{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE TypeOperators #-} module ZkFold.Base.Protocol.NonInteractiveProof.Internal where import Crypto.Hash.BLAKE2.BLAKE2b (hash) import Data.ByteString (ByteString) import Data.Maybe (fromJust) import qualified Data.Vector as V import Data.Word (Word8) import Numeric.Natural (Natural) import Prelude hiding (Num ((*)), sum) import ZkFold.Base.Algebra.Basic.Class (Field, MultiplicativeSemigroup ((*)), sum) import ZkFold.Base.Algebra.EllipticCurve.Class (EllipticCurve (..), Point) import ZkFold.Base.Algebra.Polynomials.Univariate (Poly, PolyVec, fromPolyVec) import ZkFold.Base.Data.ByteString class Monoid ts => ToTranscript ts a where toTranscript :: a -> ts instance Binary a => ToTranscript ByteString a where toTranscript :: a -> ByteString toTranscript = a -> ByteString forall a. Binary a => a -> ByteString toByteString transcript :: ToTranscript ts a => ts -> a -> ts transcript :: forall ts a. ToTranscript ts a => ts -> a -> ts transcript ts ts a a = ts ts ts -> ts -> ts forall a. Semigroup a => a -> a -> a <> a -> ts forall ts a. ToTranscript ts a => a -> ts toTranscript a a class Monoid ts => FromTranscript ts a where fromTranscript :: ts -> a instance Binary a => FromTranscript ByteString a where fromTranscript :: ByteString -> a fromTranscript = Maybe a -> a forall a. HasCallStack => Maybe a -> a fromJust (Maybe a -> a) -> (ByteString -> Maybe a) -> ByteString -> a forall b c a. (b -> c) -> (a -> b) -> a -> c . ByteString -> Maybe a forall a. Binary a => ByteString -> Maybe a fromByteString (ByteString -> Maybe a) -> (ByteString -> ByteString) -> ByteString -> Maybe a forall b c a. (b -> c) -> (a -> b) -> a -> c . Int -> ByteString -> ByteString -> ByteString hash Int 28 ByteString forall a. Monoid a => a mempty challenge :: forall ts a . FromTranscript ts a => ts -> a challenge :: forall ts a. FromTranscript ts a => ts -> a challenge = ts -> a forall ts a. FromTranscript ts a => ts -> a fromTranscript challenges :: (ToTranscript ts Word8, FromTranscript ts a) => ts -> Natural -> ([a], ts) challenges :: forall ts a. (ToTranscript ts Word8, FromTranscript ts a) => ts -> Natural -> ([a], ts) challenges ts ts0 Natural n = ts -> Natural -> [a] -> ([a], ts) forall {t} {t} {a}. (Eq t, Num t, ToTranscript t Word8, FromTranscript t a) => t -> t -> [a] -> ([a], t) go ts ts0 Natural n [] where go :: t -> t -> [a] -> ([a], t) go t ts t 0 [a] acc = ([a] acc, t ts) go t ts t k [a] acc = let c :: a c = t -> a forall ts a. FromTranscript ts a => ts -> a challenge t ts ts' :: t ts' = t ts t -> Word8 -> t forall ts a. ToTranscript ts a => ts -> a -> ts `transcript` (Word8 0 :: Word8) in t -> t -> [a] -> ([a], t) go t ts' (t k t -> t -> t forall a. Num a => a -> a -> a - t 1) (a c a -> [a] -> [a] forall a. a -> [a] -> [a] : [a] acc) class NonInteractiveProof a core where type Transcript a type SetupProve a type SetupVerify a type Witness a type Input a type Proof a setupProve :: a -> SetupProve a setupVerify :: a -> SetupVerify a prove :: SetupProve a -> Witness a -> (Input a, Proof a) verify :: SetupVerify a -> Input a -> Proof a -> Bool class (EllipticCurve curve) => CoreFunction curve core where msm :: (f ~ ScalarField curve) => V.Vector (Point curve) -> PolyVec f size -> Point curve polyMul :: (f ~ ScalarField curve, Field f, Eq f) => Poly f -> Poly f -> Poly f data HaskellCore instance (EllipticCurve curve, f ~ ScalarField curve) => CoreFunction curve HaskellCore where msm :: forall f (size :: Natural). (f ~ ScalarField curve) => Vector (Point curve) -> PolyVec f size -> Point curve msm Vector (Point curve) gs PolyVec f size f = Vector (Point curve) -> Point curve forall (t :: Type -> Type) a. (Foldable t, AdditiveMonoid a) => t a -> a sum (Vector (Point curve) -> Point curve) -> Vector (Point curve) -> Point curve forall a b. (a -> b) -> a -> b $ (f -> Point curve -> Point curve) -> Vector f -> Vector (Point curve) -> Vector (Point curve) forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c V.zipWith f -> Point curve -> Point curve ScalarField curve -> Point curve -> Point curve forall curve. EllipticCurve curve => ScalarField curve -> Point curve -> Point curve mul (PolyVec f size -> Vector f forall c (size :: Natural). PolyVec c size -> Vector c fromPolyVec PolyVec f size f) Vector (Point curve) gs polyMul :: forall f. (f ~ ScalarField curve, Field f, Eq f) => Poly f -> Poly f -> Poly f polyMul = Poly f -> Poly f -> Poly f forall a. MultiplicativeSemigroup a => a -> a -> a (*)