ->
(Identity a -> a
forall a. Identity a -> a
runIdentity Identity a
from, Identity a -> a
forall a. Identity a -> a
runIdentity Identity a
next, Identity a -> a
forall a. Identity a -> a
runIdentity Identity a
to))
Unfold m (a, a, a) a
forall a (m :: * -> *).
(Enumerable a, Monad m) =>
Unfold m (a, a, a) a
forall (m :: * -> *). Monad m => Unfold m (a, a, a) a
enumerateFromThenTo