{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
#if defined(__GLASGOW_HASKELL__)
{-# LANGUAGE Trustworthy #-}
#endif
{-# OPTIONS_HADDOCK not-home #-}
#include "containers.h"
module Data.Strict.Map.Autogen.Strict.Internal
(
Map(..)
, L.Size
, (!), (!?), (\\)
, null
, size
, member
, notMember
, lookup
, findWithDefault
, lookupLT
, lookupGT
, lookupLE
, lookupGE
, empty
, singleton
, insert
, insertWith
, insertWithKey
, insertLookupWithKey
, delete
, adjust
, adjustWithKey
, update
, updateWithKey
, updateLookupWithKey
, alter
, alterF
, union
, unionWith
, unionWithKey
, unions
, unionsWith
, difference
, differenceWith
, differenceWithKey
, intersection
, intersectionWith
, intersectionWithKey
, disjoint
, compose
, SimpleWhenMissing
, SimpleWhenMatched
, merge
, runWhenMatched
, runWhenMissing
, zipWithMaybeMatched
, zipWithMatched
, mapMaybeMissing
, dropMissing
, preserveMissing
, preserveMissing'
, mapMissing
, filterMissing
, WhenMissing (..)
, WhenMatched (..)
, mergeA
, zipWithMaybeAMatched
, zipWithAMatched
, traverseMaybeMissing
, traverseMissing
, filterAMissing
, mapWhenMissing
, mapWhenMatched
, mergeWithKey
, map
, mapWithKey
, traverseWithKey
, traverseMaybeWithKey
, mapAccum
, mapAccumWithKey
, mapAccumRWithKey
, mapKeys
, mapKeysWith
, mapKeysMonotonic
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
, elems
, keys
, assocs
, keysSet
, fromSet
, toList
, fromList
, fromListWith
, fromListWithKey
, toAscList
, toDescList
, fromAscList
, fromAscListWith
, fromAscListWithKey
, fromDistinctAscList
, fromDescList
, fromDescListWith
, fromDescListWithKey
, fromDistinctDescList
, filter
, filterWithKey
, restrictKeys
, withoutKeys
, partition
, partitionWithKey
, takeWhileAntitone
, dropWhileAntitone
, spanAntitone
, mapMaybe
, mapMaybeWithKey
, mapEither
, mapEitherWithKey
, split
, splitLookup
, splitRoot
, isSubmapOf, isSubmapOfBy
, isProperSubmapOf, isProperSubmapOfBy
, lookupIndex
, findIndex
, elemAt
, updateAt
, deleteAt
, take
, drop
, splitAt
, lookupMin
, lookupMax
, findMin
, findMax
, deleteMin
, deleteMax
, deleteFindMin
, deleteFindMax
, updateMin
, updateMax
, updateMinWithKey
, updateMaxWithKey
, minView
, maxView
, minViewWithKey
, maxViewWithKey
#if defined(__GLASGOW_HASKELL__)
, showTree
, showTreeWith
#endif
, valid
) where
import Prelude hiding (lookup,map,filter,foldr,foldl,null,take,drop,splitAt)
import Data.Strict.Map.Autogen.Internal
( Map (..)
, AreWeStrict (..)
, WhenMissing (..)
, WhenMatched (..)
, runWhenMatched
, runWhenMissing
, SimpleWhenMissing
, SimpleWhenMatched
, preserveMissing
, preserveMissing'
, dropMissing
, filterMissing
, filterAMissing
, merge
, mergeA
, (!)
, (!?)
, (\\)
, assocs
, atKeyImpl
#if MIN_VERSION_base(4,8,0)
, atKeyPlain
#endif
, balance
, balanceL
, balanceR
, compose
, elemAt
, elems
, empty
, delete
, deleteAt
, deleteFindMax
, deleteFindMin
, deleteMin
, deleteMax
, difference
, disjoint
, drop
, dropWhileAntitone
, filter
, filterWithKey
, findIndex
, findMax
, findMin
, foldl
, foldl'
, foldlWithKey
, foldlWithKey'
, foldMapWithKey
, foldr
, foldr'
, foldrWithKey
, foldrWithKey'
, glue
, insertMax
, intersection
, isProperSubmapOf
, isProperSubmapOfBy
, isSubmapOf
, isSubmapOfBy
, keys
, keysSet
, link
, lookup
, lookupGE
, lookupGT
, lookupIndex
, lookupLE
, lookupLT
, lookupMin
, lookupMax
, mapKeys
, mapKeysMonotonic
, maxView
, maxViewWithKey
, member
, link2
, minView
, minViewWithKey
, notMember
, null
, partition
, partitionWithKey
, restrictKeys
, size
, spanAntitone
, split
, splitAt
, splitLookup
, splitRoot
, take
, takeWhileAntitone
, toList
, toAscList
, toDescList
, union
, unions
, withoutKeys )
#if defined(__GLASGOW_HASKELL__)
import Data.Strict.Map.Autogen.Internal.DeprecatedShowTree (showTree, showTreeWith)
#endif
import Data.Strict.Map.Autogen.Internal.Debug (valid)
import Control.Applicative (Const (..), liftA3)
#if !MIN_VERSION_base(4,8,0)
import Control.Applicative (Applicative (..), (<$>))
#endif
import qualified Data.Set.Internal as Set
import qualified Data.Strict.Map.Autogen.Internal as L
import Data.Strict.ContainersUtils.Autogen.StrictPair
import Data.Bits (shiftL, shiftR)
#if __GLASGOW_HASKELL__ >= 709
import Data.Coerce
#endif
#if __GLASGOW_HASKELL__ && MIN_VERSION_base(4,8,0)
import Data.Functor.Identity (Identity (..))
#endif
import qualified Data.Foldable as Foldable
#if !MIN_VERSION_base(4,8,0)
import Data.Foldable (Foldable())
#endif
findWithDefault :: Ord k => a -> k -> Map k a -> a
findWithDefault :: a -> k -> Map k a -> a
findWithDefault a
def k
k = k
k k -> (Map k a -> a) -> Map k a -> a
`seq` Map k a -> a
go
where
go :: Map k a -> a
go Map k a
Tip = a
def
go (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> Map k a -> a
go Map k a
l
Ordering
GT -> Map k a -> a
go Map k a
r
Ordering
EQ -> a
x
#if __GLASGOW_HASKELL__
{-# INLINABLE findWithDefault #-}
#else
{-# INLINE findWithDefault #-}
#endif
singleton :: k -> a -> Map k a
singleton :: k -> a -> Map k a
singleton k
k a
x = a
x a -> Map k a -> Map k a
`seq` Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip
{-# INLINE singleton #-}
insert :: Ord k => k -> a -> Map k a -> Map k a
insert :: k -> a -> Map k a -> Map k a
insert = k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
go
where
go :: Ord k => k -> a -> Map k a -> Map k a
go :: k -> a -> Map k a -> Map k a
go !k
kx !a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go k
kx a
x (Bin Size
sz k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y (k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
go k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l (k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
go k
kx a
x Map k a
r)
Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
kx a
x Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insert #-}
#else
{-# INLINE insert #-}
#endif
insertWith :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith :: (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go a -> a -> a
f !k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> let !y' :: a
y' = a -> a -> a
f a
x a
y in Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx a
y' Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWith #-}
#else
{-# INLINE insertWith #-}
#endif
insertWithR :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR :: (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go a -> a -> a
f !k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
go a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> let !y' :: a
y' = a -> a -> a
f a
y a
x in Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
ky a
y' Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithR #-}
#else
{-# INLINE insertWithR #-}
#endif
insertWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey :: (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> let !x' :: a
x' = k -> a -> a -> a
f k
kx a
x a
y
in Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx a
x' Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithKey #-}
#else
{-# INLINE insertWithKey #-}
#endif
insertWithKeyR :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR :: (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go :: (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l ((k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
go k -> a -> a -> a
f k
kx a
x Map k a
r)
Ordering
EQ -> let !y' :: a
y' = k -> a -> a -> a
f k
ky a
y a
x
in Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
ky a
y' Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE insertWithKeyR #-}
#else
{-# INLINE insertWithKeyR #-}
#endif
insertLookupWithKey :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a
-> (Maybe a, Map k a)
insertLookupWithKey :: (k -> a -> a -> a) -> k -> a -> Map k a -> (Maybe a, Map k a)
insertLookupWithKey k -> a -> a -> a
f0 k
kx0 a
x0 Map k a
t0 = StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a))
-> StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a)
forall a b. (a -> b) -> a -> b
$ (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f0 k
kx0 a
x0 Map k a
t0
where
go :: Ord k => (k -> a -> a -> a) -> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go :: (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
_ !k
kx a
x Map k a
Tip = Maybe a
forall a. Maybe a
Nothing Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x
go k -> a -> a -> a
f k
kx a
x (Bin Size
sy k
ky a
y Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
kx k
ky of
Ordering
LT -> let (Maybe a
found :*: Map k a
l') = (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f k
kx a
x Map k a
l
in Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
ky a
y Map k a
l' Map k a
r
Ordering
GT -> let (Maybe a
found :*: Map k a
r') = (k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> a -> a)
-> k -> a -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> a -> a
f k
kx a
x Map k a
r
in Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
ky a
y Map k a
l Map k a
r'
Ordering
EQ -> let x' :: a
x' = k -> a -> a -> a
f k
kx a
x a
y
in a
x' a
-> StrictPair (Maybe a) (Map k a) -> StrictPair (Maybe a) (Map k a)
`seq` (a -> Maybe a
forall a. a -> Maybe a
Just a
y Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sy k
kx a
x' Map k a
l Map k a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE insertLookupWithKey #-}
#else
{-# INLINE insertLookupWithKey #-}
#endif
adjust :: Ord k => (a -> a) -> k -> Map k a -> Map k a
adjust :: (a -> a) -> k -> Map k a -> Map k a
adjust a -> a
f = (k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey (\k
_ a
x -> a -> a
f a
x)
#if __GLASGOW_HASKELL__
{-# INLINABLE adjust #-}
#else
{-# INLINE adjust #-}
#endif
adjustWithKey :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey :: (k -> a -> a) -> k -> Map k a -> Map k a
adjustWithKey = (k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go :: (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
_ !k
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
go k -> a -> a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x ((k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
f k
k Map k a
l) Map k a
r
Ordering
GT -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x Map k a
l ((k -> a -> a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> a) -> k -> Map k a -> Map k a
go k -> a -> a
f k
k Map k a
r)
Ordering
EQ -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
where !x' :: a
x' = k -> a -> a
f k
kx a
x
#if __GLASGOW_HASKELL__
{-# INLINABLE adjustWithKey #-}
#else
{-# INLINE adjustWithKey #-}
#endif
update :: Ord k => (a -> Maybe a) -> k -> Map k a -> Map k a
update :: (a -> Maybe a) -> k -> Map k a -> Map k a
update a -> Maybe a
f = (k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey (\k
_ a
x -> a -> Maybe a
f a
x)
#if __GLASGOW_HASKELL__
{-# INLINABLE update #-}
#else
{-# INLINE update #-}
#endif
updateWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey :: (k -> a -> Maybe a) -> k -> Map k a -> Map k a
updateWithKey = (k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go :: (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
_ !k
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
go k -> a -> Maybe a
f k
k(Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
f k
k Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> k -> Map k a -> Map k a
forall k a. Ord k => (k -> a -> Maybe a) -> k -> Map k a -> Map k a
go k -> a -> Maybe a
f k
k Map k a
r)
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> a
x' a -> Map k a -> Map k a
`seq` Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE updateWithKey #-}
#else
{-# INLINE updateWithKey #-}
#endif
updateLookupWithKey :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a,Map k a)
updateLookupWithKey :: (k -> a -> Maybe a) -> k -> Map k a -> (Maybe a, Map k a)
updateLookupWithKey k -> a -> Maybe a
f0 k
k0 Map k a
t0 = StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a))
-> StrictPair (Maybe a) (Map k a) -> (Maybe a, Map k a)
forall a b. (a -> b) -> a -> b
$ (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f0 k
k0 Map k a
t0
where
go :: Ord k => (k -> a -> Maybe a) -> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go :: (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
_ !k
_ Map k a
Tip = (Maybe a
forall a. Maybe a
Nothing Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip)
go k -> a -> Maybe a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> let (Maybe a
found :*: Map k a
l') = (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f k
k Map k a
l
in Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x Map k a
l' Map k a
r
Ordering
GT -> let (Maybe a
found :*: Map k a
r') = (k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
forall k a.
Ord k =>
(k -> a -> Maybe a)
-> k -> Map k a -> StrictPair (Maybe a) (Map k a)
go k -> a -> Maybe a
f k
k Map k a
r
in Maybe a
found Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l Map k a
r'
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> a
x' a
-> StrictPair (Maybe a) (Map k a) -> StrictPair (Maybe a) (Map k a)
`seq` (a -> Maybe a
forall a. a -> Maybe a
Just a
x' Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r)
Maybe a
Nothing -> (a -> Maybe a
forall a. a -> Maybe a
Just a
x Maybe a -> Map k a -> StrictPair (Maybe a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r)
#if __GLASGOW_HASKELL__
{-# INLINABLE updateLookupWithKey #-}
#else
{-# INLINE updateLookupWithKey #-}
#endif
alter :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter :: (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
alter = (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go
where
go :: Ord k => (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go :: (Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f !k
k Map k a
Tip = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
Maybe a
Nothing -> Map k a
forall k a. Map k a
Tip
Just a
x -> k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
k a
x
go Maybe a -> Maybe a
f k
k (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = case k -> k -> Ordering
forall a. Ord a => a -> a -> Ordering
compare k
k k
kx of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
kx a
x ((Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f k
k Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balance k
kx a
x Map k a
l ((Maybe a -> Maybe a) -> k -> Map k a -> Map k a
forall k a.
Ord k =>
(Maybe a -> Maybe a) -> k -> Map k a -> Map k a
go Maybe a -> Maybe a
f k
k Map k a
r)
Ordering
EQ -> case Maybe a -> Maybe a
f (a -> Maybe a
forall a. a -> Maybe a
Just a
x) of
Just a
x' -> a
x' a -> Map k a -> Map k a
`seq` Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
#if __GLASGOW_HASKELL__
{-# INLINABLE alter #-}
#else
{-# INLINE alter #-}
#endif
alterF :: (Functor f, Ord k)
=> (Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
alterF :: (Maybe a -> f (Maybe a)) -> k -> Map k a -> f (Map k a)
alterF Maybe a -> f (Maybe a)
f k
k Map k a
m = AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
forall (f :: * -> *) k a.
(Functor f, Ord k) =>
AreWeStrict
-> k -> (Maybe a -> f (Maybe a)) -> Map k a -> f (Map k a)
atKeyImpl AreWeStrict
Strict k
k Maybe a -> f (Maybe a)
f Map k a
m
#ifndef __GLASGOW_HASKELL__
{-# INLINE alterF #-}
#else
{-# INLINABLE [2] alterF #-}
{-# RULES
"alterF/Const" forall k (f :: Maybe a -> Const b (Maybe a)) . alterF f k = \m -> Const . getConst . f $ lookup k m
#-}
#if MIN_VERSION_base(4,8,0)
{-# RULES
"alterF/Identity" forall k f . alterF f k = atKeyIdentity k f
#-}
atKeyIdentity :: Ord k => k -> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a)
atKeyIdentity :: k
-> (Maybe a -> Identity (Maybe a)) -> Map k a -> Identity (Map k a)
atKeyIdentity k
k Maybe a -> Identity (Maybe a)
f Map k a
t = Map k a -> Identity (Map k a)
forall a. a -> Identity a
Identity (Map k a -> Identity (Map k a)) -> Map k a -> Identity (Map k a)
forall a b. (a -> b) -> a -> b
$ AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
forall k a.
Ord k =>
AreWeStrict -> k -> (Maybe a -> Maybe a) -> Map k a -> Map k a
atKeyPlain AreWeStrict
Strict k
k ((Maybe a -> Identity (Maybe a)) -> Maybe a -> Maybe a
coerce Maybe a -> Identity (Maybe a)
f) Map k a
t
{-# INLINABLE atKeyIdentity #-}
#endif
#endif
updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a
updateAt :: (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f Size
i Map k a
t = Size
i Size -> Map k a -> Map k a
`seq`
case Map k a
t of
Map k a
Tip -> [Char] -> Map k a
forall a. HasCallStack => [Char] -> a
error [Char]
"Map.updateAt: index out of range"
Bin Size
sx k
kx a
x Map k a
l Map k a
r -> case Size -> Size -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Size
i Size
sizeL of
Ordering
LT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> Size -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f Size
i Map k a
l) Map k a
r
Ordering
GT -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> Size -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Size -> Map k a -> Map k a
updateAt k -> a -> Maybe a
f (Size
iSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
sizeLSize -> Size -> Size
forall a. Num a => a -> a -> a
-Size
1) Map k a
r)
Ordering
EQ -> case k -> a -> Maybe a
f k
kx a
x of
Just a
x' -> a
x' a -> Map k a -> Map k a
`seq` Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
r
Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
glue Map k a
l Map k a
r
where
sizeL :: Size
sizeL = Map k a -> Size
forall k a. Map k a -> Size
size Map k a
l
updateMin :: (a -> Maybe a) -> Map k a -> Map k a
updateMin :: (a -> Maybe a) -> Map k a -> Map k a
updateMin a -> Maybe a
f Map k a
m
= (k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey (\k
_ a
x -> a -> Maybe a
f a
x) Map k a
m
updateMax :: (a -> Maybe a) -> Map k a -> Map k a
updateMax :: (a -> Maybe a) -> Map k a -> Map k a
updateMax a -> Maybe a
f Map k a
m
= (k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey (\k
_ a
x -> a -> Maybe a
f a
x) Map k a
m
updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey k -> a -> Maybe a
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
updateMinWithKey k -> a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
Tip Map k a
r) = case k -> a -> Maybe a
f k
kx a
x of
Maybe a
Nothing -> Map k a
r
Just a
x' -> a
x' a -> Map k a -> Map k a
`seq` Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
forall k a. Map k a
Tip Map k a
r
updateMinWithKey k -> a -> Maybe a
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceR k
kx a
x ((k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMinWithKey k -> a -> Maybe a
f Map k a
l) Map k a
r
updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey :: (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey k -> a -> Maybe a
_ Map k a
Tip = Map k a
forall k a. Map k a
Tip
updateMaxWithKey k -> a -> Maybe a
f (Bin Size
sx k
kx a
x Map k a
l Map k a
Tip) = case k -> a -> Maybe a
f k
kx a
x of
Maybe a
Nothing -> Map k a
l
Just a
x' -> a
x' a -> Map k a -> Map k a
`seq` Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx a
x' Map k a
l Map k a
forall k a. Map k a
Tip
updateMaxWithKey k -> a -> Maybe a
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
balanceL k
kx a
x Map k a
l ((k -> a -> Maybe a) -> Map k a -> Map k a
forall k a. (k -> a -> Maybe a) -> Map k a -> Map k a
updateMaxWithKey k -> a -> Maybe a
f Map k a
r)
unionsWith :: (Foldable f, Ord k) => (a->a->a) -> f (Map k a) -> Map k a
unionsWith :: (a -> a -> a) -> f (Map k a) -> Map k a
unionsWith a -> a -> a
f f (Map k a)
ts
= (Map k a -> Map k a -> Map k a)
-> Map k a -> f (Map k a) -> Map k a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' ((a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f) Map k a
forall k a. Map k a
empty f (Map k a)
ts
#if __GLASGOW_HASKELL__
{-# INLINABLE unionsWith #-}
#endif
unionWith :: Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith :: (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
_f Map k a
t1 Map k a
Tip = Map k a
t1
unionWith a -> a -> a
f Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithR a -> a -> a
f k
k a
x Map k a
t1
unionWith a -> a -> a
f (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = (a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWith a -> a -> a
f k
k a
x Map k a
t2
unionWith a -> a -> a
_f Map k a
Tip Map k a
t2 = Map k a
t2
unionWith a -> a -> a
f (Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case k -> Map k a -> (Map k a, Maybe a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k1 Map k a
t2 of
(Map k a
l2, Maybe a
mb, Map k a
r2) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1' ((a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f Map k a
l1 Map k a
l2) ((a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWith a -> a -> a
f Map k a
r1 Map k a
r2)
where !x1' :: a
x1' = a -> (a -> a) -> Maybe a -> a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe a
x1 (a -> a -> a
f a
x1) Maybe a
mb
#if __GLASGOW_HASKELL__
{-# INLINABLE unionWith #-}
#endif
unionWithKey :: Ord k => (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey :: (k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
_f Map k a
t1 Map k a
Tip = Map k a
t1
unionWithKey k -> a -> a -> a
f Map k a
t1 (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKeyR k -> a -> a -> a
f k
k a
x Map k a
t1
unionWithKey k -> a -> a -> a
f (Bin Size
_ k
k a
x Map k a
Tip Map k a
Tip) Map k a
t2 = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey k -> a -> a -> a
f k
k a
x Map k a
t2
unionWithKey k -> a -> a -> a
_f Map k a
Tip Map k a
t2 = Map k a
t2
unionWithKey k -> a -> a -> a
f (Bin Size
_ k
k1 a
x1 Map k a
l1 Map k a
r1) Map k a
t2 = case k -> Map k a -> (Map k a, Maybe a, Map k a)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k1 Map k a
t2 of
(Map k a
l2, Maybe a
mb, Map k a
r2) -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k1 a
x1' ((k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
f Map k a
l1 Map k a
l2) ((k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> Map k a -> Map k a -> Map k a
unionWithKey k -> a -> a -> a
f Map k a
r1 Map k a
r2)
where !x1' :: a
x1' = a -> (a -> a) -> Maybe a -> a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe a
x1 (k -> a -> a -> a
f k
k1 a
x1) Maybe a
mb
#if __GLASGOW_HASKELL__
{-# INLINABLE unionWithKey #-}
#endif
differenceWith :: Ord k => (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith :: (a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWith a -> b -> Maybe a
f = SimpleWhenMissing k a a
-> SimpleWhenMissing k b a
-> SimpleWhenMatched k a b a
-> Map k a
-> Map k b
-> Map k a
forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge SimpleWhenMissing k a a
forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing SimpleWhenMissing k b a
forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing ((k -> a -> b -> Maybe a) -> SimpleWhenMatched k a b a
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched ((k -> a -> b -> Maybe a) -> SimpleWhenMatched k a b a)
-> (k -> a -> b -> Maybe a) -> SimpleWhenMatched k a b a
forall a b. (a -> b) -> a -> b
$ \k
_ a
x1 b
x2 -> a -> b -> Maybe a
f a
x1 b
x2)
#if __GLASGOW_HASKELL__
{-# INLINABLE differenceWith #-}
#endif
differenceWithKey :: Ord k => (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey :: (k -> a -> b -> Maybe a) -> Map k a -> Map k b -> Map k a
differenceWithKey k -> a -> b -> Maybe a
f = SimpleWhenMissing k a a
-> SimpleWhenMissing k b a
-> SimpleWhenMatched k a b a
-> Map k a
-> Map k b
-> Map k a
forall k a c b.
Ord k =>
SimpleWhenMissing k a c
-> SimpleWhenMissing k b c
-> SimpleWhenMatched k a b c
-> Map k a
-> Map k b
-> Map k c
merge SimpleWhenMissing k a a
forall (f :: * -> *) k x. Applicative f => WhenMissing f k x x
preserveMissing SimpleWhenMissing k b a
forall (f :: * -> *) k x y. Applicative f => WhenMissing f k x y
dropMissing ((k -> a -> b -> Maybe a) -> SimpleWhenMatched k a b a
forall (f :: * -> *) k x y z.
Applicative f =>
(k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched k -> a -> b -> Maybe a
f)
#if __GLASGOW_HASKELL__
{-# INLINABLE differenceWithKey #-}
#endif
intersectionWith :: Ord k => (a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith :: (a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
_f Map k a
Tip Map k b
_ = Map k c
forall k a. Map k a
Tip
intersectionWith a -> b -> c
_f Map k a
_ Map k b
Tip = Map k c
forall k a. Map k a
Tip
intersectionWith a -> b -> c
f (Bin Size
_ k
k a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case Maybe b
mb of
Just b
x2 -> let !x1' :: c
x1' = a -> b -> c
f a
x1 b
x2 in k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k c
x1' Map k c
l1l2 Map k c
r1r2
Maybe b
Nothing -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l1l2 Map k c
r1r2
where
!(Map k b
l2, Maybe b
mb, Map k b
r2) = k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k Map k b
t2
!l1l2 :: Map k c
l1l2 = (a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
f Map k a
l1 Map k b
l2
!r1r2 :: Map k c
r1r2 = (a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWith a -> b -> c
f Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersectionWith #-}
#endif
intersectionWithKey :: Ord k => (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey :: (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
_f Map k a
Tip Map k b
_ = Map k c
forall k a. Map k a
Tip
intersectionWithKey k -> a -> b -> c
_f Map k a
_ Map k b
Tip = Map k c
forall k a. Map k a
Tip
intersectionWithKey k -> a -> b -> c
f (Bin Size
_ k
k a
x1 Map k a
l1 Map k a
r1) Map k b
t2 = case Maybe b
mb of
Just b
x2 -> let !x1' :: c
x1' = k -> a -> b -> c
f k
k a
x1 b
x2 in k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
k c
x1' Map k c
l1l2 Map k c
r1r2
Maybe b
Nothing -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l1l2 Map k c
r1r2
where
!(Map k b
l2, Maybe b
mb, Map k b
r2) = k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
k Map k b
t2
!l1l2 :: Map k c
l1l2 = (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
f Map k a
l1 Map k b
l2
!r1r2 :: Map k c
r1r2 = (k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
forall k a b c.
Ord k =>
(k -> a -> b -> c) -> Map k a -> Map k b -> Map k c
intersectionWithKey k -> a -> b -> c
f Map k a
r1 Map k b
r2
#if __GLASGOW_HASKELL__
{-# INLINABLE intersectionWithKey #-}
#endif
mapWhenMissing :: Functor f => (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b
mapWhenMissing a -> b
f WhenMissing f k x a
q = WhenMissing :: forall (f :: * -> *) k x y.
(Map k x -> f (Map k y))
-> (k -> x -> f (Maybe y)) -> WhenMissing f k x y
WhenMissing
{ missingSubtree :: Map k x -> f (Map k b)
missingSubtree = (Map k a -> Map k b) -> f (Map k a) -> f (Map k b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> Map k a -> Map k b
forall a b k. (a -> b) -> Map k a -> Map k b
map a -> b
f) (f (Map k a) -> f (Map k b))
-> (Map k x -> f (Map k a)) -> Map k x -> f (Map k b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. WhenMissing f k x a -> Map k x -> f (Map k a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> Map k x -> f (Map k y)
missingSubtree WhenMissing f k x a
q
, missingKey :: k -> x -> f (Maybe b)
missingKey = \k
k x
x -> (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Maybe b -> Maybe b
forall a. Maybe a -> Maybe a
forceMaybe (Maybe b -> Maybe b) -> (Maybe a -> Maybe b) -> Maybe a -> Maybe b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (f (Maybe a) -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$ WhenMissing f k x a -> k -> x -> f (Maybe a)
forall (f :: * -> *) k x y.
WhenMissing f k x y -> k -> x -> f (Maybe y)
missingKey WhenMissing f k x a
q k
k x
x}
mapWhenMatched :: Functor f => (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
mapWhenMatched :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b
mapWhenMatched a -> b
f WhenMatched f k x y a
q = WhenMatched :: forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched
{ matchedKey :: k -> x -> y -> f (Maybe b)
matchedKey = \k
k x
x y
y -> (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Maybe b -> Maybe b
forall a. Maybe a -> Maybe a
forceMaybe (Maybe b -> Maybe b) -> (Maybe a -> Maybe b) -> Maybe a -> Maybe b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (f (Maybe a) -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$ WhenMatched f k x y a -> k -> x -> y -> f (Maybe a)
forall (f :: * -> *) k x y z.
WhenMatched f k x y z -> k -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f k x y a
q k
k x
x y
y }
zipWithMaybeMatched :: Applicative f
=> (k -> x -> y -> Maybe z)
-> WhenMatched f k x y z
zipWithMaybeMatched :: (k -> x -> y -> Maybe z) -> WhenMatched f k x y z
zipWithMaybeMatched k -> x -> y -> Maybe z
f = (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z)
-> (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall a b. (a -> b) -> a -> b
$
\k
k x
x y
y -> Maybe z -> f (Maybe z)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> Maybe z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$! Maybe z -> Maybe z
forall a. Maybe a -> Maybe a
forceMaybe (Maybe z -> Maybe z) -> Maybe z -> Maybe z
forall a b. (a -> b) -> a -> b
$! k -> x -> y -> Maybe z
f k
k x
x y
y
{-# INLINE zipWithMaybeMatched #-}
zipWithMaybeAMatched :: Applicative f
=> (k -> x -> y -> f (Maybe z))
-> WhenMatched f k x y z
zipWithMaybeAMatched :: (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
zipWithMaybeAMatched k -> x -> y -> f (Maybe z)
f = (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z)
-> (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall a b. (a -> b) -> a -> b
$
\ k
k x
x y
y -> Maybe z -> Maybe z
forall a. Maybe a -> Maybe a
forceMaybe (Maybe z -> Maybe z) -> f (Maybe z) -> f (Maybe z)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> y -> f (Maybe z)
f k
k x
x y
y
{-# INLINE zipWithMaybeAMatched #-}
zipWithAMatched :: Applicative f
=> (k -> x -> y -> f z)
-> WhenMatched f k x y z
zipWithAMatched :: (k -> x -> y -> f z) -> WhenMatched f k x y z
zipWithAMatched k -> x -> y -> f z
f = (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z)
-> (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall a b. (a -> b) -> a -> b
$
\ k
k x
x y
y -> (z -> Maybe z
forall a. a -> Maybe a
Just (z -> Maybe z) -> z -> Maybe z
forall a b. (a -> b) -> a -> b
$!) (z -> Maybe z) -> f z -> f (Maybe z)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> y -> f z
f k
k x
x y
y
{-# INLINE zipWithAMatched #-}
zipWithMatched :: Applicative f
=> (k -> x -> y -> z) -> WhenMatched f k x y z
zipWithMatched :: (k -> x -> y -> z) -> WhenMatched f k x y z
zipWithMatched k -> x -> y -> z
f = (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall (f :: * -> *) k x y z.
(k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
WhenMatched ((k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z)
-> (k -> x -> y -> f (Maybe z)) -> WhenMatched f k x y z
forall a b. (a -> b) -> a -> b
$
\k
k x
x y
y -> Maybe z -> f (Maybe z)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> Maybe z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$! z -> Maybe z
forall a. a -> Maybe a
Just (z -> Maybe z) -> z -> Maybe z
forall a b. (a -> b) -> a -> b
$! k -> x -> y -> z
f k
k x
x y
y
{-# INLINE zipWithMatched #-}
mapMaybeMissing :: Applicative f => (k -> x -> Maybe y) -> WhenMissing f k x y
mapMaybeMissing :: (k -> x -> Maybe y) -> WhenMissing f k x y
mapMaybeMissing k -> x -> Maybe y
f = WhenMissing :: forall (f :: * -> *) k x y.
(Map k x -> f (Map k y))
-> (k -> x -> f (Maybe y)) -> WhenMissing f k x y
WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = \Map k x
m -> Map k y -> f (Map k y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Map k y -> f (Map k y)) -> Map k y -> f (Map k y)
forall a b. (a -> b) -> a -> b
$! (k -> x -> Maybe y) -> Map k x -> Map k y
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> x -> Maybe y
f Map k x
m
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
k x
x -> Maybe y -> f (Maybe y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$! Maybe y -> Maybe y
forall a. Maybe a -> Maybe a
forceMaybe (Maybe y -> Maybe y) -> Maybe y -> Maybe y
forall a b. (a -> b) -> a -> b
$! k -> x -> Maybe y
f k
k x
x }
{-# INLINE mapMaybeMissing #-}
mapMissing :: Applicative f => (k -> x -> y) -> WhenMissing f k x y
mapMissing :: (k -> x -> y) -> WhenMissing f k x y
mapMissing k -> x -> y
f = WhenMissing :: forall (f :: * -> *) k x y.
(Map k x -> f (Map k y))
-> (k -> x -> f (Maybe y)) -> WhenMissing f k x y
WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = \Map k x
m -> Map k y -> f (Map k y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Map k y -> f (Map k y)) -> Map k y -> f (Map k y)
forall a b. (a -> b) -> a -> b
$! (k -> x -> y) -> Map k x -> Map k y
forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> x -> y
f Map k x
m
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
k x
x -> Maybe y -> f (Maybe y)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$! y -> Maybe y
forall a. a -> Maybe a
Just (y -> Maybe y) -> y -> Maybe y
forall a b. (a -> b) -> a -> b
$! k -> x -> y
f k
k x
x }
{-# INLINE mapMissing #-}
traverseMaybeMissing :: Applicative f
=> (k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing :: (k -> x -> f (Maybe y)) -> WhenMissing f k x y
traverseMaybeMissing k -> x -> f (Maybe y)
f = WhenMissing :: forall (f :: * -> *) k x y.
(Map k x -> f (Map k y))
-> (k -> x -> f (Maybe y)) -> WhenMissing f k x y
WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = (k -> x -> f (Maybe y)) -> Map k x -> f (Map k y)
forall (f :: * -> *) k a b.
Applicative f =>
(k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey k -> x -> f (Maybe y)
f
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
k x
x -> Maybe y -> Maybe y
forall a. Maybe a -> Maybe a
forceMaybe (Maybe y -> Maybe y) -> f (Maybe y) -> f (Maybe y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> f (Maybe y)
f k
k x
x }
{-# INLINE traverseMaybeMissing #-}
traverseMissing :: Applicative f
=> (k -> x -> f y) -> WhenMissing f k x y
traverseMissing :: (k -> x -> f y) -> WhenMissing f k x y
traverseMissing k -> x -> f y
f = WhenMissing :: forall (f :: * -> *) k x y.
(Map k x -> f (Map k y))
-> (k -> x -> f (Maybe y)) -> WhenMissing f k x y
WhenMissing
{ missingSubtree :: Map k x -> f (Map k y)
missingSubtree = (k -> x -> f y) -> Map k x -> f (Map k y)
forall (t :: * -> *) k a b.
Applicative t =>
(k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey k -> x -> f y
f
, missingKey :: k -> x -> f (Maybe y)
missingKey = \k
k x
x -> (y -> Maybe y
forall a. a -> Maybe a
Just (y -> Maybe y) -> y -> Maybe y
forall a b. (a -> b) -> a -> b
$!) (y -> Maybe y) -> f y -> f (Maybe y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> x -> f y
f k
k x
x }
{-# INLINE traverseMissing #-}
forceMaybe :: Maybe a -> Maybe a
forceMaybe :: Maybe a -> Maybe a
forceMaybe Maybe a
Nothing = Maybe a
forall a. Maybe a
Nothing
forceMaybe m :: Maybe a
m@(Just !a
_) = Maybe a
m
{-# INLINE forceMaybe #-}
mergeWithKey :: Ord k
=> (k -> a -> b -> Maybe c)
-> (Map k a -> Map k c)
-> (Map k b -> Map k c)
-> Map k a -> Map k b -> Map k c
mergeWithKey :: (k -> a -> b -> Maybe c)
-> (Map k a -> Map k c)
-> (Map k b -> Map k c)
-> Map k a
-> Map k b
-> Map k c
mergeWithKey k -> a -> b -> Maybe c
f Map k a -> Map k c
g1 Map k b -> Map k c
g2 = Map k a -> Map k b -> Map k c
go
where
go :: Map k a -> Map k b -> Map k c
go Map k a
Tip Map k b
t2 = Map k b -> Map k c
g2 Map k b
t2
go Map k a
t1 Map k b
Tip = Map k a -> Map k c
g1 Map k a
t1
go (Bin Size
_ k
kx a
x Map k a
l1 Map k a
r1) Map k b
t2 =
case Maybe b
found of
Maybe b
Nothing -> case Map k a -> Map k c
g1 (k -> a -> Map k a
forall k a. k -> a -> Map k a
singleton k
kx a
x) of
Map k c
Tip -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l' Map k c
r'
(Bin Size
_ k
_ c
x' Map k c
Tip Map k c
Tip) -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx c
x' Map k c
l' Map k c
r'
Map k c
_ -> [Char] -> Map k c
forall a. HasCallStack => [Char] -> a
error [Char]
"mergeWithKey: Given function only1 does not fulfill required conditions (see documentation)"
Just b
x2 -> case k -> a -> b -> Maybe c
f k
kx a
x b
x2 of
Maybe c
Nothing -> Map k c -> Map k c -> Map k c
forall k a. Map k a -> Map k a -> Map k a
link2 Map k c
l' Map k c
r'
Just c
x' -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx c
x' Map k c
l' Map k c
r'
where
(Map k b
l2, Maybe b
found, Map k b
r2) = k -> Map k b -> (Map k b, Maybe b, Map k b)
forall k a. Ord k => k -> Map k a -> (Map k a, Maybe a, Map k a)
splitLookup k
kx Map k b
t2
l' :: Map k c
l' = Map k a -> Map k b -> Map k c
go Map k a
l1 Map k b
l2
r' :: Map k c
r' = Map k a -> Map k b -> Map k c
go Map k a
r1 Map k b
r2
{-# INLINE mergeWithKey #-}
mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b
mapMaybe :: (a -> Maybe b) -> Map k a -> Map k b
mapMaybe a -> Maybe b
f = (k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey (\k
_ a
x -> a -> Maybe b
f a
x)
mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey :: (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
_ Map k a
Tip = Map k b
forall k a. Map k a
Tip
mapMaybeWithKey k -> a -> Maybe b
f (Bin Size
_ k
kx a
x Map k a
l Map k a
r) = case k -> a -> Maybe b
f k
kx a
x of
Just b
y -> b
y b -> Map k b -> Map k b
`seq` k -> b -> Map k b -> Map k b -> Map k b
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx b
y ((k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
l) ((k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
r)
Maybe b
Nothing -> Map k b -> Map k b -> Map k b
forall k a. Map k a -> Map k a -> Map k a
link2 ((k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
l) ((k -> a -> Maybe b) -> Map k a -> Map k b
forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
mapMaybeWithKey k -> a -> Maybe b
f Map k a
r)
traverseMaybeWithKey :: Applicative f
=> (k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey :: (k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
traverseMaybeWithKey = (k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
forall (f :: * -> *) k a b.
Applicative f =>
(k -> a -> f (Maybe b)) -> Map k a -> f (Map k b)
go
where
go :: (k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
_ Map k t
Tip = Map k a -> f (Map k a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Map k a
forall k a. Map k a
Tip
go k -> t -> f (Maybe a)
f (Bin Size
_ k
kx t
x Map k t
Tip Map k t
Tip) = Map k a -> (a -> Map k a) -> Maybe a -> Map k a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Map k a
forall k a. Map k a
Tip (\ !a
x' -> Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x' Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) (Maybe a -> Map k a) -> f (Maybe a) -> f (Map k a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> t -> f (Maybe a)
f k
kx t
x
go k -> t -> f (Maybe a)
f (Bin Size
_ k
kx t
x Map k t
l Map k t
r) = (Map k a -> Maybe a -> Map k a -> Map k a)
-> f (Map k a) -> f (Maybe a) -> f (Map k a) -> f (Map k a)
forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 Map k a -> Maybe a -> Map k a -> Map k a
forall a. Map k a -> Maybe a -> Map k a -> Map k a
combine ((k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
f Map k t
l) (k -> t -> f (Maybe a)
f k
kx t
x) ((k -> t -> f (Maybe a)) -> Map k t -> f (Map k a)
go k -> t -> f (Maybe a)
f Map k t
r)
where
combine :: Map k a -> Maybe a -> Map k a -> Map k a
combine !Map k a
l' Maybe a
mx !Map k a
r' = case Maybe a
mx of
Maybe a
Nothing -> Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l' Map k a
r'
Just !a
x' -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x' Map k a
l' Map k a
r'
mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEither :: (a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEither a -> Either b c
f Map k a
m
= (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
forall k a b c.
(k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey (\k
_ a
x -> a -> Either b c
f a
x) Map k a
m
mapEitherWithKey :: (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey :: (k -> a -> Either b c) -> Map k a -> (Map k b, Map k c)
mapEitherWithKey k -> a -> Either b c
f0 Map k a
t0 = StrictPair (Map k b) (Map k c) -> (Map k b, Map k c)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (Map k b) (Map k c) -> (Map k b, Map k c))
-> StrictPair (Map k b) (Map k c) -> (Map k b, Map k c)
forall a b. (a -> b) -> a -> b
$ (k -> a -> Either b c) -> Map k a -> StrictPair (Map k b) (Map k c)
forall k t a a.
(k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> a -> Either b c
f0 Map k a
t0
where
go :: (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
_ Map k t
Tip = (Map k a
forall k a. Map k a
Tip Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a
forall k a. Map k a
Tip)
go k -> t -> Either a a
f (Bin Size
_ k
kx t
x Map k t
l Map k t
r) = case k -> t -> Either a a
f k
kx t
x of
Left a
y -> a
y a
-> StrictPair (Map k a) (Map k a) -> StrictPair (Map k a) (Map k a)
`seq` (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
y Map k a
l1 Map k a
r1 Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l2 Map k a
r2)
Right a
z -> a
z a
-> StrictPair (Map k a) (Map k a) -> StrictPair (Map k a) (Map k a)
`seq` (Map k a -> Map k a -> Map k a
forall k a. Map k a -> Map k a -> Map k a
link2 Map k a
l1 Map k a
r1 Map k a -> Map k a -> StrictPair (Map k a) (Map k a)
forall a b. a -> b -> StrictPair a b
:*: k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
z Map k a
l2 Map k a
r2)
where
(Map k a
l1 :*: Map k a
l2) = (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
f Map k t
l
(Map k a
r1 :*: Map k a
r2) = (k -> t -> Either a a) -> Map k t -> StrictPair (Map k a) (Map k a)
go k -> t -> Either a a
f Map k t
r
map :: (a -> b) -> Map k a -> Map k b
map :: (a -> b) -> Map k a -> Map k b
map a -> b
f = Map k a -> Map k b
forall k. Map k a -> Map k b
go
where
go :: Map k a -> Map k b
go Map k a
Tip = Map k b
forall k a. Map k a
Tip
go (Bin Size
sx k
kx a
x Map k a
l Map k a
r) = let !x' :: b
x' = a -> b
f a
x in Size -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx b
x' (Map k a -> Map k b
go Map k a
l) (Map k a -> Map k b
go Map k a
r)
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] map #-}
{-# RULES
"map/map" forall f g xs . map f (map g xs) = map (\x -> f $! g x) xs
"map/mapL" forall f g xs . map f (L.map g xs) = map (\x -> f (g x)) xs
#-}
#endif
mapWithKey :: (k -> a -> b) -> Map k a -> Map k b
mapWithKey :: (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
_ Map k a
Tip = Map k b
forall k a. Map k a
Tip
mapWithKey k -> a -> b
f (Bin Size
sx k
kx a
x Map k a
l Map k a
r) =
let x' :: b
x' = k -> a -> b
f k
kx a
x
in b
x' b -> Map k b -> Map k b
`seq` Size -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx b
x' ((k -> a -> b) -> Map k a -> Map k b
forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
f Map k a
l) ((k -> a -> b) -> Map k a -> Map k b
forall k a b. (k -> a -> b) -> Map k a -> Map k b
mapWithKey k -> a -> b
f Map k a
r)
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] mapWithKey #-}
{-# RULES
"mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) =
mapWithKey (\k a -> f k $! g k a) xs
"mapWithKey/mapWithKeyL" forall f g xs . mapWithKey f (L.mapWithKey g xs) =
mapWithKey (\k a -> f k (g k a)) xs
"mapWithKey/map" forall f g xs . mapWithKey f (map g xs) =
mapWithKey (\k a -> f k $! g a) xs
"mapWithKey/mapL" forall f g xs . mapWithKey f (L.map g xs) =
mapWithKey (\k a -> f k (g a)) xs
"map/mapWithKey" forall f g xs . map f (mapWithKey g xs) =
mapWithKey (\k a -> f $! g k a) xs
"map/mapWithKeyL" forall f g xs . map f (L.mapWithKey g xs) =
mapWithKey (\k a -> f (g k a)) xs
#-}
#endif
traverseWithKey :: Applicative t => (k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey :: (k -> a -> t b) -> Map k a -> t (Map k b)
traverseWithKey k -> a -> t b
f = Map k a -> t (Map k b)
go
where
go :: Map k a -> t (Map k b)
go Map k a
Tip = Map k b -> t (Map k b)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Map k b
forall k a. Map k a
Tip
go (Bin Size
1 k
k a
v Map k a
_ Map k a
_) = (\ !b
v' -> Size -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
k b
v' Map k b
forall k a. Map k a
Tip Map k b
forall k a. Map k a
Tip) (b -> Map k b) -> t b -> t (Map k b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> k -> a -> t b
f k
k a
v
go (Bin Size
s k
k a
v Map k a
l Map k a
r) = (Map k b -> b -> Map k b -> Map k b)
-> t (Map k b) -> t b -> t (Map k b) -> t (Map k b)
forall (f :: * -> *) a b c d.
Applicative f =>
(a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 (\ Map k b
l' !b
v' Map k b
r' -> Size -> k -> b -> Map k b -> Map k b -> Map k b
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
s k
k b
v' Map k b
l' Map k b
r') (Map k a -> t (Map k b)
go Map k a
l) (k -> a -> t b
f k
k a
v) (Map k a -> t (Map k b)
go Map k a
r)
{-# INLINE traverseWithKey #-}
mapAccum :: (a -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccum :: (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccum a -> b -> (a, c)
f a
a Map k b
m
= (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumWithKey (\a
a' k
_ b
x' -> a -> b -> (a, c)
f a
a' b
x') a
a Map k b
m
mapAccumWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumWithKey :: (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumWithKey a -> k -> b -> (a, c)
f a
a Map k b
t
= (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a Map k b
t
mapAccumL :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumL :: (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
_ a
a Map k b
Tip = (a
a,Map k c
forall k a. Map k a
Tip)
mapAccumL a -> k -> b -> (a, c)
f a
a (Bin Size
sx k
kx b
x Map k b
l Map k b
r) =
let (a
a1,Map k c
l') = (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a Map k b
l
(a
a2,c
x') = a -> k -> b -> (a, c)
f a
a1 k
kx b
x
(a
a3,Map k c
r') = (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumL a -> k -> b -> (a, c)
f a
a2 Map k b
r
in c
x' c -> (a, Map k c) -> (a, Map k c)
`seq` (a
a3,Size -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx c
x' Map k c
l' Map k c
r')
mapAccumRWithKey :: (a -> k -> b -> (a,c)) -> a -> Map k b -> (a,Map k c)
mapAccumRWithKey :: (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
_ a
a Map k b
Tip = (a
a,Map k c
forall k a. Map k a
Tip)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a (Bin Size
sx k
kx b
x Map k b
l Map k b
r) =
let (a
a1,Map k c
r') = (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a Map k b
r
(a
a2,c
x') = a -> k -> b -> (a, c)
f a
a1 k
kx b
x
(a
a3,Map k c
l') = (a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
forall a k b c.
(a -> k -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
mapAccumRWithKey a -> k -> b -> (a, c)
f a
a2 Map k b
l
in c
x' c -> (a, Map k c) -> (a, Map k c)
`seq` (a
a3,Size -> k -> c -> Map k c -> Map k c -> Map k c
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sx k
kx c
x' Map k c
l' Map k c
r')
mapKeysWith :: Ord k2 => (a -> a -> a) -> (k1->k2) -> Map k1 a -> Map k2 a
mapKeysWith :: (a -> a -> a) -> (k1 -> k2) -> Map k1 a -> Map k2 a
mapKeysWith a -> a -> a
c k1 -> k2
f = (a -> a -> a) -> [(k2, a)] -> Map k2 a
forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
fromListWith a -> a -> a
c ([(k2, a)] -> Map k2 a)
-> (Map k1 a -> [(k2, a)]) -> Map k1 a -> Map k2 a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (k1 -> a -> [(k2, a)] -> [(k2, a)])
-> [(k2, a)] -> Map k1 a -> [(k2, a)]
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
foldrWithKey (\k1
k a
x [(k2, a)]
xs -> (k1 -> k2
f k1
k, a
x) (k2, a) -> [(k2, a)] -> [(k2, a)]
forall a. a -> [a] -> [a]
: [(k2, a)]
xs) []
#if __GLASGOW_HASKELL__
{-# INLINABLE mapKeysWith #-}
#endif
fromSet :: (k -> a) -> Set.Set k -> Map k a
fromSet :: (k -> a) -> Set k -> Map k a
fromSet k -> a
_ Set k
Set.Tip = Map k a
forall k a. Map k a
Tip
fromSet k -> a
f (Set.Bin Size
sz k
x Set k
l Set k
r) = case k -> a
f k
x of a
v -> a
v a -> Map k a -> Map k a
`seq` Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
sz k
x a
v ((k -> a) -> Set k -> Map k a
forall k a. (k -> a) -> Set k -> Map k a
fromSet k -> a
f Set k
l) ((k -> a) -> Set k -> Map k a
forall k a. (k -> a) -> Set k -> Map k a
fromSet k -> a
f Set k
r)
fromList :: Ord k => [(k,a)] -> Map k a
fromList :: [(k, a)] -> Map k a
fromList [] = Map k a
forall k a. Map k a
Tip
fromList [(k
kx, a
x)] = a
x a -> Map k a -> Map k a
`seq` Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip
fromList ((k
kx0, a
x0) : [(k, a)]
xs0) | k -> [(k, a)] -> Bool
forall a b. Ord a => a -> [(a, b)] -> Bool
not_ordered k
kx0 [(k, a)]
xs0 = a
x0 a -> Map k a -> Map k a
`seq` Map k a -> [(k, a)] -> Map k a
forall (t :: * -> *) k a.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) [(k, a)]
xs0
| Bool
otherwise = a
x0 a -> Map k a -> Map k a
`seq` Size -> Map k a -> [(k, a)] -> Map k a
forall k t a.
(Ord k, Num t, Bits t) =>
t -> Map k a -> [(k, a)] -> Map k a
go (Size
1::Int) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) [(k, a)]
xs0
where
not_ordered :: a -> [(a, b)] -> Bool
not_ordered a
_ [] = Bool
False
not_ordered a
kx ((a
ky,b
_) : [(a, b)]
_) = a
kx a -> a -> Bool
forall a. Ord a => a -> a -> Bool
>= a
ky
{-# INLINE not_ordered #-}
fromList' :: Map k a -> t (k, a) -> Map k a
fromList' Map k a
t0 t (k, a)
xs = (Map k a -> (k, a) -> Map k a) -> Map k a -> t (k, a) -> Map k a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Map k a -> (k, a) -> Map k a
forall k a. Ord k => Map k a -> (k, a) -> Map k a
ins Map k a
t0 t (k, a)
xs
where ins :: Map k a -> (k, a) -> Map k a
ins Map k a
t (k
k,a
x) = k -> a -> Map k a -> Map k a
forall k a. Ord k => k -> a -> Map k a -> Map k a
insert k
k a
x Map k a
t
go :: t -> Map k a -> [(k, a)] -> Map k a
go !t
_ Map k a
t [] = Map k a
t
go t
_ Map k a
t [(k
kx, a
x)] = a
x a -> Map k a -> Map k a
`seq` k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMax k
kx a
x Map k a
t
go t
s Map k a
l xs :: [(k, a)]
xs@((k
kx, a
x) : [(k, a)]
xss) | k -> [(k, a)] -> Bool
forall a b. Ord a => a -> [(a, b)] -> Bool
not_ordered k
kx [(k, a)]
xss = Map k a -> [(k, a)] -> Map k a
forall (t :: * -> *) k a.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' Map k a
l [(k, a)]
xs
| Bool
otherwise = case t -> [(k, a)] -> (Map k a, [(k, a)], [(k, a)])
forall a k a.
(Num a, Ord k, Bits a) =>
a -> [(k, a)] -> (Map k a, [(k, a)], [(k, a)])
create t
s [(k, a)]
xss of
(Map k a
r, [(k, a)]
ys, []) -> a
x a -> Map k a -> Map k a
`seq` t -> Map k a -> [(k, a)] -> Map k a
go (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftL` Size
1) (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) [(k, a)]
ys
(Map k a
r, [(k, a)]
_, [(k, a)]
ys) -> a
x a -> Map k a -> Map k a
`seq` Map k a -> [(k, a)] -> Map k a
forall (t :: * -> *) k a.
(Foldable t, Ord k) =>
Map k a -> t (k, a) -> Map k a
fromList' (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r) [(k, a)]
ys
create :: a -> [(k, a)] -> (Map k a, [(k, a)], [(k, a)])
create !a
_ [] = (Map k a
forall k a. Map k a
Tip, [], [])
create a
s xs :: [(k, a)]
xs@((k, a)
xp : [(k, a)]
xss)
| a
s a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
1 = case (k, a)
xp of (k
kx, a
x) | k -> [(k, a)] -> Bool
forall a b. Ord a => a -> [(a, b)] -> Bool
not_ordered k
kx [(k, a)]
xss -> a
x a -> (Map k a, [(k, a)], [(k, a)]) -> (Map k a, [(k, a)], [(k, a)])
`seq` (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip, [], [(k, a)]
xss)
| Bool
otherwise -> a
x a -> (Map k a, [(k, a)], [(k, a)]) -> (Map k a, [(k, a)], [(k, a)])
`seq` (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip, [(k, a)]
xss, [])
| Bool
otherwise = case a -> [(k, a)] -> (Map k a, [(k, a)], [(k, a)])
create (a
s a -> Size -> a
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
xs of
res :: (Map k a, [(k, a)], [(k, a)])
res@(Map k a
_, [], [(k, a)]
_) -> (Map k a, [(k, a)], [(k, a)])
res
(Map k a
l, [(k
ky, a
y)], [(k, a)]
zs) -> a
y a -> (Map k a, [(k, a)], [(k, a)]) -> (Map k a, [(k, a)], [(k, a)])
`seq` (k -> a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a
insertMax k
ky a
y Map k a
l, [], [(k, a)]
zs)
(Map k a
l, ys :: [(k, a)]
ys@((k
ky, a
y):[(k, a)]
yss), [(k, a)]
_) | k -> [(k, a)] -> Bool
forall a b. Ord a => a -> [(a, b)] -> Bool
not_ordered k
ky [(k, a)]
yss -> (Map k a
l, [], [(k, a)]
ys)
| Bool
otherwise -> case a -> [(k, a)] -> (Map k a, [(k, a)], [(k, a)])
create (a
s a -> Size -> a
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
yss of
(Map k a
r, [(k, a)]
zs, [(k, a)]
ws) -> a
y a -> (Map k a, [(k, a)], [(k, a)]) -> (Map k a, [(k, a)], [(k, a)])
`seq` (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
ky a
y Map k a
l Map k a
r, [(k, a)]
zs, [(k, a)]
ws)
#if __GLASGOW_HASKELL__
{-# INLINABLE fromList #-}
#endif
fromListWith :: Ord k => (a -> a -> a) -> [(k,a)] -> Map k a
fromListWith :: (a -> a -> a) -> [(k, a)] -> Map k a
fromListWith a -> a -> a
f [(k, a)]
xs
= (k -> a -> a -> a) -> [(k, a)] -> Map k a
forall k a. Ord k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromListWith #-}
#endif
fromListWithKey :: Ord k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromListWithKey :: (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromListWithKey k -> a -> a -> a
f [(k, a)]
xs
= (Map k a -> (k, a) -> Map k a) -> Map k a -> [(k, a)] -> Map k a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' Map k a -> (k, a) -> Map k a
ins Map k a
forall k a. Map k a
empty [(k, a)]
xs
where
ins :: Map k a -> (k, a) -> Map k a
ins Map k a
t (k
k,a
x) = (k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
forall k a.
Ord k =>
(k -> a -> a -> a) -> k -> a -> Map k a -> Map k a
insertWithKey k -> a -> a -> a
f k
k a
x Map k a
t
#if __GLASGOW_HASKELL__
{-# INLINABLE fromListWithKey #-}
#endif
fromAscList :: Eq k => [(k,a)] -> Map k a
fromAscList :: [(k, a)] -> Map k a
fromAscList [(k, a)]
xs
= (k -> a -> a -> a) -> [(k, a)] -> Map k a
forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWithKey (\k
_ a
x a
_ -> a
x) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscList #-}
#endif
fromDescList :: Eq k => [(k,a)] -> Map k a
fromDescList :: [(k, a)] -> Map k a
fromDescList [(k, a)]
xs
= (k -> a -> a -> a) -> [(k, a)] -> Map k a
forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWithKey (\k
_ a
x a
_ -> a
x) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescList #-}
#endif
fromAscListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWith :: (a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWith a -> a -> a
f [(k, a)]
xs
= (k -> a -> a -> a) -> [(k, a)] -> Map k a
forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscListWith #-}
#endif
fromDescListWith :: Eq k => (a -> a -> a) -> [(k,a)] -> Map k a
fromDescListWith :: (a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWith a -> a -> a
f [(k, a)]
xs
= (k -> a -> a -> a) -> [(k, a)] -> Map k a
forall k a. Eq k => (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWithKey (\k
_ a
x a
y -> a -> a -> a
f a
x a
y) [(k, a)]
xs
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescListWith #-}
#endif
fromAscListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromAscListWithKey :: (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromAscListWithKey k -> a -> a -> a
f [(k, a)]
xs
= [(k, a)] -> Map k a
forall k a. [(k, a)] -> Map k a
fromDistinctAscList ((k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
forall p. p -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
f [(k, a)]
xs)
where
combineEq :: p -> [(k, a)] -> [(k, a)]
combineEq p
_ [(k, a)]
xs'
= case [(k, a)]
xs' of
[] -> []
[(k, a)
x] -> [(k, a)
x]
((k, a)
x:[(k, a)]
xx) -> (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xx
combineEq' :: (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
z [] = [(k, a)
z]
combineEq' z :: (k, a)
z@(k
kz,a
zz) (x :: (k, a)
x@(k
kx,a
xx):[(k, a)]
xs')
| k
kxk -> k -> Bool
forall a. Eq a => a -> a -> Bool
==k
kz = let yy :: a
yy = k -> a -> a -> a
f k
kx a
xx a
zz in a
yy a -> [(k, a)] -> [(k, a)]
`seq` (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k
kx,a
yy) [(k, a)]
xs'
| Bool
otherwise = (k, a)
z(k, a) -> [(k, a)] -> [(k, a)]
forall a. a -> [a] -> [a]
:(k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromAscListWithKey #-}
#endif
fromDescListWithKey :: Eq k => (k -> a -> a -> a) -> [(k,a)] -> Map k a
fromDescListWithKey :: (k -> a -> a -> a) -> [(k, a)] -> Map k a
fromDescListWithKey k -> a -> a -> a
f [(k, a)]
xs
= [(k, a)] -> Map k a
forall k a. [(k, a)] -> Map k a
fromDistinctDescList ((k -> a -> a -> a) -> [(k, a)] -> [(k, a)]
forall p. p -> [(k, a)] -> [(k, a)]
combineEq k -> a -> a -> a
f [(k, a)]
xs)
where
combineEq :: p -> [(k, a)] -> [(k, a)]
combineEq p
_ [(k, a)]
xs'
= case [(k, a)]
xs' of
[] -> []
[(k, a)
x] -> [(k, a)
x]
((k, a)
x:[(k, a)]
xx) -> (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xx
combineEq' :: (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
z [] = [(k, a)
z]
combineEq' z :: (k, a)
z@(k
kz,a
zz) (x :: (k, a)
x@(k
kx,a
xx):[(k, a)]
xs')
| k
kxk -> k -> Bool
forall a. Eq a => a -> a -> Bool
==k
kz = let yy :: a
yy = k -> a -> a -> a
f k
kx a
xx a
zz in a
yy a -> [(k, a)] -> [(k, a)]
`seq` (k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k
kx,a
yy) [(k, a)]
xs'
| Bool
otherwise = (k, a)
z(k, a) -> [(k, a)] -> [(k, a)]
forall a. a -> [a] -> [a]
:(k, a) -> [(k, a)] -> [(k, a)]
combineEq' (k, a)
x [(k, a)]
xs'
#if __GLASGOW_HASKELL__
{-# INLINABLE fromDescListWithKey #-}
#endif
fromDistinctAscList :: [(k,a)] -> Map k a
fromDistinctAscList :: [(k, a)] -> Map k a
fromDistinctAscList [] = Map k a
forall k a. Map k a
Tip
fromDistinctAscList ((k
kx0, a
x0) : [(k, a)]
xs0) = a
x0 a -> Map k a -> Map k a
`seq` Size -> Map k a -> [(k, a)] -> Map k a
forall t k a.
(Num t, Bits t) =>
t -> Map k a -> [(k, a)] -> Map k a
go (Size
1::Int) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) [(k, a)]
xs0
where
go :: t -> Map k a -> [(k, a)] -> Map k a
go !t
_ Map k a
t [] = Map k a
t
go t
s Map k a
l ((k
kx, a
x) : [(k, a)]
xs) =
case t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
forall a k a.
(Num a, Bits a) =>
a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create t
s [(k, a)]
xs of
(Map k a
r :*: [(k, a)]
ys) -> a
x a -> Map k a -> Map k a
`seq` let !t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r
in t -> Map k a -> [(k, a)] -> Map k a
go (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftL` Size
1) Map k a
t' [(k, a)]
ys
create :: a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create !a
_ [] = (Map k a
forall k a. Map k a
Tip Map k a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
forall a b. a -> b -> StrictPair a b
:*: [])
create a
s xs :: [(k, a)]
xs@((k, a)
x' : [(k, a)]
xs')
| a
s a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
1 = case (k, a)
x' of (k
kx, a
x) -> a
x a -> StrictPair (Map k a) [(k, a)] -> StrictPair (Map k a) [(k, a)]
`seq` (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip Map k a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
forall a b. a -> b -> StrictPair a b
:*: [(k, a)]
xs')
| Bool
otherwise = case a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create (a
s a -> Size -> a
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
xs of
res :: StrictPair (Map k a) [(k, a)]
res@(Map k a
_ :*: []) -> StrictPair (Map k a) [(k, a)]
res
(Map k a
l :*: (k
ky, a
y):[(k, a)]
ys) -> case a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create (a
s a -> Size -> a
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
ys of
(Map k a
r :*: [(k, a)]
zs) -> a
y a -> StrictPair (Map k a) [(k, a)] -> StrictPair (Map k a) [(k, a)]
`seq` (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
ky a
y Map k a
l Map k a
r Map k a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
forall a b. a -> b -> StrictPair a b
:*: [(k, a)]
zs)
fromDistinctDescList :: [(k,a)] -> Map k a
fromDistinctDescList :: [(k, a)] -> Map k a
fromDistinctDescList [] = Map k a
forall k a. Map k a
Tip
fromDistinctDescList ((k
kx0, a
x0) : [(k, a)]
xs0) = a
x0 a -> Map k a -> Map k a
`seq` Size -> Map k a -> [(k, a)] -> Map k a
forall t k a.
(Num t, Bits t) =>
t -> Map k a -> [(k, a)] -> Map k a
go (Size
1::Int) (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx0 a
x0 Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip) [(k, a)]
xs0
where
go :: t -> Map k a -> [(k, a)] -> Map k a
go !t
_ Map k a
t [] = Map k a
t
go t
s Map k a
r ((k
kx, a
x) : [(k, a)]
xs) =
case t -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
forall a k a.
(Num a, Bits a) =>
a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create t
s [(k, a)]
xs of
(Map k a
l :*: [(k, a)]
ys) -> a
x a -> Map k a -> Map k a
`seq` let !t' :: Map k a
t' = k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
kx a
x Map k a
l Map k a
r
in t -> Map k a -> [(k, a)] -> Map k a
go (t
s t -> Size -> t
forall a. Bits a => a -> Size -> a
`shiftL` Size
1) Map k a
t' [(k, a)]
ys
create :: a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create !a
_ [] = (Map k a
forall k a. Map k a
Tip Map k a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
forall a b. a -> b -> StrictPair a b
:*: [])
create a
s xs :: [(k, a)]
xs@((k, a)
x' : [(k, a)]
xs')
| a
s a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
1 = case (k, a)
x' of (k
kx, a
x) -> a
x a -> StrictPair (Map k a) [(k, a)] -> StrictPair (Map k a) [(k, a)]
`seq` (Size -> k -> a -> Map k a -> Map k a -> Map k a
forall k a. Size -> k -> a -> Map k a -> Map k a -> Map k a
Bin Size
1 k
kx a
x Map k a
forall k a. Map k a
Tip Map k a
forall k a. Map k a
Tip Map k a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
forall a b. a -> b -> StrictPair a b
:*: [(k, a)]
xs')
| Bool
otherwise = case a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create (a
s a -> Size -> a
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
xs of
res :: StrictPair (Map k a) [(k, a)]
res@(Map k a
_ :*: []) -> StrictPair (Map k a) [(k, a)]
res
(Map k a
r :*: (k
ky, a
y):[(k, a)]
ys) -> case a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
create (a
s a -> Size -> a
forall a. Bits a => a -> Size -> a
`shiftR` Size
1) [(k, a)]
ys of
(Map k a
l :*: [(k, a)]
zs) -> a
y a -> StrictPair (Map k a) [(k, a)] -> StrictPair (Map k a) [(k, a)]
`seq` (k -> a -> Map k a -> Map k a -> Map k a
forall k a. k -> a -> Map k a -> Map k a -> Map k a
link k
ky a
y Map k a
l Map k a
r Map k a -> [(k, a)] -> StrictPair (Map k a) [(k, a)]
forall a b. a -> b -> StrictPair a b
:*: [(k, a)]
zs)