{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
module ZkFold.Base.Data.Vector where
import Control.DeepSeq (NFData)
import Control.Monad.State.Strict (runState, state)
import Data.Aeson (ToJSON (..))
import Data.Distributive (Distributive (..))
import Data.Foldable (fold)
import Data.Functor.Classes (Show1)
import Data.Functor.Rep (Representable (..), collectRep, distributeRep, mzipRep, pureRep)
import Data.These (These (..))
import qualified Data.Vector as V
import Data.Vector.Binary ()
import qualified Data.Vector.Split as V
import Data.Zip (Semialign (..), Unzip (..), Zip (..))
import GHC.Generics (Generic)
import GHC.IsList (IsList (..))
import Prelude hiding (concat, drop, head, length, mod, negate, replicate, sum, tail,
take, unzip, zip, zipWith, (*), (+), (-))
import System.Random (Random (..))
import Test.QuickCheck (Arbitrary (..), Arbitrary1 (..), arbitrary1)
import ZkFold.Base.Algebra.Basic.Class
import ZkFold.Base.Algebra.Basic.Field
import ZkFold.Base.Algebra.Basic.Number
import ZkFold.Base.Data.ByteString (Binary (..))
import ZkFold.Prelude (length)
newtype Vector (size :: Natural) a = Vector {forall (size :: Natural) a. Vector size a -> Vector a
toV :: V.Vector a}
deriving (Int -> Vector size a -> ShowS
[Vector size a] -> ShowS
Vector size a -> String
(Int -> Vector size a -> ShowS)
-> (Vector size a -> String)
-> ([Vector size a] -> ShowS)
-> Show (Vector size a)
forall (size :: Natural) a. Show a => Int -> Vector size a -> ShowS
forall (size :: Natural) a. Show a => [Vector size a] -> ShowS
forall (size :: Natural) a. Show a => Vector size a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall (size :: Natural) a. Show a => Int -> Vector size a -> ShowS
showsPrec :: Int -> Vector size a -> ShowS
$cshow :: forall (size :: Natural) a. Show a => Vector size a -> String
show :: Vector size a -> String
$cshowList :: forall (size :: Natural) a. Show a => [Vector size a] -> ShowS
showList :: [Vector size a] -> ShowS
Show, (forall a. Show a => Show (Vector size a)) =>
(forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> Vector size a -> ShowS)
-> (forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [Vector size a] -> ShowS)
-> Show1 (Vector size)
forall (size :: Natural) a. Show a => Show (Vector size a)
forall (size :: Natural) a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> Vector size a -> ShowS
forall (size :: Natural) a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [Vector size a] -> ShowS
forall a. Show a => Show (Vector size a)
forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> Vector size a -> ShowS
forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [Vector size a] -> ShowS
forall (f :: Type -> Type).
(forall a. Show a => Show (f a)) =>
(forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS)
-> (forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [f a] -> ShowS)
-> Show1 f
$cliftShowsPrec :: forall (size :: Natural) a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> Vector size a -> ShowS
liftShowsPrec :: forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> Vector size a -> ShowS
$cliftShowList :: forall (size :: Natural) a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [Vector size a] -> ShowS
liftShowList :: forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [Vector size a] -> ShowS
Show1, Vector size a -> Vector size a -> Bool
(Vector size a -> Vector size a -> Bool)
-> (Vector size a -> Vector size a -> Bool) -> Eq (Vector size a)
forall (size :: Natural) a.
Eq a =>
Vector size a -> Vector size a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall (size :: Natural) a.
Eq a =>
Vector size a -> Vector size a -> Bool
== :: Vector size a -> Vector size a -> Bool
$c/= :: forall (size :: Natural) a.
Eq a =>
Vector size a -> Vector size a -> Bool
/= :: Vector size a -> Vector size a -> Bool
Eq, (forall a b. (a -> b) -> Vector size a -> Vector size b)
-> (forall a b. a -> Vector size b -> Vector size a)
-> Functor (Vector size)
forall (size :: Natural) a b. a -> Vector size b -> Vector size a
forall (size :: Natural) a b.
(a -> b) -> Vector size a -> Vector size b
forall a b. a -> Vector size b -> Vector size a
forall a b. (a -> b) -> Vector size a -> Vector size b
forall (f :: Type -> Type).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
$cfmap :: forall (size :: Natural) a b.
(a -> b) -> Vector size a -> Vector size b
fmap :: forall a b. (a -> b) -> Vector size a -> Vector size b
$c<$ :: forall (size :: Natural) a b. a -> Vector size b -> Vector size a
<$ :: forall a b. a -> Vector size b -> Vector size a
Functor, (forall m. Monoid m => Vector size m -> m)
-> (forall m a. Monoid m => (a -> m) -> Vector size a -> m)
-> (forall m a. Monoid m => (a -> m) -> Vector size a -> m)
-> (forall a b. (a -> b -> b) -> b -> Vector size a -> b)
-> (forall a b. (a -> b -> b) -> b -> Vector size a -> b)
-> (forall b a. (b -> a -> b) -> b -> Vector size a -> b)
-> (forall b a. (b -> a -> b) -> b -> Vector size a -> b)
-> (forall a. (a -> a -> a) -> Vector size a -> a)
-> (forall a. (a -> a -> a) -> Vector size a -> a)
-> (forall a. Vector size a -> [a])
-> (forall a. Vector size a -> Bool)
-> (forall a. Vector size a -> Int)
-> (forall a. Eq a => a -> Vector size a -> Bool)
-> (forall a. Ord a => Vector size a -> a)
-> (forall a. Ord a => Vector size a -> a)
-> (forall a. Num a => Vector size a -> a)
-> (forall a. Num a => Vector size a -> a)
-> Foldable (Vector size)
forall (size :: Natural) a. Eq a => a -> Vector size a -> Bool
forall (size :: Natural) a. Num a => Vector size a -> a
forall (size :: Natural) a. Ord a => Vector size a -> a
forall (size :: Natural) m. Monoid m => Vector size m -> m
forall (size :: Natural) a. Vector size a -> Bool
forall (size :: Natural) a. Vector size a -> Int
forall (size :: Natural) a. Vector size a -> [a]
forall (size :: Natural) a. (a -> a -> a) -> Vector size a -> a
forall (size :: Natural) m a.
Monoid m =>
(a -> m) -> Vector size a -> m
forall (size :: Natural) b a.
(b -> a -> b) -> b -> Vector size a -> b
forall (size :: Natural) a b.
(a -> b -> b) -> b -> Vector size a -> b
forall a. Eq a => a -> Vector size a -> Bool
forall a. Num a => Vector size a -> a
forall a. Ord a => Vector size a -> a
forall m. Monoid m => Vector size m -> m
forall a. Vector size a -> Bool
forall a. Vector size a -> Int
forall a. Vector size a -> [a]
forall a. (a -> a -> a) -> Vector size a -> a
forall m a. Monoid m => (a -> m) -> Vector size a -> m
forall b a. (b -> a -> b) -> b -> Vector size a -> b
forall a b. (a -> b -> b) -> b -> Vector size a -> b
forall (t :: Type -> Type).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
$cfold :: forall (size :: Natural) m. Monoid m => Vector size m -> m
fold :: forall m. Monoid m => Vector size m -> m
$cfoldMap :: forall (size :: Natural) m a.
Monoid m =>
(a -> m) -> Vector size a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Vector size a -> m
$cfoldMap' :: forall (size :: Natural) m a.
Monoid m =>
(a -> m) -> Vector size a -> m
foldMap' :: forall m a. Monoid m => (a -> m) -> Vector size a -> m
$cfoldr :: forall (size :: Natural) a b.
(a -> b -> b) -> b -> Vector size a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Vector size a -> b
$cfoldr' :: forall (size :: Natural) a b.
(a -> b -> b) -> b -> Vector size a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Vector size a -> b
$cfoldl :: forall (size :: Natural) b a.
(b -> a -> b) -> b -> Vector size a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Vector size a -> b
$cfoldl' :: forall (size :: Natural) b a.
(b -> a -> b) -> b -> Vector size a -> b
foldl' :: forall b a. (b -> a -> b) -> b -> Vector size a -> b
$cfoldr1 :: forall (size :: Natural) a. (a -> a -> a) -> Vector size a -> a
foldr1 :: forall a. (a -> a -> a) -> Vector size a -> a
$cfoldl1 :: forall (size :: Natural) a. (a -> a -> a) -> Vector size a -> a
foldl1 :: forall a. (a -> a -> a) -> Vector size a -> a
$ctoList :: forall (size :: Natural) a. Vector size a -> [a]
toList :: forall a. Vector size a -> [a]
$cnull :: forall (size :: Natural) a. Vector size a -> Bool
null :: forall a. Vector size a -> Bool
$clength :: forall (size :: Natural) a. Vector size a -> Int
length :: forall a. Vector size a -> Int
$celem :: forall (size :: Natural) a. Eq a => a -> Vector size a -> Bool
elem :: forall a. Eq a => a -> Vector size a -> Bool
$cmaximum :: forall (size :: Natural) a. Ord a => Vector size a -> a
maximum :: forall a. Ord a => Vector size a -> a
$cminimum :: forall (size :: Natural) a. Ord a => Vector size a -> a
minimum :: forall a. Ord a => Vector size a -> a
$csum :: forall (size :: Natural) a. Num a => Vector size a -> a
sum :: forall a. Num a => Vector size a -> a
$cproduct :: forall (size :: Natural) a. Num a => Vector size a -> a
product :: forall a. Num a => Vector size a -> a
Foldable, Functor (Vector size)
Foldable (Vector size)
(Functor (Vector size), Foldable (Vector size)) =>
(forall (f :: Type -> Type) a b.
Applicative f =>
(a -> f b) -> Vector size a -> f (Vector size b))
-> (forall (f :: Type -> Type) a.
Applicative f =>
Vector size (f a) -> f (Vector size a))
-> (forall (m :: Type -> Type) a b.
Monad m =>
(a -> m b) -> Vector size a -> m (Vector size b))
-> (forall (m :: Type -> Type) a.
Monad m =>
Vector size (m a) -> m (Vector size a))
-> Traversable (Vector size)
forall (size :: Natural). Functor (Vector size)
forall (size :: Natural). Foldable (Vector size)
forall (size :: Natural) (m :: Type -> Type) a.
Monad m =>
Vector size (m a) -> m (Vector size a)
forall (size :: Natural) (f :: Type -> Type) a.
Applicative f =>
Vector size (f a) -> f (Vector size a)
forall (size :: Natural) (m :: Type -> Type) a b.
Monad m =>
(a -> m b) -> Vector size a -> m (Vector size b)
forall (size :: Natural) (f :: Type -> Type) a b.
Applicative f =>
(a -> f b) -> Vector size a -> f (Vector size b)
forall (t :: Type -> Type).
(Functor t, Foldable t) =>
(forall (f :: Type -> Type) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: Type -> Type) a.
Applicative f =>
t (f a) -> f (t a))
-> (forall (m :: Type -> Type) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: Type -> Type) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: Type -> Type) a.
Monad m =>
Vector size (m a) -> m (Vector size a)
forall (f :: Type -> Type) a.
Applicative f =>
Vector size (f a) -> f (Vector size a)
forall (m :: Type -> Type) a b.
Monad m =>
(a -> m b) -> Vector size a -> m (Vector size b)
forall (f :: Type -> Type) a b.
Applicative f =>
(a -> f b) -> Vector size a -> f (Vector size b)
$ctraverse :: forall (size :: Natural) (f :: Type -> Type) a b.
Applicative f =>
(a -> f b) -> Vector size a -> f (Vector size b)
traverse :: forall (f :: Type -> Type) a b.
Applicative f =>
(a -> f b) -> Vector size a -> f (Vector size b)
$csequenceA :: forall (size :: Natural) (f :: Type -> Type) a.
Applicative f =>
Vector size (f a) -> f (Vector size a)
sequenceA :: forall (f :: Type -> Type) a.
Applicative f =>
Vector size (f a) -> f (Vector size a)
$cmapM :: forall (size :: Natural) (m :: Type -> Type) a b.
Monad m =>
(a -> m b) -> Vector size a -> m (Vector size b)
mapM :: forall (m :: Type -> Type) a b.
Monad m =>
(a -> m b) -> Vector size a -> m (Vector size b)
$csequence :: forall (size :: Natural) (m :: Type -> Type) a.
Monad m =>
Vector size (m a) -> m (Vector size a)
sequence :: forall (m :: Type -> Type) a.
Monad m =>
Vector size (m a) -> m (Vector size a)
Traversable, (forall x. Vector size a -> Rep (Vector size a) x)
-> (forall x. Rep (Vector size a) x -> Vector size a)
-> Generic (Vector size a)
forall (size :: Natural) a x.
Rep (Vector size a) x -> Vector size a
forall (size :: Natural) a x.
Vector size a -> Rep (Vector size a) x
forall x. Rep (Vector size a) x -> Vector size a
forall x. Vector size a -> Rep (Vector size a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cfrom :: forall (size :: Natural) a x.
Vector size a -> Rep (Vector size a) x
from :: forall x. Vector size a -> Rep (Vector size a) x
$cto :: forall (size :: Natural) a x.
Rep (Vector size a) x -> Vector size a
to :: forall x. Rep (Vector size a) x -> Vector size a
Generic, Vector size a -> ()
(Vector size a -> ()) -> NFData (Vector size a)
forall (size :: Natural) a. NFData a => Vector size a -> ()
forall a. (a -> ()) -> NFData a
$crnf :: forall (size :: Natural) a. NFData a => Vector size a -> ()
rnf :: Vector size a -> ()
NFData, Eq (Vector size a)
Eq (Vector size a) =>
(Vector size a -> Vector size a -> Ordering)
-> (Vector size a -> Vector size a -> Bool)
-> (Vector size a -> Vector size a -> Bool)
-> (Vector size a -> Vector size a -> Bool)
-> (Vector size a -> Vector size a -> Bool)
-> (Vector size a -> Vector size a -> Vector size a)
-> (Vector size a -> Vector size a -> Vector size a)
-> Ord (Vector size a)
Vector size a -> Vector size a -> Bool
Vector size a -> Vector size a -> Ordering
Vector size a -> Vector size a -> Vector size a
forall (size :: Natural) a. Ord a => Eq (Vector size a)
forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Bool
forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Ordering
forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Vector size a
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
$ccompare :: forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Ordering
compare :: Vector size a -> Vector size a -> Ordering
$c< :: forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Bool
< :: Vector size a -> Vector size a -> Bool
$c<= :: forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Bool
<= :: Vector size a -> Vector size a -> Bool
$c> :: forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Bool
> :: Vector size a -> Vector size a -> Bool
$c>= :: forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Bool
>= :: Vector size a -> Vector size a -> Bool
$cmax :: forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Vector size a
max :: Vector size a -> Vector size a -> Vector size a
$cmin :: forall (size :: Natural) a.
Ord a =>
Vector size a -> Vector size a -> Vector size a
min :: Vector size a -> Vector size a -> Vector size a
Ord)
knownNat :: forall size n . (KnownNat size, Integral n) => n
knownNat :: forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat = Natural -> n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall (n :: Natural). KnownNat n => Natural
value @size)
instance KnownNat size => Representable (Vector size) where
type Rep (Vector size) = Zp size
index :: forall a. Vector size a -> Rep (Vector size) -> a
index (Vector Vector a
v) Rep (Vector size)
ix = Vector a
v Vector a -> Int -> a
forall a. Vector a -> Int -> a
V.! Natural -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Zp size -> Natural
forall (p :: Natural). Zp p -> Natural
fromZp Rep (Vector size)
Zp size
ix)
tabulate :: forall a. (Rep (Vector size) -> a) -> Vector size a
tabulate Rep (Vector size) -> a
f = Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Int -> (Int -> a) -> Vector a
forall a. Int -> (Int -> a) -> Vector a
V.generate (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @size) (Rep (Vector size) -> a
Zp size -> a
f (Zp size -> a) -> (Int -> Zp size) -> Int -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Zp size
forall a b. (Integral a, Num b) => a -> b
fromIntegral))
instance KnownNat size => Distributive (Vector size) where
distribute :: forall (f :: Type -> Type) a.
Functor f =>
f (Vector size a) -> Vector size (f a)
distribute = f (Vector size a) -> Vector size (f a)
forall (f :: Type -> Type) (w :: Type -> Type) a.
(Representable f, Functor w) =>
w (f a) -> f (w a)
distributeRep
collect :: forall (f :: Type -> Type) a b.
Functor f =>
(a -> Vector size b) -> f a -> Vector size (f b)
collect = (a -> Vector size b) -> f a -> Vector size (f b)
forall (f :: Type -> Type) (w :: Type -> Type) a b.
(Representable f, Functor w) =>
(a -> f b) -> w a -> f (w b)
collectRep
vtoVector :: forall size a . KnownNat size => V.Vector a -> Maybe (Vector size a)
vtoVector :: forall (size :: Natural) a.
KnownNat size =>
Vector a -> Maybe (Vector size a)
vtoVector Vector a
as
| Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
as Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @size = Vector size a -> Maybe (Vector size a)
forall a. a -> Maybe a
Just (Vector size a -> Maybe (Vector size a))
-> Vector size a -> Maybe (Vector size a)
forall a b. (a -> b) -> a -> b
$ Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector Vector a
as
| Bool
otherwise = Maybe (Vector size a)
forall a. Maybe a
Nothing
instance IsList (Vector n a) where
type Item (Vector n a) = a
toList :: Vector n a -> [Item (Vector n a)]
toList = Vector n a -> [a]
Vector n a -> [Item (Vector n a)]
forall (size :: Natural) a. Vector size a -> [a]
fromVector
fromList :: [Item (Vector n a)] -> Vector n a
fromList = [a] -> Vector n a
[Item (Vector n a)] -> Vector n a
forall (size :: Natural) a. [a] -> Vector size a
unsafeToVector
toVector :: forall size a . KnownNat size => [a] -> Maybe (Vector size a)
toVector :: forall (size :: Natural) a.
KnownNat size =>
[a] -> Maybe (Vector size a)
toVector [a]
as
| [a] -> Natural
forall (t :: Type -> Type) a. Foldable t => t a -> Natural
length [a]
as Natural -> Natural -> Bool
forall a. Eq a => a -> a -> Bool
== forall (n :: Natural). KnownNat n => Natural
value @size = Vector size a -> Maybe (Vector size a)
forall a. a -> Maybe a
Just (Vector size a -> Maybe (Vector size a))
-> Vector size a -> Maybe (Vector size a)
forall a b. (a -> b) -> a -> b
$ Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector ([a] -> Vector a
forall a. [a] -> Vector a
V.fromList [a]
as)
| Bool
otherwise = Maybe (Vector size a)
forall a. Maybe a
Nothing
unsafeToVector :: forall size a . [a] -> Vector size a
unsafeToVector :: forall (size :: Natural) a. [a] -> Vector size a
unsafeToVector = Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector size a)
-> ([a] -> Vector a) -> [a] -> Vector size a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> Vector a
forall a. [a] -> Vector a
V.fromList
unfold :: forall size a b. KnownNat size => (b -> (a, b)) -> b -> Vector size a
unfold :: forall (size :: Natural) a b.
KnownNat size =>
(b -> (a, b)) -> b -> Vector size a
unfold b -> (a, b)
f = Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector size a)
-> (b -> Vector a) -> b -> Vector size a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
V.take (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @size) (Vector a -> Vector a) -> (b -> Vector a) -> b -> Vector a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> Maybe (a, b)) -> b -> Vector a
forall b a. (b -> Maybe (a, b)) -> b -> Vector a
V.unfoldr ((a, b) -> Maybe (a, b)
forall a. a -> Maybe a
Just ((a, b) -> Maybe (a, b)) -> (b -> (a, b)) -> b -> Maybe (a, b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> (a, b)
f)
fromVector :: Vector size a -> [a]
fromVector :: forall (size :: Natural) a. Vector size a -> [a]
fromVector (Vector Vector a
as) = Vector a -> [a]
forall a. Vector a -> [a]
V.toList Vector a
as
(!!) :: Vector size a -> Natural -> a
(Vector Vector a
as) !! :: forall (size :: Natural) a. Vector size a -> Natural -> a
!! Natural
i = Vector a
as Vector a -> Int -> a
forall a. Vector a -> Int -> a
V.! Natural -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Natural
i
uncons :: Vector size a -> (a, Vector (size - 1) a)
uncons :: forall (size :: Natural) a.
Vector size a -> (a, Vector (size - 1) a)
uncons (Vector Vector a
lst) = (Vector a -> a
forall a. Vector a -> a
V.head Vector a
lst, Vector a -> Vector (size - 1) a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector (size - 1) a)
-> Vector a -> Vector (size - 1) a
forall a b. (a -> b) -> a -> b
$ Vector a -> Vector a
forall a. Vector a -> Vector a
V.tail Vector a
lst)
reverse :: Vector size a -> Vector size a
reverse :: forall (size :: Natural) a. Vector size a -> Vector size a
reverse (Vector Vector a
lst) = Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector a
forall a. Vector a -> Vector a
V.reverse Vector a
lst)
head :: Vector size a -> a
head :: forall (size :: Natural) a. Vector size a -> a
head (Vector Vector a
as) = Vector a -> a
forall a. Vector a -> a
V.head Vector a
as
tail :: Vector size a -> Vector (size - 1) a
tail :: forall (size :: Natural) a. Vector size a -> Vector (size - 1) a
tail (Vector Vector a
as) = Vector a -> Vector (size - 1) a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector (size - 1) a)
-> Vector a -> Vector (size - 1) a
forall a b. (a -> b) -> a -> b
$ Vector a -> Vector a
forall a. Vector a -> Vector a
V.tail Vector a
as
init :: Vector size a -> Vector (size - 1) a
init :: forall (size :: Natural) a. Vector size a -> Vector (size - 1) a
init (Vector Vector a
as) = Vector a -> Vector (size - 1) a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector (size - 1) a)
-> Vector a -> Vector (size - 1) a
forall a b. (a -> b) -> a -> b
$ Vector a -> Vector a
forall a. Vector a -> Vector a
V.init Vector a
as
scanl :: forall size a b . (b -> a -> b) -> b -> Vector size a -> Vector (size + 1) b
scanl :: forall (size :: Natural) a b.
(b -> a -> b) -> b -> Vector size a -> Vector (size + 1) b
scanl b -> a -> b
f b
z (Vector Vector a
as) = Vector b -> Vector (size + 1) b
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector b -> Vector (size + 1) b)
-> Vector b -> Vector (size + 1) b
forall a b. (a -> b) -> a -> b
$ (b -> a -> b) -> b -> Vector a -> Vector b
forall a b. (a -> b -> a) -> a -> Vector b -> Vector a
V.scanl b -> a -> b
f b
z Vector a
as
singleton :: a -> Vector 1 a
singleton :: forall a. a -> Vector 1 a
singleton = Vector a -> Vector 1 a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector 1 a) -> (a -> Vector a) -> a -> Vector 1 a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Vector a
forall a. a -> Vector a
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure
item :: Vector 1 a -> a
item :: forall a. Vector 1 a -> a
item = Vector 1 a -> a
forall (size :: Natural) a. Vector size a -> a
head
mapWithIx :: forall n a b . KnownNat n => (Natural -> a -> b) -> Vector n a -> Vector n b
mapWithIx :: forall (n :: Natural) a b.
KnownNat n =>
(Natural -> a -> b) -> Vector n a -> Vector n b
mapWithIx Natural -> a -> b
f (Vector Vector a
l) = Vector b -> Vector n b
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector b -> Vector n b) -> Vector b -> Vector n b
forall a b. (a -> b) -> a -> b
$ (Natural -> a -> b) -> Vector Natural -> Vector a -> Vector b
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith Natural -> a -> b
f (Natural -> Natural -> Vector Natural
forall a. Enum a => a -> a -> Vector a
V.enumFromTo Natural
0 (forall (n :: Natural). KnownNat n => Natural
value @n Natural -> Natural -> Natural
-! Natural
1)) Vector a
l
mapMWithIx :: forall n m a b . (KnownNat n, Monad m) => (Natural -> a -> m b) -> Vector n a -> m (Vector n b)
mapMWithIx :: forall (n :: Natural) (m :: Type -> Type) a b.
(KnownNat n, Monad m) =>
(Natural -> a -> m b) -> Vector n a -> m (Vector n b)
mapMWithIx Natural -> a -> m b
f (Vector Vector a
l) = Vector b -> Vector n b
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector b -> Vector n b) -> m (Vector b) -> m (Vector n b)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (Natural -> a -> m b) -> Vector Natural -> Vector a -> m (Vector b)
forall (m :: Type -> Type) a b c.
Monad m =>
(a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
V.zipWithM Natural -> a -> m b
f (Natural -> Natural -> Vector Natural
forall a. Enum a => a -> a -> Vector a
V.enumFromTo Natural
0 (forall (n :: Natural). KnownNat n => Natural
value @n Natural -> Natural -> Natural
-! Natural
1)) Vector a
l
take :: forall n size a. KnownNat n => Vector size a -> Vector n a
take :: forall (n :: Natural) (size :: Natural) a.
KnownNat n =>
Vector size a -> Vector n a
take (Vector Vector a
lst) = Vector a -> Vector n a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
V.take (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @n) Vector a
lst)
drop :: forall n m a. KnownNat n => Vector (n + m) a -> Vector m a
drop :: forall (n :: Natural) (m :: Natural) a.
KnownNat n =>
Vector (n + m) a -> Vector m a
drop (Vector Vector a
lst) = Vector a -> Vector m a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
V.drop (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @n) Vector a
lst)
splitAt :: forall n m a. KnownNat n => Vector (n + m) a -> (Vector n a, Vector m a)
splitAt :: forall (n :: Natural) (m :: Natural) a.
KnownNat n =>
Vector (n + m) a -> (Vector n a, Vector m a)
splitAt (Vector Vector a
lst) = (Vector a -> Vector n a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
V.take (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @n) Vector a
lst), Vector a -> Vector m a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
V.drop (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @n) Vector a
lst))
rotate :: forall size a. KnownNat size => Vector size a -> Integer -> Vector size a
rotate :: forall (size :: Natural) a.
KnownNat size =>
Vector size a -> Integer -> Vector size a
rotate (Vector Vector a
lst) Integer
n = Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a
r Vector a -> Vector a -> Vector a
forall a. Semigroup a => a -> a -> a
<> Vector a
l)
where
len :: Integer
len :: Integer
len = Natural -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Natural -> Integer) -> Natural -> Integer
forall a b. (a -> b) -> a -> b
$ forall (n :: Natural). KnownNat n => Natural
value @size
lshift :: Int
lshift :: Int
lshift = Integer -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Integer -> Int) -> Integer -> Int
forall a b. (a -> b) -> a -> b
$ Integer
n Integer -> Integer -> Integer
forall a. SemiEuclidean a => a -> a -> a
`mod` Integer
len
(Vector a
l, Vector a
r) = Int -> Vector a -> (Vector a, Vector a)
forall a. Int -> Vector a -> (Vector a, Vector a)
V.splitAt Int
lshift Vector a
lst
shift :: forall size a. KnownNat size => Vector size a -> Integer -> a -> Vector size a
shift :: forall (size :: Natural) a.
KnownNat size =>
Vector size a -> Integer -> a -> Vector size a
shift (Vector Vector a
lst) Integer
n a
pad
| Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0 = Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector size a) -> Vector a -> Vector size a
forall a b. (a -> b) -> a -> b
$ Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
V.take (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @size) (Vector a
padList Vector a -> Vector a -> Vector a
forall a. Semigroup a => a -> a -> a
<> Vector a
lst)
| Bool
otherwise = Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector size a) -> Vector a -> Vector size a
forall a b. (a -> b) -> a -> b
$ Int -> Vector a -> Vector a
forall a. Int -> Vector a -> Vector a
V.drop (Integer -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
n) (Vector a
lst Vector a -> Vector a -> Vector a
forall a. Semigroup a => a -> a -> a
<> Vector a
padList)
where
padList :: Vector a
padList = Int -> a -> Vector a
forall a. Int -> a -> Vector a
V.replicate (Integer -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Integer -> Int) -> Integer -> Int
forall a b. (a -> b) -> a -> b
$ Integer -> Integer
forall a. Num a => a -> a
abs Integer
n) a
pad
vectorDotProduct :: forall size a . Semiring a => Vector size a -> Vector size a -> a
vectorDotProduct :: forall (size :: Natural) a.
Semiring a =>
Vector size a -> Vector size a -> a
vectorDotProduct (Vector Vector a
as) (Vector Vector a
bs) = Vector a -> a
forall (t :: Type -> Type) a.
(Foldable t, AdditiveMonoid a) =>
t a -> a
sum (Vector a -> a) -> Vector a -> a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
forall (f :: Type -> Type) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> a -> a
forall a. MultiplicativeSemigroup a => a -> a -> a
(*) Vector a
as Vector a
bs
empty :: Vector 0 a
empty :: forall a. Vector 0 a
empty = Vector a -> Vector 0 a
forall (size :: Natural) a. Vector a -> Vector size a
Vector Vector a
forall a. Vector a
V.empty
infixr 5 .:
(.:) :: a -> Vector n a -> Vector (n + 1) a
a
a .: :: forall a (n :: Natural). a -> Vector n a -> Vector (n + 1) a
.: (Vector Vector a
lst) = Vector a -> Vector (n + 1) a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (a
a a -> Vector a -> Vector a
forall a. a -> Vector a -> Vector a
`V.cons` Vector a
lst)
append :: Vector m a -> Vector n a -> Vector (m + n) a
append :: forall (m :: Natural) a (n :: Natural).
Vector m a -> Vector n a -> Vector (m + n) a
append (Vector Vector a
l) (Vector Vector a
r) = Vector a -> Vector (m + n) a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a
l Vector a -> Vector a -> Vector a
forall a. Semigroup a => a -> a -> a
<> Vector a
r)
concat :: Vector m (Vector n a) -> Vector (m * n) a
concat :: forall (m :: Natural) (n :: Natural) a.
Vector m (Vector n a) -> Vector (m * n) a
concat = Vector a -> Vector (m * n) a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector (m * n) a)
-> (Vector m (Vector n a) -> Vector a)
-> Vector m (Vector n a)
-> Vector (m * n) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Vector n a -> Vector a) -> Vector (Vector n a) -> Vector a
forall a b. (a -> Vector b) -> Vector a -> Vector b
V.concatMap Vector n a -> Vector a
forall (size :: Natural) a. Vector size a -> Vector a
toV (Vector (Vector n a) -> Vector a)
-> (Vector m (Vector n a) -> Vector (Vector n a))
-> Vector m (Vector n a)
-> Vector a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Vector m (Vector n a) -> Vector (Vector n a)
forall (size :: Natural) a. Vector size a -> Vector a
toV
unsafeConcat :: forall m n a . [Vector n a] -> Vector (m * n) a
unsafeConcat :: forall (m :: Natural) (n :: Natural) a.
[Vector n a] -> Vector (m * n) a
unsafeConcat = Vector m (Vector n a) -> Vector (m * n) a
forall (m :: Natural) (n :: Natural) a.
Vector m (Vector n a) -> Vector (m * n) a
concat (Vector m (Vector n a) -> Vector (m * n) a)
-> ([Vector n a] -> Vector m (Vector n a))
-> [Vector n a]
-> Vector (m * n) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (size :: Natural) a. [a] -> Vector size a
unsafeToVector @m
chunks :: forall m n a . KnownNat n => Vector (m * n) a -> Vector m (Vector n a)
chunks :: forall (m :: Natural) (n :: Natural) a.
KnownNat n =>
Vector (m * n) a -> Vector m (Vector n a)
chunks (Vector Vector a
vectors) = [Vector n a] -> Vector m (Vector n a)
forall (size :: Natural) a. [a] -> Vector size a
unsafeToVector (Vector a -> Vector n a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector n a) -> [Vector a] -> [Vector n a]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Vector a -> [Vector a]
forall (v :: Type -> Type) a. Vector v a => Int -> v a -> [v a]
V.chunksOf (Natural -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Natural -> Int) -> Natural -> Int
forall a b. (a -> b) -> a -> b
$ forall (n :: Natural). KnownNat n => Natural
value @n) Vector a
vectors)
instance (KnownNat n, Binary a) => Binary (Vector n a) where
put :: Vector n a -> Put
put = Vector Put -> Put
forall m. Monoid m => Vector m -> m
forall (t :: Type -> Type) m. (Foldable t, Monoid m) => t m -> m
fold (Vector Put -> Put)
-> (Vector n a -> Vector Put) -> Vector n a -> Put
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Put) -> Vector a -> Vector Put
forall a b. (a -> b) -> Vector a -> Vector b
V.map a -> Put
forall t. Binary t => t -> Put
put (Vector a -> Vector Put)
-> (Vector n a -> Vector a) -> Vector n a -> Vector Put
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Vector n a -> Vector a
forall (size :: Natural) a. Vector size a -> Vector a
toV
get :: Get (Vector n a)
get = Vector a -> Vector n a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector n a) -> Get (Vector a) -> Get (Vector n a)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> Get a -> Get (Vector a)
forall (m :: Type -> Type) a. Monad m => Int -> m a -> m (Vector a)
V.replicateM (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @n) Get a
forall t. Binary t => Get t
get
instance KnownNat size => Applicative (Vector size) where
pure :: forall a. a -> Vector size a
pure a
a = Vector a -> Vector size a
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector a -> Vector size a) -> Vector a -> Vector size a
forall a b. (a -> b) -> a -> b
$ Int -> a -> Vector a
forall a. Int -> a -> Vector a
V.replicate (forall (size :: Natural) n. (KnownNat size, Integral n) => n
knownNat @size) a
a
(Vector Vector (a -> b)
fs) <*> :: forall a b. Vector size (a -> b) -> Vector size a -> Vector size b
<*> (Vector Vector a
as) = Vector b -> Vector size b
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector b -> Vector size b) -> Vector b -> Vector size b
forall a b. (a -> b) -> a -> b
$ ((a -> b) -> a -> b) -> Vector (a -> b) -> Vector a -> Vector b
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith (a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
($) Vector (a -> b)
fs Vector a
as
instance Semialign (Vector size) where
align :: forall a b.
Vector size a -> Vector size b -> Vector size (These a b)
align (Vector Vector a
as) (Vector Vector b
bs) = Vector (These a b) -> Vector size (These a b)
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector (These a b) -> Vector size (These a b))
-> Vector (These a b) -> Vector size (These a b)
forall a b. (a -> b) -> a -> b
$ (a -> b -> These a b) -> Vector a -> Vector b -> Vector (These a b)
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> b -> These a b
forall a b. a -> b -> These a b
These Vector a
as Vector b
bs
instance Zip (Vector size) where
zip :: forall a b. Vector size a -> Vector size b -> Vector size (a, b)
zip (Vector Vector a
as) (Vector Vector b
bs) = Vector (a, b) -> Vector size (a, b)
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector (a, b) -> Vector size (a, b))
-> Vector (a, b) -> Vector size (a, b)
forall a b. (a -> b) -> a -> b
$ Vector a -> Vector b -> Vector (a, b)
forall a b. Vector a -> Vector b -> Vector (a, b)
V.zip Vector a
as Vector b
bs
zipWith :: forall a b c.
(a -> b -> c) -> Vector size a -> Vector size b -> Vector size c
zipWith a -> b -> c
f (Vector Vector a
as) (Vector Vector b
bs) = Vector c -> Vector size c
forall (size :: Natural) a. Vector a -> Vector size a
Vector (Vector c -> Vector size c) -> Vector c -> Vector size c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> Vector a -> Vector b -> Vector c
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> b -> c
f Vector a
as Vector b
bs
instance Unzip (Vector size) where
unzip :: forall a b. Vector size (a, b) -> (Vector size a, Vector size b)
unzip Vector size (a, b)
v = ((a, b) -> a
forall a b. (a, b) -> a
fst ((a, b) -> a) -> Vector size (a, b) -> Vector size a
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Vector size (a, b)
v, (a, b) -> b
forall a b. (a, b) -> b
snd ((a, b) -> b) -> Vector size (a, b) -> Vector size b
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Vector size (a, b)
v)
instance (Arbitrary a, KnownNat size) => Arbitrary (Vector size a) where
arbitrary :: Gen (Vector size a)
arbitrary = Gen (Vector size a)
forall (f :: Type -> Type) a.
(Arbitrary1 f, Arbitrary a) =>
Gen (f a)
arbitrary1
instance KnownNat size => Arbitrary1 (Vector size) where
liftArbitrary :: forall a. Gen a -> Gen (Vector size a)
liftArbitrary = Vector size (Gen a) -> Gen (Vector size a)
forall (t :: Type -> Type) (f :: Type -> Type) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: Type -> Type) a.
Applicative f =>
Vector size (f a) -> f (Vector size a)
sequenceA (Vector size (Gen a) -> Gen (Vector size a))
-> (Gen a -> Vector size (Gen a)) -> Gen a -> Gen (Vector size a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Gen a -> Vector size (Gen a)
forall (f :: Type -> Type) a. Representable f => a -> f a
pureRep
instance (Random a, KnownNat size) => Random (Vector size a) where
random :: forall g. RandomGen g => g -> (Vector size a, g)
random = State g (Vector size a) -> g -> (Vector size a, g)
forall s a. State s a -> s -> (a, s)
runState (Vector size (StateT g Identity a) -> State g (Vector size a)
forall (t :: Type -> Type) (f :: Type -> Type) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: Type -> Type) a.
Applicative f =>
Vector size (f a) -> f (Vector size a)
sequenceA (StateT g Identity a -> Vector size (StateT g Identity a)
forall (f :: Type -> Type) a. Representable f => a -> f a
pureRep ((g -> (a, g)) -> StateT g Identity a
forall a. (g -> (a, g)) -> StateT g Identity a
forall s (m :: Type -> Type) a.
MonadState s m =>
(s -> (a, s)) -> m a
state g -> (a, g)
forall g. RandomGen g => g -> (a, g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random)))
randomR :: forall g.
RandomGen g =>
(Vector size a, Vector size a) -> g -> (Vector size a, g)
randomR = State g (Vector size a) -> g -> (Vector size a, g)
forall s a. State s a -> s -> (a, s)
runState (State g (Vector size a) -> g -> (Vector size a, g))
-> ((Vector size a, Vector size a) -> State g (Vector size a))
-> (Vector size a, Vector size a)
-> g
-> (Vector size a, g)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((a, a) -> StateT g Identity a)
-> Vector size (a, a) -> State g (Vector size a)
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: Type -> Type) a b.
Applicative f =>
(a -> f b) -> Vector size a -> f (Vector size b)
traverse ((g -> (a, g)) -> StateT g Identity a
forall a. (g -> (a, g)) -> StateT g Identity a
forall s (m :: Type -> Type) a.
MonadState s m =>
(s -> (a, s)) -> m a
state ((g -> (a, g)) -> StateT g Identity a)
-> ((a, a) -> g -> (a, g)) -> (a, a) -> StateT g Identity a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a, a) -> g -> (a, g)
forall g. RandomGen g => (a, a) -> g -> (a, g)
forall a g. (Random a, RandomGen g) => (a, a) -> g -> (a, g)
randomR) (Vector size (a, a) -> State g (Vector size a))
-> ((Vector size a, Vector size a) -> Vector size (a, a))
-> (Vector size a, Vector size a)
-> State g (Vector size a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Vector size a -> Vector size a -> Vector size (a, a))
-> (Vector size a, Vector size a) -> Vector size (a, a)
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Vector size a -> Vector size a -> Vector size (a, a)
forall (f :: Type -> Type) a b.
Representable f =>
f a -> f b -> f (a, b)
mzipRep
instance ToJSON a => ToJSON (Vector n a) where
toJSON :: Vector n a -> Value
toJSON (Vector Vector a
xs) = Vector a -> Value
forall a. ToJSON a => a -> Value
toJSON Vector a
xs
instance (AdditiveSemigroup a) => AdditiveSemigroup (Vector n a) where
+ :: Vector n a -> Vector n a -> Vector n a
(+) = (a -> a -> a) -> Vector n a -> Vector n a -> Vector n a
forall a b c.
(a -> b -> c) -> Vector n a -> Vector n b -> Vector n c
forall (f :: Type -> Type) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith a -> a -> a
forall a. AdditiveSemigroup a => a -> a -> a
(+)
instance (Scale b a) => Scale b (Vector n a) where
scale :: b -> Vector n a -> Vector n a
scale = (a -> a) -> Vector n a -> Vector n a
forall a b. (a -> b) -> Vector n a -> Vector n b
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> a) -> Vector n a -> Vector n a)
-> (b -> a -> a) -> b -> Vector n a -> Vector n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a -> a
forall b a. Scale b a => b -> a -> a
scale
instance (AdditiveMonoid a, KnownNat n) => AdditiveMonoid (Vector n a) where
zero :: Vector n a
zero = (Rep (Vector n) -> a) -> Vector n a
forall a. (Rep (Vector n) -> a) -> Vector n a
forall (f :: Type -> Type) a.
Representable f =>
(Rep f -> a) -> f a
tabulate (a -> Zp n -> a
forall a b. a -> b -> a
const a
forall a. AdditiveMonoid a => a
zero)
instance (AdditiveGroup a, KnownNat n) => AdditiveGroup (Vector n a) where
negate :: Vector n a -> Vector n a
negate = (a -> a) -> Vector n a -> Vector n a
forall a b. (a -> b) -> Vector n a -> Vector n b
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. AdditiveGroup a => a -> a
negate
(-) = (a -> a -> a) -> Vector n a -> Vector n a -> Vector n a
forall a b c.
(a -> b -> c) -> Vector n a -> Vector n b -> Vector n c
forall (f :: Type -> Type) a b c.
Zip f =>
(a -> b -> c) -> f a -> f b -> f c
zipWith (-)